
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #11
Scribe: Wei Dong March 14, 2006

1 Generalized Error of AdaBoost Based on Margin

The analysis of AdaBoost mainly includes two parts: to analyze the margin of training
examples and to analyze if achieving certain margin is enough to guarantee the test error
given enough training data. In the previous lecture, we outlined the proof of the upper
bound of generalized error of AdaBoost as a function of margin. Today we are going
to finish the proof. First, lets summarize the notations which will make the upcoming
discussion easier.

H def

= Weak hypothesis space

co(H)
def

= {f(x) =
∑

j ajhj(x) : aj ≥ 0,
∑

j aj = 1, hj ∈ H}
CN

def

= {g(x) = 1
N

∑N
j=1 hj(x) : hj ∈ H}

D def

= Distribution on X × {−1,+1}
S

def

= Sample set

PrD[·] def

= probability over 〈x, y〉 ∼ D
PrS [·] def

= probability over 〈x, y〉 sampled in S uniformly at random

And following is the theorem we are going to prove.

Theorem 1 With probability ≥ 1 − δ, ∀f ∈ co(H), ∀θ > 0,

PrD[yf(x) ≤ 0] ≤ PrS [yf(x) ≤ θ] + O

(

1√
m

√

ln m ln |H|
θ2

+ ln
1

δ

)

.

This theorem says that the generalization error of AdaBoost can be bounded in terms
of the number of training examples with margin below a threshold θ, plus an additional
term which depends on the number of training examples, the size of H, and the threshold
θ(preventing us from choosing θ too close to zero).

Here we are interested in the function f(x) =
∑

t atht(x), which can be approximated
by sampling in the hypothesis space H with the probability given by at. Let

gj = a hypothesis sampled from H, ht chosen with probability at

g(x) = 1
N

∑N
j=1 gj(x) ∈ CN

Then g(x) can be regarded as a survey taken over the ht’s, which can be viewed as the
voters. From the definition of gj , we have

Eg[gj(x)] = f(x)

And by Chernoff bound we know g(x) better approximate f(x). We will prove Theorem 1
by showing:

PrD [yf(x) ≤ 0] ≈ PrD

[

yg(x) ≤ θ

2

]

PrS

[

yg(x) ≤ θ

2

]

≈ PrS [yf(x) ≤ θ]

and then

PrD

[

yg(x) ≤ θ

2

]

≈ PrS

[

yg(x) ≤ θ

2

]

Above is the high-level argument, we will go through the details of the proof in four
steps.

Step 1 For fixed x,

Prg

[

|f(x) − g(x)| >
θ

2

]

≤ βθ, where βθ = 2e−Nθ2/8

This step is just the formalization of the Chernoff bound argument.

Proof: Let Zj = gj(x), then g(x) = 1
N

∑

j gj(x) = 1
N

∑

j Zj . By using Hoeffding’s in-
equality, we can directly come to the result.

Step 2 For random x with (x, y) ∼ P ,

PrP,g

[

|yf(x) − yg(x)| >
θ

2

]

≤ βθ.

This step is much the same as Step 1, except that 〈x, y〉 are chosen randomly according to
some arbitrary distribution P .

Proof: By applying the marginalization trick Prx,y[Π] = Ex[Pry[Π|x]], we have

PrP,g

[

|yf(x) − yg(x)| >
θ

2

]

= EP

{

Prg

[

|yf(x) − yg(x)| >
θ

2
|P
]}

≤ EP {βθ|P}
= βθ

Step 3 Fix g and θ > 0, let

Pg,θ = PrD[yg(x) ≤ θ

2
]

P̂g,θ = PrS [yg(x) ≤ θ

2
],

then with respect to the choice of sample,

Prsample[Pg,θ > P̂g,θ + ε] ≤ e−2ε2m.

2

Proof: We introduce a new variable Zi for each example as follows

Zi =

{

1 if yig(xi) ≤ θ/2

0 else

Then we have

E[Zi] = Pg,θ

1

m

∑

i

Zi = P̂g,θ

Then we directly come to the conclusion by applying Hoeffding’s Inequality.

Step 4

Prsample[∃g ∈ CN , θ > 0 : Pg,θ > P̂g,θ + ε] ≤ δ

if

ε =

√

ln[(N
2

+ 1)|H|N/δ]

2m
.

The technique for this step is union bound. Here we have CN = |H|N and is thus finite.
The problem lies in the real value θ. It turns out that even if there are infinity number of θ,
there are only finite number of interesting ones. Actually we are interested in yg(x) ≤ θ/2.
Plugging in the definition of g(x), we have

yg(x) ≤ θ/2

⇐⇒ y

N

∑

j

gj(x) ≤ θ

2

⇐⇒ y
∑

j

gj(x) ≤ N

2
θ.

The left side of the inequity, y
∑

j gj(x), is an integer and the right side N
2
θ is not necessarily

an integer, thus the inequality will be true iff

y
∑

j

gj(x) ≤
⌊

N

2
θ

⌋

.

We do not need to consider all the θs, but only for the ones that make N
2
θ an integer. Let

θ̃ =
2

N

⌊

N

2
θ

⌋

.

