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1 Regression (continued)

Let’s review the meteorologist problem from the previous class: A TV station wanted to
hire a meteorologist out of two applicants. Applicant A predicted rain with a probability
of 70% while applicant B predicted 80%. The next day it rains and the TV station has to
decide which one to hire. In other words, assuming the two candidates are using hypothesis
h1 and h2 respectively, the question is which prediction function is better.

Here is again the mathematical formulation of this model:

• x - weather conditions

• y =
{

1 if it rains
0 otherwise

• (x, y) ∼ D

• p(x) = Pr[y = 1 | x] = E[y | x]

The idea is to come up with a penalty function in terms of h(x) and y that would allow
us to compare how well the two hypotheses do. A good function is obtained by computing
the squared difference between the prediction and the actual outcome and then sum it for
all the data points. In the end choose the smallest sum.

x1 y1 (h1(x1)− y1)2

x2 y2 (h2(x2)− y2)2
...

...
...

We will further show why this idea works. The hypothesis h = h(x) chosen in this way
is a good estimate of p = p(x).

Fix x
Claim h = p minimizes the expectation E[(h− y)2]

Proof

E = E[(h− y)2] = p(h− 1)2 + (1− p)h2

dE

dh
= 2(h− p) = 0⇒ h = p

A similar analysis can show us why a penalty function of the form |h− y| doesn’t work.

E[|h− y|] = p(1− h) + (1− p)h

which is minimized over h ∈ [0, 1] when

h =
{

1 if p ≥ 1
2

0 otherwise

As you can see we don’t get the right behavior here since we wanted h = p.



To further justify the choice of the previous loss function we will show that minimizing
the observed difference between predicted probability and actual outcomes is equivalent to
minimizing the difference between predicted and true probability.

Theorem 1
E[(h(x)− p(x)︸ ︷︷ ︸

goal

)2] = E[(h(x)− y︸ ︷︷ ︸
observed

)2]− E[(p(x)− y︸ ︷︷ ︸
intrinsic

)2]

Proof

Fix x
p = p(x)
h = h(x)

E[(h− p)2] = (h− p)2 because x is fixed

E[(h− y)2]− E[(p− y)2] = E[(h2 − 2hy + y2)− (p2 − 2py + y2)]
= h2 − 2h E[y]︸︷︷︸

p

−p2 + 2p E[y]︸︷︷︸
p

= (h− p)2

Hence we proved the claim for a fixed x. To get the more general statement we only
need to average over random variable x.

Finally we need to estimate the expectation E[(h(x)− y)2] by empirical average:

E[(h(x)− y)2] ≈ 1
m

m∑
i=1

(h(xi)− yi)2

We can use Chernoff bounds to show that these will be close for a single h. If H is finite
we can use the union bound to show that

Pr[∃h ∈ H : |E[Lh]− Ê[Lh]| > ε] ≤ δ

where Lh(x, y) = (h(x)− y)2. For H infinite this result can be generalized using a VC-style
analysis.

So far we justified the use of the least-squares loss function and in the next section we
will see how this minimization problem can be solved.

1.1 Linear Regression

Formulation of the problem:
Assume h(x) = w · x
Given (x1, y1), (x2, y2), . . . , (xm, ym), m data points
Find w to minimize Φ =

∑m
i=1(w · xi − yi)2

This particular method for doing regression is attributed to Gauss who discovered it in
1795. It’s a procedure for finding the best-fitting curve to a given set of points by minimizing
the sum of the squares of the offsets of the points from the curve. The process is illustrated
in Figure 1 for the one dimensional case.
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Figure 1: Linear regression.

For the multidimensional case Φ can also be rewritten in the matrix form below:

Φ =

∥∥∥∥∥∥∥∥∥∥∥∥

 ←− xT
1 −→

←− xT
2 −→

...
...

...


︸ ︷︷ ︸

M

 w1
w2
...


︸ ︷︷ ︸

w

−

 y1
y2
...


︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥∥∥∥
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and then minimize it by setting the gradient equal to zero:

∇Φ =


∂Φ
∂w1
∂Φ
∂w2
...

 = 2MT (Mw − b) = 0⇒ w = (MT M)−1MT︸ ︷︷ ︸
pseudoinverse

b

The quantity (MT M)−1MT is called the pseudoinverse of M and exists if MT M is
invertible. If not, it is still possible to compute an optimum w by using some other numerical
optimization technique, e.g. gradient descent.

Next we will take a look at how the regression problem changes in an online setting and
how it compares to the batch case.

1.2 Online linear regression

In the case of the online model the algorithm receives one example at a time based on which
it has to make a prediction. The general outline of the linear regressor in this case is the
following:

For t = 1, 2, . . . , T

1. Get xt ∈ Rn

2. Predict ŷt = wt · xt

3. Observe yt ∈ R

3



4. Current loss (yt − ŷt)2

5. Update wt

The goal here is to minimize the cumulative loss with respect to the best loss we can
obtain from the corresponding batch case. More specifically, we want to show that:

LA ≤ min
u

Lu + (small amount)

where

LA =
T∑

t=1

(yt − ŷt)2

Lu =
T∑

t=1

(u · xt − yt)2

An example of where this method is used is echo cancellation in telephone networks.
On long distance calls there is a phenomenon that causes the input signal to leak to the
output, producing an echo at the sending end. To counter this, a complementary signal is
sent in the opposite way to cancel the noise out. In order to successfully do this an online
learning algorithm is used that predicts the future values of the noise signal. The name of
the method in this particular case is Widrow-Hoff and will be presented further.

1.3 Widrow-Hoff Algorithm

The secret of this method lies in the way the weights w are updated:

wt+1 = wt − η(wt · xt − yt)xt where η > 0

So what is the explanation for this formula? What is the intuition behind it? One idea
is to take the loss LA and move a step in the steepest direction that minimizes it, and that
would be the gradient:

∇LA = 2(wt · xt − yt)xt

There is also another, more modern way to motivate this rule. There are two goals:

1. Minimize the loss (wt+1 · xt − yt)2.

2. Minimize the distance between wt+1 and wt.

We can combine these two goals into one:

min
{

η(wt · xt − yt)2 + ‖wt+1 −wt‖2
}

and after we take the derivative we end up with the update rule:

wt+1 = wt − η(wt+1︸ ︷︷ ︸
≈wt

·xt − yt)xt

Given this update function we can now prove the following theorem:
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Theorem 2

Assume ‖xt‖2 ≤ 1 then

LWH ≤ min
u

{
Lu

1− η
+
‖u‖22

η

}
.

Alternatively if we divide by T , the total number of time steps, and for η small:

LWH

T
. (1 + η)

Lu

T
+
‖u‖22
ηT

we can affirm that the rate of WH loss over the total number of time steps converges to the
rate of loss of the best vector u.

Proof

First we must choose a potential function Φ. Intuitively, a good one should measure
how close we are to the best vector u:

Φ = ‖wt − u‖22

Notation:

lt = wt · xt − yt

gt = u · xt − yt

We will show that:

Φt+1 − Φt ≤ −ηl2t +
η

1− η
g2
t

Once we show this the theorem will follow since:

ΦT+1 − Φ1 = (ΦT+1 − ΦT ) + (ΦT − ΦT−1) + . . . + (Φ2 − Φ1)

=
T∑

t=1

(Φt+1 − Φt)

≤ −η
∑

t

l2t︸ ︷︷ ︸
LWH

+
η

1− η

∑
t

g2
t︸ ︷︷ ︸

Lu

Therefore, since ΦT+1 ≥ 0 we have:

−‖u‖22 = −Φ1 ≤ ΦT+1 − Φ1 ≤ −ηLWH +
η

1− η
Lu

which, solving for LWH , proves the theorem.
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