The PCP theorem - overview of the proof.

April 14, 2006

Constraint satisfaction problems A constraint satisfaction problem (CSP) is a collection f of
functions f1,..., fm, where each f; depends on only g inputs. These f;’s are called clauses or
constraints. We call f an instance or formula.

The decision problem is whether there exists an assignment & = (z1,ldots, x,) € X" such
that f;(Z) = 1 for all 1.

The mazximization problem is to find ¥ that maximizes the number of f; such that f;(¥) = 1.
We let pu(f) denote the maximum fraction of clauses that can be satisfied by any assignment.
The approximation problem within a factor ¢ > 1 is, given f, find a number i such that
p/e < fi < cp.

The e-gap problem is to distinguish between f’s such that f(Z) = 1 for some & and f’s such
that for any & less than 1 — € fraction of the constraints can be satisfied. That is, distinguish
between f’s with u(f) =1 and f’s with pu(f) < 1—e. Thus, the decision problem is the 0-gap
problem. Note that approximating the maximization problem within a factor smaller than
1/(1 —€) > 1+ € implies solving the e-gap problem.

Example of CSPs 3SAT: ¥ = {0, 1}, f;’s are OR’s, ¢ = 3.
3COL: ¥ = {1,2,3}, fi’s are #, ¢ = 2.

General parameters:

e Number of variables = n

e Number of clauses = m (we assume m > n and we consider m to be the size of the
formula). Thus, we denote also |f| = m.

e Alphabet size = |X|, which we’ll denote by o(f). We’'ll always use finite size alphabet.
e Size of clause / number of queries = q(f)

e Degree: d(f) = the maximum number of constraints that involve one particular vari-
able. (In 3COL this is the degree of the graph.)

e Gap € (as mentioned above, we’ll be mostly interested in the gap problem of distin-
guishing between fully satisfiable inputs and inputs that can be satisfiable with at
most 1 — € fraction). The decision problem is equivalent to the gap problem with
e=1/m.

e Satisfying fraction: p(f) = the maximum number of of f’s constraints that can be
satisfied divided by m.

We define (q,0,€¢) — CSP to be the e-gap problem of determining for a given instance f of

that form with |X| = o and number of queries ¢q. Note that length of description of such a

instance is m(qlogn + qo) which in our setting will always be less than m?2.

The PCP theorem. The PCP theorem is the following:

Theorem 1. There exist constants q, o, € > 0 such that (q,0,€) — CSP is NP-hard.

In an exercise you are asked to prove that MAX3SAT is hard to approximate within a constant
factor.

In fact, what we’ll prove is that this holds for ¢ = 2 and some constants ¢ and e. It’s already
known that (2,0,1/m) — CSP is NP hard (as 3-Coloring is a special case of this). Thus, the
result will follow from the following lemma:

Lemma 2 (PCP main lemma). There exist constants o and ¢ and a polynomial-time trans-
formation T whose domain and range are CSP problems with |X| = o and g = 2 such that:

Linear blowup For every input f, |T(f)| < C|f].
Completeness If ju(f) =1 then p(T(f)) = 1.

Gap amplification There’s a constant ey such that for every € < e, if pu(f) < 1 — € then
u(T(f) <1 2.

The main lemma implies the PCP theorem since by repeating the transformation O(logm)
times we get a polynomial-time reduction from (2,0,1/m) — CSP to (2,0,¢p). (Note that
because of the linear blowup the size of the resulting formula will be indeed |f|COUe9m) =

poly(m).)
Proving the main lemma The main lemma is proved by combining the following three steps:

Lemma 3 (Gap amplification: Dinur’s lemma). There ezists a polynomial-time function
gap-amp such that for every 2-query f, and value ¢ we have

Linear blowup gap-amp(?, f) is a 2-query CSP such that for some C = C(¢,0(f)), |gap—amp(¢, f)| <
C|f[and o(gap-amp(¢, f)) < C.

Completeness If pu(f) =1 then p(gap-amp(¢, f)) = 1.
Gap amplification There’s a constant ey such that for every e < eg/l, if p(f) <1 — € then
11(gap-amp((, f)) < 1 — Le.

Lemma 4 (Alphabet reduction). There exists a polynomial-time function alph-red and
absolute constants og and qo such that for every 2-query CSP f

Linear blowup alph-red(f) is a qo-query CSP with alphabet size less than og, and size less
than C|f| for some C = C(o(f)).

Completeness If yu(f) =1 then p(alph-red(f)) = 1.
Limited loss There’s an absolute constant D (not depending on f or o) such that if u(f) <
1 — € then p(alph-red(f)) <1—¢/D.

Lemma 5 (Query reduction). There ezists a polynomial-time function q-red such that for
every q-query CSP f with alphabet size o

Linear blowup qg-red(f) is a 2-query CSP with alphabet size less than o, and size less
than C|f| for some C = C(q).

Completeness If u(f) =1 then p(q-red(f)) = 1.
Limited loss If u(f) <1 — e then u(q-red(f)) <1 —¢€/D where D = D(q,0).

The main lemma is obtained by simply combining these three lemmas, choosing ¢ large enough
as a function of all other constants.

Alphabet reduction The alphabet reduction step follows from the Hadamard-based PCP.

That is, let f be a 2-query CSP (the construction generalizes to CSP’s with a larger constant
number of queries) on n variables z1, . .., z, on alphabet 0. We will transform f into a go-CSP
/' on the alphabet {0, 1} such that |f/| < C(o)|f| and if u(f) <1 —¢€ then p(f") < 1—¢/100.

e Each constraint in f is a function C' : ¥ x ¥ — {0, 1}. Let’s identify ¥ with {0, 1}¢ for
some c. We can run the reduction of last time to find a system @), of quadratic equations
on three sets of variables z,y € {0,1}¢and z € {0,1}¢ (where z is the auxiliary variables)
such that @ is satisfiable if and only if ¢(z,y) = 1 (where z,y can be looked as both
strings in {0, 1}¢ and elements of ¥).

e The CSP f’ will have a total of 2°n + 2(2¢+¢)y variables which we divide into n + m
sets:

— For every original variable z; which took values in ¥ we will have z be a sequence
of 2¢ 0/1 variables. The way to translate an assignment of s to x; to an assignment
to the z, variables would be to use Had(s) where Had() is the Hadamard encoding.

— For every constraint ¢ of the original f, we’ll have w. be a sequence of 2(2¢+¢)? /1
variables. If ¢ depends on z; and x; which are assigned values s; and s; satisfying
c(si,sj) = 1 then we can assign Had((s; o s; o 2)®?) to the sequence w,. where 2 is
the assignment to the auxiliary variables that makes the equation). accept.

e Suppose that we're given oracle access to an assignment to all these variables, which
may or may not correspond to the encoding above. We now need to come up with a
test such that if it is the encoding of such a satisfying assignment then we’ll accept with
probability one, and if any assignment violates at least an € fraction of the constraints
then we’ll reject with probability related to e.

e First, let’s assume that the assignments are always valid Hadamard encodings of some
code words TO BE CONTINUED....