3

Then Pg,θ = Pg,θ̃, and so

Prsample[∃g, θ, Pg,θ > P̂g,θ + ε]

= Prsample[∃g, θ, Pg,θ̃ > P̂g,θ̃ + ε]

≤ |H|N
(

N

2
+ 1

)

Prsample[Pg,θ̃ > P̂g,θ̃ + ε] (Union bound)

(θ̃ of the form
2

N
v, v = 0, . . . ,

N

2
)

≤ |H|N
(

N

2
+ 1

)

e−2ε2m (By Step 3)

= δ

To put all the four steps together, we have with probability at least 1 − δ,

PrD[yf(x) ≤ 0]

= PrD,g[yf(x) ≤ 0]

= PrD,g[yf(x) ≤ 0 ∧ yg(x) ≤ θ/2] + PrD,g[yf(x) ≤ 0 ∧ yg(x) > θ/2]

≤ PrD,g[yg(x) ≤ θ/2] + PrD,g[|yf(x) − yg(x)| > θ/2]

≤ Eg[PrD[yg(x) ≤ θ/2|g]] + βθ

≤ Eg[PrS [yg(x) ≤ θ/2|g] + ε] + βθ

= PrS,g[yg(x) ≤ θ/2] + ε + βθ

= PrS,g[yg(x) ≤ θ/2 ∧ yf(x) ≤ θ] + PrS,g[yg(x) ≤ θ/2 ∧ yf(x) > θ] + ε + βθ

≤ PrS,g[yf(x) ≤ θ] + PrS,g[|yf(x) − yg(x)| > θ/2] + ε + βθ

≤ PrS [yf(x) ≤ θ] + βθ + ε + βθ

By plugging in

N =

⌈

4

θ2
ln

m

ln |H|

⌉

we get exactly the final result.
The bound proved above is not very meaningful unless m is very large. There are better

bounds available. However, Theorem 1 does give a bound that predicts no overfitting.

2 Application of Boosting in text document classification

Boosting is used in text document classification, with one example being SPAM email
detection. The weak learner often used is to test whether the document contains certain
word or not.

Using such kind of weak learner means searching out a large space of hypotheses, because

|H| = number of words in the vocabulary

This number can be even larger if we are to count in short phrases in addition to single
words. Theorem 1 leads us to an easier life by making the bound only depend on the log of
the size of the hypothesis space.

4

Figure 1: A Weak Learner Example

3 Introduction to Support Vector Machine

Boosting does not start out from maximizing the margin, but it seems that maximizing the
margin is a good idea and this approach is taken by another learning algorithm, the Support
Vector Machine, or SVM. Let’s introduce the idea of SVM by looking back on the half-line
learning problem (Figure 2). In this problem, we want to learn the separating point of the
positive examples and the negative examples. Intuitively, we want the separating point to
be half way between the closest positive and negative points. What if the instances are in
a high dimension space? A straightforward idea is to generalize the separating point to a
separating hyper-plane, which divides the whole instance space into two half-spaces. The
basic idea of SVM is just to find such a separating hyper-plane, to maximize the margin
between the hyper-plane and the data point. Here we assume that the data is linearly
separable, which means we can always find such a separating hyper-plane. The model is
formally defined as follows.

Figure 2: One-Dimensional Separating Problem

Given a set of pairs, (x1, y1), (x2, y2), . . . , (xm, ym), with xi ∈ R
n, ||x||2 ≤ 1 and y ∈

{−1,+1}, we want to find the hyper-plane v · x = 0, ||v||2 = 1 (assume the hyper-plane
goes through the origin). Later we simply represent the hyper-plane by its normal vector
v. By using a little geometry knowledge, for any point x we have

v · x











> 0 if x is above the hyper-plane

< 0 if x is below the hyper-plane

= 0 if x is on the hyper-plane

which gives a natural predicting hypothesis h(x) = sign(v · x).
The margin of SVM is related to that in boosting, but slightly different. Specifically, it

is defined as follows:
margin

def

= y(v · x)

The margin is > 0 if (x, y) is correctly classified. In SVM, we not only want the examples
to be correctly classified, but also want its distance from the separating hyper-plane to be
at least δ, i.e. margin ≥ δ. Thus we can express the problem of finding the separating

5

hyper-plane that maximize the margin as a mathematical programming:

maximize δ

s.t. ||v||2 = 1

yi(v · xi) ≥ δ, ∀i

We will see later that the result of this programming only depends on those examples
with margin exactly equal to δ. The points x with y(v ·x) = δ are called the support vectors.

Figure 3: Support Vector Machine

6

4 Comparison of Support Vector Machine and Boosting

The following table summarizes the comparison of support vector machine and Boosting
in terms of the space of instances/weak hypotheses(they are counterparts in the two algo-
rithms), the parameters to optimize, the predicting method and the definition of margin.
We can see from the table that the two algorithms have high similarity.

SVM Boosting

Instance/
Weak Hypo.

x ∈ R
n h(x) =< h1(x), h2(x), . . . >, hi ∈ H

||x||2 ≤ 1 ||h(x)||∞ = maxi |hi(x)| = 1, hi(x) ∈ {−1,+1}

Search
Goal

v ∈ R
n a =< a1, a2, . . . >

||v||2 = 1 ||a||1 =
∑

j |aj| = 1

Prediction sign(v · x) sign(a · h(x))

Margin y(v · x) y(a · h(x))

Table 1: Comparison of SVM and Boosting

7

