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Appendix C  Counting and Probability

C.l1-15
Show that for any integer n > 0,

3 (Z)k = n2" 1 (C.11)

k=0

Probability

Probability is an essential tool for the design and analysis of probabilistic and ran-
domized algorithms. This section reviews basic probability theory.

We define probability in terms of a sample space S, which is a set whose el-
ements are called elementary events. Each elementary event can be viewed as a
possible outcome of an experiment. For the experiment of flipping two distinguish-
able coins, we can view the sample space as consisting of the set of all possible
2-strings over {H, T}:

S = {HH, HT, TH, TT} .

An event is a subset! of the sample space S. For example, in the experiment of
flipping two coins, the event of obtaining one head and one tail is {HT, TH}. The
event S is called the ceriain event, and the event @ is called the null event. We say
that two events A and B are mutually exclusive if AN B = (. We sometimes treat
an elementary event s € S as the event {s}. By definition, all elementary events are
mutually exclusive.

Axioms of probability

A probability distribution Pr {} on a sample space S is a mapping from events of §
to real numbers such that the following probability axioms are satisfied:

1. Pr{A} = O for any event A.
2. Pr{S}=1.

IFora general probability distribution, there may be some subsets of the sample space S that are not
considered to be events. This situation usually arises when the sample space is uncountably infinite.
The main requirement is thar the set of events of a sample space be closed under the operations of
taking the complement of an event. forming the union of a finite or countable number of events. and
taking the intersection of a finite or countable number of events. Most of the probability distributions
we shall see arz over finite or countable sample spaces, and we shall generally consider all subsets of
a sample space to be events. A notable exception is the continuous uniform probability distribution,
which will he nresented shortlv.
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3. Pr{AUB} = pr {A} + Pr{B)} for any two mutually exclusive events A
and B. More generally, for any (finite or countably infinite) sequence of events
A1, Ay, ... that are pairwise mutually exclusive,

Pr{UA,-} = "Pr{4;) .

We call Pr{A} the probability of the event A. We note here that axiom 2 is a
normalization requirement: there is really nothing fundamental about choosing ‘1
as the probability of the certain event, except that it is natural and convenient.
Several results follow immediately from these axioms and basic set theory (see
Section B.1). The null event ¥ has probability Prif} = 0. If A C B, then
Pr{4} < Pr{B}. Using A to denote the event S — A (the complement of A),

we have Pr{d} = 1 — Pr{A}. For any two events A and B,

Pr{A U B) Pr{A}-}—Pr{B}—Pr{AﬂB} (C.12)
=< Pr{A} +Pr{B)} . (C.13)

Il

In our coin-flipping example, suppose that each of the four elementary events
has probability 1/4. Then the probability of getting at least one head is

Pr{HH, HT, TH} = Pr{HH}+Pr{HT}+Pr{TH}
= 3/4.

Alternatively, since the probability of getting strictly less than one head is
Pr{Tr} = 1/4, the probability of getting at least one head is | — | /4 =73/4,

Discrete probability distributions

A probability distribution is discrete if it is defined over a finjte or countably infinite
sample space. Let S be the sample space. Then for any event A,

Pr{A} = ZPr{s} ,

SEA

since elementary events, specifically those in A, are mutually exclusive. If S is
finite and every elementary event s ¢ § has probability

Pris}=1/18],

then we have the uniform probability distribution on S. In such a case the experi-
ment is often described as “picking an element of § at random.”

As an example, consider the process of flipping a fair coin, one for which the
probability of obtaining a head is the same as the probability of ohtainino a tail thas

e 1A v ~
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defined on the sample space S = {H. T}". a set of size 2". Each elementary event
in 5 can be represented as a string of length n over {H. T}. and each occurs with
probability 1/2". The event

= {exactly k heads and exactly n — k tails occur}

4 Hn

is a subset of S of size |A| = (]), since there are (}) strings of length  over {H. 1)
that contain exactly k H's. The probability of event A is thus Pr{A} = (})/2".

Continuous uniform probability distribution

The continuous uniform probability distribution is an example of a probability
distribution in which not all subsets of the sample space are considered to be
events. The continuous uniform probability distribution is defined over a closed
interval [a. b] of the reals, where ¢ < b. Intuitively. we want each point in the
interval [a. b] to be “equally likely.” There is an uncountable number of points,
however, so if we give all points the same finite. positive probability. we cannot
simultaneously satisfy axioms 2 and 3. For this reason, we would like to associate
a probability only with some of the subsets of S in such a way that the axioms are
satisfied for these events.

