
Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

Lecture 3: Loops

Copyright 2004, FoxTrot by Bill Amend
www.ucomics.com/foxtrot/2003/10/03

2

The While Loop

3

While Loops

The while loop. A common repetition structure.

! Check a boolean expression.

! Execute a sequence of statements.

! Repeat.

while (boolean expression) {
 statement 1;
 statement 2;
} statement 1

true

false

boolean expression

statement 2

loop body

loop continuation condition

4

While Loops: Powers of Two

Ex. Print first n powers of 2.

! Increment i from 1 to n.

! Double v each time.

Click for demo

int i = 0;

int v = 1;

while (i <= n) {

 System.out.println(v);

 i = i + 1;

 v = 2 * v;

}

% java Powers

1

2

4

8

16

32

64

0 1

i v

1 2

2 4

3 8

true

i <= n

true

true

true

4 16

5 32

6 64

7 128

true

true

true

false

n = 6

5

Powers of Two

public class PowersOfTwo {

 public static void main(String[] args) {

 int n = Integer.parseInt(args[0]);

 int i = 0;

 int v = 1;

 while (i <= 6) {

 System.out.println(v);

 i = i + 1;

 v = 2 * v;

 }

 }

}

% java PowersOfTwo 4

1

2

4

8

% java PowersOfTwo 6

1

2

4

8

16

32

64

7

While Loops: Square Root

Q. How might we implement Math.sqrt() ?

A. To compute the square root of c:

! Initialize t0 = c.

! Repeat until ti = c / ti, up to desired precision:

set ti+1 to be the average of ti and c / ti.

!

t0 = 2.0

t1 = 1
2
(t0 + 2

t0
) = 1.5

t2 = 1
2
(t1 + 2

t1
) = 1.416666666666665

t3 = 1
2
(t2 + 2

t2
) = 1.4142156862745097

t4 = 1
2
(t3 + 2

t3
) = 1.4142135623746899

t5 = 1
2
(t4 + 2

t4
) = 1.414213562373095

computing the square root of 2

8

public class Sqrt {

 public static void main(String[] args) {

 double EPS = 1E-15;

 double c = Double.parseDouble(args[0]);

 double t = c;

 while (Math.abs(t - c/t) > t*EPS) {

 t = (c/t + t) / 2.0;

 }

 System.out.println(t);

 }

}
% java Sqrt 2.0

1.414213562373095

error tolerance

15 decimal digits of accuracy in 5 iterations

While Loops: Square Root

Q. How might we implement Math.sqrt() ?

A. To compute the square root of c:

! Initialize t0 = c.

! Repeat until ti = c / ti, up to desired precision:

set ti+1 to be the average of ti and c / ti.

9

Newton-Raphson Method

Square root method explained.

! Goal: find root of function f(x).

! Start with estimate t0.

! Draw line tangent to curve at x= ti.

! Set ti+1 to be x-coordinate where line hits x-axis.

! Repeat until desired precision.

f(x) = x2 - c to compute !c

10

The For Loop

11

For Loops

The for loop. Another common repetition structure.

! Execute initialization statement.

! Check boolean expression.

! Execute sequence of statements.

! Execute increment statement.

! Repeat.

for (init; boolean expression; increment) {
 statement 1;
 statement 2;
}

statement 1
true

false

boolean expression

statement 2

init increment

body

loop continuation condition

12

int N = 3;

String ruler = " ";

for (int i = 1; i <= N; i++) {

 ruler = ruler + i + ruler;

}

System.out.println(ruler);

For Loops: Subdivisions of a Ruler

Create subdivision of a ruler.

! Initialize ruler to empty string.

! For each value i from 1 to N:

sandwich two copies of ruler on either side of i.

1 " 1 "

i ruler

2 " 1 2 1 "

3 " 1 2 1 3 1 2 1 "

" "

13

% java Ruler 1

 1

% java Ruler 2

 1 2 1

% java Ruler 3

 1 2 1 3 1 2 1

% java Ruler 4

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java Ruler 5

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java Ruler 100

Exception in thread "main"

java.lang.OutOfMemoryError

For Loops: Subdivisions of a Ruler

Observation. Loops can produce a huge amount of output!

14

Nesting

15

Nesting Conditionals and Loops

Conditionals enable you to do one of 2n

sequences of operations with n lines.

More sophisticated programs.

! Nest conditionals within conditionals.

! Nest loops within loops.

! Nest conditionals within loops within loops.

if (a0 > 0) System.out.print(0);

if (a1 > 0) System.out.print(1);

if (a2 > 0) System.out.print(2);

if (a3 > 0) System.out.print(3);

if (a4 > 0) System.out.print(4);

if (a5 > 0) System.out.print(5);

if (a6 > 0) System.out.print(6);

if (a7 > 0) System.out.print(7);

if (a8 > 0) System.out.print(8);

if (a9 > 0) System.out.print(9);

Loops enable you to do an operation

n times using only 2 lines of code.

double sum = 0.0;

for (int i = 1; i <= 1024; i++)

 sum = sum + 1.0 / i;

210 = 1024 possible results, depending on input

computes 1/1 + 1/2 + ... + 1/1024

17

Nested If-Else

Ex. Pay a certain tax rate depending on income level.

double rate = 0.35;

if (income < 47450) rate = 0.22;

if (income < 114650) rate = 0.25;

if (income < 174700) rate = 0.28;

if (income < 311950) rate = 0.33;

wrong graduated income tax calculation

0 - 47,450 22%

Income Rate

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 - 35%

18

Gambler's Ruin

Gambler's ruin. Gambler starts with $stake and places $1 fair bets

until going broke or reaching $goal.

