
The PCP theorem - overview of the proof.

April 14, 2006

Constraint satisfaction problems A constraint satisfaction problem (CSP) is a collection f of
functions f1, . . . , fm, where each fi depends on only q inputs. These fi’s are called clauses or
constraints. We call f an instance or formula.

The decision problem is whether there exists an assignment ~x = (x1, ldots, xn) ∈ Σn such
that fi(~x) = 1 for all i.

The maximization problem is to find ~x that maximizes the number of fi such that fi(~x) = 1.
We let µ(f) denote the maximum fraction of clauses that can be satisfied by any assignment.
The approximation problem within a factor c ≥ 1 is, given f , find a number µ̃ such that
µ/c ≤ µ̃ ≤ cµ.

The ε-gap problem is to distinguish between f ’s such that f(~x) = 1 for some ~x and f ’s such
that for any ~x less than 1− ε fraction of the constraints can be satisfied. That is, distinguish
between f ’s with µ(f) = 1 and f ’s with µ(f) < 1− ε. Thus, the decision problem is the 0-gap
problem. Note that approximating the maximization problem within a factor smaller than
1/(1− ε) > 1 + ε implies solving the ε-gap problem.

Example of CSPs 3SAT: Σ = {0, 1}, fi’s are OR’s, q = 3.

3COL: Σ = {1, 2, 3}, fi’s are 6=, q = 2.

General parameters:

• Number of variables = n

• Number of clauses = m (we assume m ≥ n and we consider m to be the size of the
formula). Thus, we denote also |f | = m.

• Alphabet size = |Σ|, which we’ll denote by σ(f). We’ll always use finite size alphabet.

• Size of clause / number of queries = q(f)

• Degree: d(f) = the maximum number of constraints that involve one particular vari-
able. (In 3COL this is the degree of the graph.)

• Gap ε (as mentioned above, we’ll be mostly interested in the gap problem of distin-
guishing between fully satisfiable inputs and inputs that can be satisfiable with at
most 1 − ε fraction). The decision problem is equivalent to the gap problem with
ε = 1/m.

• Satisfying fraction: µ(f) = the maximum number of of f ’s constraints that can be
satisfied divided by m.

1

We define (q, σ, ε) − CSP to be the ε-gap problem of determining for a given instance f of
that form with |Σ| = σ and number of queries q. Note that length of description of such a
instance is m(q log n + qσ) which in our setting will always be less than m2.

The PCP theorem. The PCP theorem is the following:

Theorem 1. There exist constants q, σ, ε > 0 such that (q, σ, ε)− CSP is NP-hard.

In an exercise you are asked to prove that MAX3SAT is hard to approximate within a constant
factor.

In fact, what we’ll prove is that this holds for q = 2 and some constants σ and ε. It’s already
known that (2, σ, 1/m)− CSP is NP hard (as 3-Coloring is a special case of this). Thus, the
result will follow from the following lemma:

Lemma 2 (PCP main lemma). There exist constants σ and c and a polynomial-time trans-
formation T whose domain and range are CSP problems with |Σ| = σ and q = 2 such that:

Linear blowup For every input f , |T (f)| ≤ C|f |.
Completeness If µ(f) = 1 then µ(T (f)) = 1.

Gap amplification There’s a constant ε0 such that for every ε < ε0, if µ(f) ≤ 1 − ε then
µ(T (f)) ≤ 1− 2ε.

The main lemma implies the PCP theorem since by repeating the transformation O(log m)
times we get a polynomial-time reduction from (2, σ, 1/m) − CSP to (2, σ, ε0). (Note that
because of the linear blowup the size of the resulting formula will be indeed |f |CO(logm) =
poly(m).)

Proving the main lemma The main lemma is proved by combining the following three steps:

Lemma 3 (Gap amplification: Dinur’s lemma). There exists a polynomial-time function
gap-amp such that for every 2-query f , and value ` we have

Linear blowup gap-amp(`, f) is a 2-query CSP such that for some C = C(`, σ(f)), |gap-amp(`, f)| ≤
C|f | and σ(gap-amp(`, f)) ≤ C.

Completeness If µ(f) = 1 then µ(gap-amp(`, f)) = 1.

Gap amplification There’s a constant ε0 such that for every ε < ε0/`, if µ(f) ≤ 1− ε then
µ(gap-amp(`, f)) ≤ 1− `ε.

Lemma 4 (Alphabet reduction). There exists a polynomial-time function alph-red and
absolute constants σ0 and q0 such that for every 2-query CSP f

Linear blowup alph-red(f) is a q0-query CSP with alphabet size less than σ0, and size less
than C|f | for some C = C(σ(f)).

Completeness If µ(f) = 1 then µ(alph-red(f)) = 1.

Limited loss There’s an absolute constant D (not depending on f or σ) such that if µ(f) ≤
1− ε then µ(alph-red(f)) ≤ 1− ε/D.

Lemma 5 (Query reduction). There exists a polynomial-time function q-red such that for
every q-query CSP f with alphabet size σ

2

Linear blowup q-red(f) is a 2-query CSP with alphabet size less than σq, and size less
than C|f | for some C = C(q).

Completeness If µ(f) = 1 then µ(q-red(f)) = 1.

Limited loss If µ(f) ≤ 1− ε then µ(q-red(f)) ≤ 1− ε/D where D = D(q, σ).

The main lemma is obtained by simply combining these three lemmas, choosing ` large enough
as a function of all other constants.

Alphabet reduction The alphabet reduction step follows from the Hadamard-based PCP.

That is, let f be a 2-query CSP (the construction generalizes to CSP’s with a larger constant
number of queries) on n variables x1, . . . , xn on alphabet σ. We will transform f into a q0-CSP
f ′ on the alphabet {0, 1} such that |f ′| ≤ C(σ)|f | and if µ(f) ≤ 1− ε then µ(f ′) ≤ 1− ε/100.

• Each constraint in f is a function C : Σ× Σ → {0, 1}. Let’s identify Σ with {0, 1}c for
some c. We can run the reduction of last time to find a system Qc of quadratic equations
on three sets of variables x, y ∈ {0, 1}c and z ∈ {0, 1}c′

(where z is the auxiliary variables)
such that Q is satisfiable if and only if c(x, y) = 1 (where x, y can be looked as both
strings in {0, 1}c and elements of Σ).

• The CSP f ′ will have a total of 2cn + 2(2c+c′)2m variables which we divide into n + m
sets:

– For every original variable xi which took values in Σ we will have x′i be a sequence
of 2c 0/1 variables. The way to translate an assignment of s to xi to an assignment
to the x′i variables would be to use Had(s) where Had() is the Hadamard encoding.

– For every constraint c of the original f , we’ll have wc be a sequence of 2(2c+c′)2 0/1
variables. If c depends on xi and xj which are assigned values si and sj satisfying
c(si, sj) = 1 then we can assign Had((si ◦ sj ◦ z)⊗2) to the sequence wc where z is
the assignment to the auxiliary variables that makes the equation Qc accept.

• Suppose that we’re given oracle access to an assignment to all these variables, which
may or may not correspond to the encoding above. We now need to come up with a
test such that if it is the encoding of such a satisfying assignment then we’ll accept with
probability one, and if any assignment violates at least an ε fraction of the constraints
then we’ll reject with probability related to ε.

• First, let’s assume that the assignments are always valid Hadamard encodings of some
code words TO BE CONTINUED....

3