For any closed interval [c.d], where a < ¢ < d = b, the continuous uniform
probability distribution defines the probability of the event [¢. d] to be

Pr{fe. d) = S
T {{e. = .
' b—ua
Note that for any point x = [x.x]. the probability of x is 0. If we remove the

endpoints of an interval [c, d], we obtain the open interval (c.d). Since [c.d] =
[c.c]U(c, d)UId, d], axiom 3 gives us Pr{[c. d ]} = Pr{(c. d)}. Generally. the set
of events for the continuous uniform probability distribution is any subset of the
sample space [a, b] that can be obtained by a finite or countable union of open and
closed intervals.

Conditional probability and independence

Sometimes we have some prior partial knowledge about the outcome of an exper-
iment. For example, suppose that a friend has flipped two fair coins and has told
vou that at least one of the coins showed a head. What is the probability that both
coins are heads? The information given eliminates the possibility of two tails. The
three remaining elementary events are equally likely. so we infer that each occurs
with probability 1/3. Since only one of these elementary events shows two heads.
the answer to our question is 1/3.
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Conditional probability formalizes the notion of having prior partial knowledge
of the outcome of an experiment. The conditional probability of an event A given
that another event B occurs is defined to be

Prian B (C.14)
Pr{B}
whenever Pr{B} # 0. (We read “Pr {A| B} as “the probability of A given B.”)
Intuitively, since we are given that event B occurs, the event that A also occurs
is AN B. Thatis, AN B is the set of outcomes in which both A and B occur. Since
the outcome is one of the elementary events in B, we normalize the probabilities
of all the elementary events in B by dividing them by Pr{B}, so that they sum to 1.
The conditional probability of A given B is, therefore, the ratio of the probability
of event A N B to the probability of event B. In the example above, A is the event
that both coins are heads, and B is the event that at least one coin 1s a head. Thus,
Pr{A | B} = (1/4)/(3/4) = 1/3.
Two events are independent if

Pr{A | B} =

Pr{AN B} =Pr{A}Pr(B} . (C.15)
which is equivalent, if Pr {B} = 0, to the condition
Pr{A| B} =Pr{A} .

For example, suppose that two fair coins are flipped and that the outcomes are
independent. Then the probability of two heads 1s (1/2)(1/2) = 1 /4. Now suppose
that one event is that the first coin comes up heads and the other event is that
the coins come up differently. Each of these events occurs with probability 1/2,
and the probability that both events occur is 1 /4; thus, according to the definition
of independence, the events are independent—even though one might think that
both events depend on the first coin. Finally, suppose that the coins are welded
together so that they both fall heads or both fall tails and that the two possibilities
are equally likely. Then the probability that each coin comes up heads is 1/2, but
the probability that they both come up heads is 1/2 # (1/2)(1/2). Consequently,
the event that one comes up heads and the event that the other comes up heads are
not independent.
A collection Ay, 4,, .... A, of events is said to be pairwise independent if

Pr{A; NA;} =Pr{4;}Pr{A,)

foralll <i < j <n. We say that the events of the collection are (mutually)
independent if every k-subset A;, Ai,, ..., Ay of the collection, where 2 <k <n
and 1 </ <iy <--- < i, < n, satisfies

PriAy MA, 0 N Ay} =Pr{A,)Pr{A,} - Pr{A,) .
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For example, suppose we flip two fair comns. Let A, be the event that the first coin
is heads. let A» be the event that the second coin is heads. and let A3 be the event
that the two coins are different. We have

Pr{A,] 1/2.
Pr{d,} = 1/2.

Pr{d;} = 1/2.
Pr{A,NA)} = 1/4.
Prid, NAy} = 1/4.
Pr{A-N A} = 1/4.
Pr{A;NA-NA;} = 0.

Since for 1 < i < j < 3. we have Pr{A; N A;} = Pr{A;}Pr{A;} = 1/4, the
events A, A,, and A; are pairwise independent. The events are not mutually inde-
pendent, however, because Pr{A; N A> N Azl = 0 and Pr{A} Pr{A-}Pr{As;} =
1/8 #£ 0.