! What are the chances of winning?

! How many bets will it take?

One approach. Monte Carlo simulation.

! Flip digital coins and see what happens.

! Repeat and compute statistics.

19

public class Gambler {

 public static void main(String[] args) {

 int stake = Integer.parseInt(args[0]);

 int goal = Integer.parseInt(args[1]);

 int trials = Integer.parseInt(args[2]);

 int wins = 0;

 System.out.println(wins + " wins of " + trials);

 }

}

// repeat experiment N times

for (int i = 0; i < trials; i++) {

}

// do one gambler's ruin experiment

int t = stake;

while (t > 0 && t < goal) {

}

if (t == goal) wins++;

// flip coin and update

if (Math.random() < 0.5) t++;

else t--;

Gambler's Ruin

20

Simulation and Analysis

Fact. Probability of winning = stake ÷ goal.

Fact. Expected number of bets = stake " desired gain.

Ex. 20% chance of turning $500 into $2500, but expect

to make one million $1 bets.

Remark. Both facts can be proved mathematically; for more complex

scenarios, computer simulation is often the best plan of attack.

% java Gambler 5 25 1000

191 wins of 1000

% java Gambler 5 25 1000

203 wins of 1000

% java Gambler 500 2500 1000

197 wins of 1000

stake goal trials

after a few hours of
computing….

21

Debugging

Admiral Grace Murray Hopperhttp://www.history.navy.mil/photos/images/h96000/h96566kc.htm

22

Debugging a Program

Factor. Given an integer N, compute its prime factorization.

Application. Break RSA cryptosystem.

3,757,208 = 23 " 7 " 132 " 397

3757208/8

23

Debugging a Program: Syntax Errors

Syntax error. Illegal Java program.

! Compiler error messages help locate problem.

! Eventually, a file named Factors.class.

public class Factors1 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0])

 for (i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ")

 N = N / i

 }

 }

}

As long as i is a factor,
divide it out.

Check if i
is a factor.

Compile-time error

24

Debugging a Program: Semantic Errors

Semantic error. Legal but wrong Java program.

! Use "System.out.println" method to identify problem.

public class Factors2 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ");

 N = N / i;

 }

 }

}

As long as i is a factor,
divide it out.

Check if i
is a factor.

no output (17) or infinite loop (49)

Run-time error

25

Debugging a Program: Performance Errors

Performance error. Correct program but too slow.

! Use profiling to discover bottleneck.

! Devise better algorithm.

public class Factors3 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i <= N; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 }
}

As long as i is a factor,
divide it out.

Check if i
is a factor.

Performance error

too slow for large N (999,999,937)

26

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i*i <= N; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 if (N > 1) System.out.println(N);

 else System.out.println();

 }

}

Debugging a Program: Success

Fact. If N has a factor, it has one less than or equal to its square root.

Impact. Many fewer iterations of for loop.

Check if i
is a factor.

Corner case: biggest
factor occurs once.

As long as i is a factor,
divide it out.

28

Q. How large an integer can I factor?

% java Factors 168

2 2 2 3 7

% java Factors 3757208

2 2 2 7 13 13 397

% java Factors 9201111169755555703

9201111169755555703

Debugging a Program: Analysis

† estimated

 largest factor
3 instant

Digits (i <= N)

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

(i*i <= N)

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

2.7 seconds

92 seconds

after a few minutes of
computing….

29

Programming in Java

Programming in Java. [a slightly more realistic view]

1. Create the program.

2. Compile it..

Compiler says: That’s not a legal program.

Back to step 1 to fix your errors of syntax.

3. Execute it.

Result is bizarrely (or subtly) wrong.

Back to step 1 to fix your errors of semantics.

4. Enjoy the satisfaction of a working program!

30

Debugging a Program

Debugging. Cyclic process of editing, compiling, and fixing errors.

! Always a logical explanation.

! What would the machine do?

! Explain it to the teddy bear.

You will make many mistakes as you write programs. It's normal.

As soon as we started programming, we found out to our
surprise that it wasn't as easy to get programs right as we had
thought. I can remember the exact instant when I realized that
a large part of my life from then on was going to be spent in
finding mistakes in my own programs. - Maurice Wilkes

If I had 8 hours to chop down a tree, I would spend 6 hours
sharpening an axe. - Anonymous

31

Control Flow Summary

Control flow.

! Sequence of statements that are actually executed in a program.

! Conditionals and loops: enables us to choreograph the control flow.

Straight-line
programs

All statements are
executed in the order given.

Conditionals
Certain statements are

executed depending on the
values of certain variables.

if

if-else

Loops
Certain statements are

executed repeatedly until
certain conditions are met.

while

for

do-while

Control Flow Description Examples

