4.1,4.2 Analysis of Algorithms

Introduction to Computer Science - Sedgewick and Wayne - Copyright © 2007 - http://www.cs.Princeton EDU/IntroCS

Overview

Analysis of algorithms. Framework for comparing algorithms and
predicting performance.

Scientific method.

Observe some feature of the universe.

Hypothesize a model that is consistent with observation.
Predict events using the hypothesis.

Verify the predictions by making further observations.
Validate the theory by repeating the previous steps until
the hypothesis agrees with the observations.

Universe = computer itself.

Running Time

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Charles Babbage (1864) Analytic Engine (schematic)

Algorithmic Successes

N-body Simulation.
« Simulate gravitational interactions among N bodies.
« Brute force: N? steps.
« Barnes-Hut: N log N steps, enables new research.

Discrete Fourier fransform.
« Break down waveform of N samples into periodic components.
« Applications: DVD, JPEG, MRI, astrophysics,
« Brute force: N? steps.
« FFT algorithm: N log N steps, enables new technology.

Sorting.
= Rearrange N items in ascending order.
» Fundamental information processing abstraction,
enables commerce.

w o
ol RV

Andrew Appel
U ‘81

Freidrich Gauss
1805

Jon von Neumann
IAS 1945

Case Study: Sorting

Sorting problem. Rearrange N items in ascending order. II"IS et"ﬁ on S ort

Applications. Statistics, databases, data compression, computational
biology, computer graphics, scientific computing, ...

I
[
i

Insertion Sort Insertion Sort: Java Implementation

Insertion sort.
= Brute-force sorting solution.
« Move left-to-right through array.
« Exchange next element with larger elements to its left, one-by-one.

[s[o[r[z[=[x[au]e[L[z] NN
©s[R[r[E[x[a[m]P[L]E]
[of®Is[T[E[X[aM[P]L[E]
[o[R[S{@[E[x[a]M[p]L[E]
®o[r[s[T[x[a[n[?[L[E]
[e[o[r[s[TI®a[M[P[L]E]
@E0/R ST X1 F[L]
[2[E[M[o(®Ir[s[T[X[L]E]

AE[ELMOPRSTX

Insertion Sort: Observation

Observe and tabulate running time for various values of N.

« Data source: N random numbers between O and 1.
« Machine: Apple 65 1.86Hz with 1.56B memory running OS X.

« Timing: Skagen wristwatch.

5,000 6.2 million
10,000 25 million
20,000 99 million
40,000 400 million

80,000 1600 million

Insertion Sort: Prediction and Verification

0.13 seconds
0.43 seconds
1.5 seconds
5.6 seconds

23 seconds

Experimental hypothesis. # comparisons ~ N2/4.

Prediction. 400 million comparisons for N

Observations.
40,000 401.3 million
40,000 399.7 million
40,000 401.6 million
40,000 400.0 million

Prediction. 10 billion comparisons for N =

Observation.

200,000 9.997 billion

= 40,000.

5.595 sec
5.573 sec
5.648 sec
5.632 sec

200,000.

145 seconds

Agrees.

Agrees.

Insertion Sort: Experimental Hypothesis

Data analysis. Plot # comparisons vs. input size on log-log scale.

Comparsions (millions)

Regression.

Hypothesis

100000

10000
® Actual
1000 Fitted
100
10
1
1000 10000 100000 1000000
Input Size
power law
Fit line through data points ~ a N, -

. # comparisons grows quadratically with input size ~ N2/4.

Insertion Sort: Validation

Number of comparisons depends on input family.
. Descending: N2/2.
« Random: N2/4.

= Ascending: N.
10000000 1
* Descendng
100000 - * Random s
g * Ascending H
2 s
E 1000 1 s °
2 :
= H
2 10 .
5 F :
01 4 RS =
. .
. .
0.001 T T]
1000 10000 100000 1000000

Input Size

slope

Insertion Sort: Theoretical Hypothesis

Experimental hypothesis.
« Measure running times, plot, and fit curve.
« Model useful for predicting, but not for explaining.

Theoretical hypothesis.
=« Analyze algorithm to estimate # comparisons as a function of:
- number of elements N to sort
- average or worst case input
» Model useful for predicting and explaining.

Critical difference. Theoretical model is independent of a particular
machine or compiler; applies to machines not yet built.

Insertion Sort: Theoretical Hypothesis

Theoretical hypothesis.

Worst Nz /2 -
Average N2/ 4 1/6 N3/2
Best N -

Validation. Theory agrees with observations.

40,000 401.3 million 400 million
200,000 9.9997 billion ~ 10.000 billion

Insertion Sort: Analysis

Worst case. (descending)
« Iteration i requires i comparisons.
« Total=(0+1+2+..+N-1) ~ N2/ 2 compares.

BEOOEEE - - >
i

Average case. (random)
« Iteration i requires i/2 comparisons on average.
« Total=(0+1+2+..+N-1)/2 ~ N2/ 4 compares

EBEOEIEIEEIE - - -
i

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

Comparisons 1R
m
107

laptop instant 1 day 3 centuries

super 1012 instant 1 second 2 weeks

Moore's Law Moore's Law and Algorithms

Moore's law. Transistor density on a chip doubles every 2 years. Quadratic algorithms do not scale with technology.
= New computer may be 10x as fast.
Variants. Memory, disk space, bandwidth, computing power per $. =« But, has 10x as much memory so problem may be 10x bigger.

= With quadratic algorithm, takes 10x as long!