Bayes’s theorem

From the definition of conditional probability (C.14) and the commutative law
AN B = BN A, it follows that for two events A and B. each with nonzero proba-
bility,
Pr{ANB} = Pr{B}Pr{A|B} (C.16)
= Pr{A}Pr{B | A} .
Solving for Pr{A | B}. we obtain
Pr{A} Pr{B | A}

Pr{A | B} = PrB] . (C.A7

which is known as Bayes’s theorem. The denommalm Pr{B} is a normalizing
constant that we can reexpress as follows. Since B = (BN A)U(BN A)and BN A
and B N A are mutually exclusive events,

Pr{B} = Pr{BNA}-+Pr(BnAl
— Pr{A}Pr{B | Al +Pr{A}Pr{B|A}.
Substituting into equation (C.17), we obtain an equivalent form of Bayes's theo-
rem:
Pr{A}Pr{B | A}

Pr{A| B} = = — .
‘Pr{A}Pr{B | A} +Pr{A}Pr{B | A}
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Bayes’s theorem can simplify the computing of conditional probabilities. For
example, suppose that we have a fair coin and a biased coin that always comes up
heads. We run an experiment consisting of three independent events: one of the
two coins is chosen at random, the coin is flipped once, and then it is flipped again.
Suppose that the chosen coin comes up heads both times. What is the probability
that it is biased?

We solve this problem using Bayes’s theorem. Let A be the event that the bi-
ased coin is chosen, and let B be the event that the coin comes up heads both
times. We wish to determine Pr{A | B}. We have Pr{A} = 1/2. Pr{B | A} = 1,
Pr{A} = 1/2,and Pr{B | A} = 1/4; hence.

(1/2) - 1
Pr{A | B}
(1/2) - 14+ (1/2) - (1/4)
= 4/5.

Exercises

C.2-1
. Prove Boole’s inequality: For any finite or countably infinite sequence of events

A Az,

Pr{AfUA, U -} <Pr{A;} +Pr{d)} + .- . (C.18)

i C.2-2

! Professor Rosencrantz flips a fair coin once. Professor Guildenstern flips a fair
coin twice. What is the probability that Professor Rosencrantz obtains more heads
than Professor Guildenstern?

C.2-3

, A deck of 10 cards, each bearing a distinct number from 1 to 10, is shuffled to mix
the cards thoroughly. Three cards are removed one at a time from the deck. What
1s the probability that the three cards are selected in sorted (increasing) order?

C2-4 «x

Describe a procedure that takes as input two integers @ and b such that 0 < a < b
| and, using fair coin flips, produces as output heads with probability a/b and tails
with probability (b — a)/b. Give a bound on the expected number of coin flips,
which should be O(1). (Hint: Represent a/b in binary.)

C.2-5
Prove that

Pr{A|B}+Pr{A|B)=1.

‘Ww = e e e i
o Lol Sodio gl




Y] QAfrpre i UM U PR

C.2-6

Prove that for any collection of events A;. A>. .. .. A,

PriAinAN---MA,}=Pr{A} Pr{Ad> | A} Pr{iA; | A\ N A -
P]‘{A,I | A] a A: ﬂ~~-ﬂA,1_1} .

C2-7 =«
Show how to construct a set of n events that are pairwise independent but such that
no subset of & > 2 of them is mutually independent.

C2-8
Two events A and B are conditionally independent. given C . if

PriANnB | C}=Pr{A|C}) -Pr{B|C}.

Give a simple but nontrivial example of two events that are not independent but are
conditionally independent given a third event.

C29 «

You are a conlestant in a game show in which a prize is hidden behind one of three
curtains. You will win the prize if you select the correct curtain. After vou have
picked one curtain but before the curtain is lified. the emcee lifts one of the other
curtains, knowing that it will reveal an empty stage. and asks if you would like
to switch from your current selection to the remaining curtain. How would your
chances change if you switch?

C2-10 ~

A prison warden has randomly picked one prisoner among three to go frec. The
other two will be executed. The guard knows which one will go free but is forbid-
den to give any prisoner information regarding his status. Let us call the prisoners
X.Y.and Z. Prisoner X asks the guard privately which of ¥ or Z will be executed,
arguing that since he already knows that at least one of them must die, the guard
won’t be revealing any information about his own status. The guard tells X that ¥
is to be executed. Prisoner X feels happier now. since he figures that either he or
prisoner Z will go free, which means that his probability of going free is now 1,2
[s he right, or are his chances still 1/3? Explain.

C.3 Discrete random variables

A (discrete) random variable X is a function from a finite or countably infinite
sample space S to the real numbers. It associates a real number with each possible
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outcome of an experiment, which allows us to work with the probability distribu-
tion induced on the resulting set of numbers. Random variables can also be defined
fer uncountably infinite sample spaces, but they raise technical issues that are un-
necessary to address for our purposes. Henceforth, we shall assume that random
variables are discrete.

For a random variable X and a real number x, we define the event X — X to be
{s € $:X(s5) = x); thus,

PriX=x}=Y Pris}.
seS X (s)=x
The function
fix) =Pri{X =x)
is the probability density function of the random variable X . From the probability
axioms, Pr{X = x} > Oand }_ Pr{X =x} = 1.

As an example, consider the experiment of rolling a pair of ordinary, 6-sided
dice. There are 36 possible elementary events in the sample space. We assume
that the probability distribution is uniform., so that each elementary event s € S is
equally likely: Pr{s} = 1/36. Define the random variable X to be the mavinum of
the two values showing on the dice. We have Pri{X = 3} = 5/36. since X assigns
a value of 3 to 5 of the 36 possible elementary events. namely. (1. 3), (2. 3), (3. 3).
(3.2).and (3. 1).

It is common for several random variables to be defined on the same sample
space. It X and Y are random variables, the function

flr,y)=Pr{X =xand Y = y|
is the joint probability density function of X and Y . For a fixed value v,
Pr{Y =y} = Z PriX =xand Y =y} .

and similarly, for a fixed value x.

PriX =} = T PriX=xand? = v] .

!

Using the definition (C.14) of conditional probability. we have

e [ XY — 44 P o2 o
PriX=1x|¥ =y = PriX =xand Y = y)

Pr{¥ = y}
We define two random variables X and Y 1o be independent if for all v and v. the
events X' = x and ¥ = y are independent or, equivalently. if for all x and y. we

have Pr{X =xand ¥ = v} = Pr {X =x]}Pr{Y = vy).

Given a set of random variables defined over the same sample space. one can
define new random variables as sums, products, or other functions of the original
variables.




Expected value of a random variable

The simplest and most useful summary of the distribution of a random variable i«
the “average™ of the values it takes on. The expected value (or, synonymously,
expectation or mean) of a discrete random variable X is

E[X]=) xPr{X=x}. (C.19)
.

which is well defined if the sum is finite or converges absolutely. Sometimes the
expectation of X is denoted by jiy or. when the random variable is apparent from
context, simply by u.

Consider a game in which you flip two fair coins. You earn $3 for each head but
lose $2 for each tail. The expected value of the random variable X representing
your earnings is

E[X] = 6-Pr{2Hs}+1 -Pr{lH. 1T} —4 Pri21%)
= 6(1/4) 4+ 1(1/2) - 4(1/4)
= 1.

The expectation of the sum of two random variables is the sum of their expecta-
tions, that 1s,
EX+Y]=E[X]+E[Y]. (C.20)

whenever E[X] and E Y] are defined. We call this property linearity of expecta-
tion. and it holds even if X and ¥ are not independent. It also extends to finite and
absolutely convergent summations of expectations. Linearity of expectation is the
key property that enables us to perform probabilistic analyses by using indicator
random variables (see Section 5.2).

If X is any random variable, any function g(xv) defines a new random variahle
g(X). If the expectation of ¢(X) is defined. then

Elg(X)] =) g(x) Pr{X =xj .

Letting g(x) = ax, we have {or any constant a.
ElaX]=aE[X] . (C.21)

Consequently, expectations are linear: for any two random variables X and V' and
any constant a,

ElaX +Y]=aE[X]+E[Y]. (C.22)

When two random variables X and Y are independent and each has a defined
expectation,

E[XY] = ZZX\ PriX =xandV? = v}
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= }:Z;\‘yPr{X =x}Pr{Y =y}

= <Zx Pr{X = x}) (Z\ PriYy = )'})

= E[X]E[Y].
In general, when 1 random variables X . X, .. .. X, are mutually independent.
EXi X2 X, =E[X,]E[X;]---E[X,] . (C.23)

When a random variable X takes on values from the set of natural numbers *
N = {0, 1.2, ...}, there is a nice formula for its expectation:

o

E[X] = Zx Pri{X =i}
=)
= Z[(Pr{xzi}—Pr{xzz‘H})
=0
- ZPr{X > i), (C.24)

since each term Pr{X > i} is added in i times and subtracted out/— | times (except
Pr{X = 0}, which is added in 0 times and not subtracted out at all).