Moore’s Law
The Fifth Paradigm

Logaritamic Plot

Software inefficiency can always outpace Moore's Law.
Moore's Law isn't a match for our bad coding. - Jaron Lanier

Calculations per Second per $1,000

Lesson. Need linear algorithm to keep pace with Moore's law.

Integrated Circait
1930 0 1960 1970 1980 1990 2000
Year

Mergesort

Mer‘geso rt Mergesort.

« Divide array into two halves.

« Recursively sort each half.
» Merge two halves to make sorted whole.

First Draft
ofa

Report on the
EDVAC

John von Neumann

input
MERGESORTEZXAMPLE

sort left
EEGMORRS

sort right

A EELMPTX

merge
AEEEEGLMMOPRRSTHX

Mergesort: Example Merging

MERGESOR|TEZXAMPLE Merging. Combine two pre-sorted lists into a sorted whole.

[E[M[r[c[E[s[o[R[T[E[X[A[M[P[L]E] . -
[E[M[G[R[E[S[0]R[T|E|X|A[M][P|L]E] How to merge efficiently? Use an auxiliary array. -
[E[e[M[R[E[S[o[R[E[T[A[X[M[P[E]L]

[E[M[G[R]E[s]o[R[T[E[X[A[M]P[L]E] B + " J i
EMCREER[TERAMELE wxi A 6 1 o rR|m 1 M s T
[E[c[M[R]E[O[R[S]E[T[A[X[M]P[E[L] X

55 6w ol m s]a 5 < 1x[x il [
[E[M[c[R[E[S[O[R[E[T[X[A[M[P[L[E]
[E[M[G[R[E[s[o[R[E[T[A[X[M]P[L]E]
[E[c[M[R[E[O[R[S|A[E[T[X[M[P[E[L]
[E[M[G[R[E[s[o[R[E[T[A[X[M]P[L]E]
[E[M[G[R[E[S[O[R[E[T[A[X[M[P[E[L]
[E[cM[R[E[o[R[s[A[E[T[X|E[L[M[P]
(mElcuor[rS|AEE/L MP T X|

AEEEEGLMMOPRRSTX|

Mergesort: Java Implementation Mergesort: Preliminary Hypothesis

Experimental hypothesis. Number of comparisons ~ 20N.

m r

1 12 13 14 15 16 17 18 19

1
10 ot

Mergesort: Prediction and Verification Mergesort: Analysis

Experimental hypothesis. Number of comparisons ~ 20N. Analysis. To mergesort array of size N, mergesort two subarrays
of size N/2, and merge them together using < N comparisons.
Prediction. 80 million COﬂ'\pOI"iSOﬂS for N = 4 million. N we assume N is a power of 2
4 ~
Observations. - p o0 N
4 million 82.7 million 3.13 sec /\
Agrees.
4 million 82.7 million 3.25 sec
T (N/2) T (N/2) 2(N/2)
4 million 82.7 million 3.22 sec /\ /\
T (N/4) T (N/4) T (N/4) T (N/4) 4(N/4)
. . T . TR l°gzN
Prediction. 400 million comparisons for N = 20 million.
20 million 460 million 17.5 sec Not quite. T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) N/2 (2)
50 million 1216 million 45.9 sec
N log, N
25
Mergesort: Theoretical Hypothesis Mergesort: Lesson
Theoretical hypothesis. Lesson. Great algorithms can be more powerful than supercomputers.
Worst N log, N
Average N log, N)
Computer Compur‘lsor:js Insertion Mergesort
Best 1/2 N log, N Per Secon
laptop 107 3 centuries 3 hours
Validation. Theory now agrees with observations. super 10t 2 weeks instant

N = 1 billion

10,000 120 thousand 133 thousand
20 million 460 million 485 million
50 million 1,216 million 1,279 million

Scientific Method

Scientific method applies to estimate running time.
« Experimental analysis: not difficult to perform experiments.
« Theoretical analysis: may require advanced mathematics.
« Small subset of mathematical functions suffice to describe running
time of many fundamental algorithms.

while (N > 1) {

public static void g(int N) {
log,N N=N/2;

if (N == 0) return;

o g(N/2);

} N log,N g(N/2) ;

for (int i = 0; i < N; i++)

for (int i = 0; i < N; i++)

N
public static void £(int N) {
if (N == 0) return;
for (int i = 0; i < N; it++) 2y £(N-1);

N2 for (int j = 0; j < N; j++) £(N-1) ;

Summary

How can I evaluate the performance of my algorithm?
« Computational experiments.
« Theoretical analysis.

What if it's not fast enough?
« Understand why.
=« Buy a faster computer.
« Find a better algorithm in a textbook.
= Discover a new algorithm.

Better Machine Better Algorithm

Cost $$$ or more. $ or less.

- Makes "everything" Does not apply to
AlTHERA run faster. some problems.
Improvement Quantitative Dramatic qualitative

improvements. improvements possible.

Order of Growth Classifications

Order of growth.
« Estimate running time as a function of input size N.
« Ignore lower order terms.
- when N is large, terms are negligible
. . Donald Knuth
- when N is small, we don't care Turing award '74
« Ex: 6N3 +17N2 + 56 ~ 6N3.

1 constant algorithm is independent of input size does not change
logN logarithmic algorithm gets slightly slower as N grows increases by a constant
N linear algorithm is optimal for processing N inputs doubles
Nlog N linearithmic algorithm scales to huge N slightly more than doubles
N2 quadratic algorithm is impractical for large N quadruples
2N exponential algorithm is not usually practical squares!