When we apply a convex function f(x) to a random variable X. Jensen’s in-
equality gives us

E[f(X)] = f(E[X], (C.25)

provided that the expectations exist and are finite. (A function J(x) is convex if for
all x and y and forall 0 < A < 1, we have SO T=00v) < Af(0)+(1—=2) f(v).)

Variance and standard deviation

The expected value of a random variable does not tell us how “spread out” the
variable’s values are. For example, if we have random variables X and ¥ for which
PriX=1/4) =Pr(X = 3/4) = 1/2and Pr(¥Y =0} = Pr{y = I} = 1/2, then
both E[X] and E[Y ] are 1/2, yet the actual values taken on by Y are farther from
the mean than the actual values taken on by X.

The notion of variance mathematically expresses how far from the mean a ran-
dom variable’s values are likely to be. The variance of a random variable X with
mean E [X] is

— : —— - T — —




Var[X] = E[X —E[X])]
= E[X?-2XE[X]+E*[X]]
= E[X*]-2E[XE[X]]+E*[X]
E[X?] — 2B [X] + E*[X]
E[X%] - E*[X] . (C.26

1

The justification for the equalities E [E?[X]] = E’[X]and E{XE[X]] = E- [X
is that E[X] is not a random variable but simply a real number, which means that
equation (C.21) applies (with @ = E[X]). Equation (C.26) can be rewritien 1o
obtain an expression for the expectation of the square of a random variable

E[X?] = Var[X]+E*[X] . (C.27)

The variance of a random variable X and the variance of aX are related (see
Exercise C.3-10):

Var[aX] = a*Var[X] .
When X and Y are independent random variables,
Var{X + Y] = Var[X]+ Var{Y] .

In general, if #» random variables X, X, ..., X, are pairwise independent, then

Var {ix,jl :ZH:VB.I'{X,] . (. 28)
i=1 i=]

The standard deviation of a random variable X is the positive square root of
the variance of X. The standard deviation of a randoni variable X is sometimes
dznoted ox or simply ¢ when the random variable X is understood from context
With this notation, the variance of X is denoted o 2.

Exercises

C.3-1

Two ordinary, 6-sided dice are rolled. What is the expectation of the sum of the
two values showing? What is the expectation of the maximum of the two values
showing?

C.3-2

An array A[l..n] contains # distinct numbers that are randomly ordered, with
each permutation of the n numbers being equally likely. What is the expectation
of the index of the maximum element in the array? What is the expectation of the
index of the minimum element in the array?
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C.3-3

A carnival game consists of three dice in a cage. A player can bet a dollar on any
of the numbers 1 through 6. The cage is shaken, and the payoff is as follows. If the
player’s number doesn’t appear on any of the dice, he loses his dollar. Otherwise,
if his number appears on exactly k of the three dice, for k = 1, 2, 3, he keeps his
doliar and wins k£ more dollars. What is his expected gain from playing the carnival
game once?

C.3-4
Argue that if X and Y are nonnegative random variables, then

E[max(X,Y)] <E[X]+E[Y].

C3-5 «
Let X and Y be independent random variables. Prove that f(X) and g(Y) are
independent for any choice of functions f and g.

C3-6
Let X be a nornegative random variable, and suppose that E [X] is well defined.
Prove Markov’s inequality:

Pr{X =t} <E[X]/t (C.29)
forallr > 0.

C3-7 «
Let § be a sample space, and let X and X' be random variables such that
X(s) = X'(s) for all s € S. Prove that for any real constant 7,

PriX >t} >Pr{X >1t}.

C.3-8
Which is larger: the expectation of the square of a random variable, or the square
of its expectation?

C.3-9
Show that for any random variable X that takes on only the values 0 and 1, we have
Var[X] =E[X]E[l - X]1.

C.3-10
Prove that Var [aX] = a*Var [X] from the definition (C.26) of variance.




