amortize: to put money aside at intervals for gradual payment (of a debt, etc.) (Webster's)

idea: to average over time.
Motivation for Amortization

In many uses of data structures, a sequence of operations (rather than just one) is performed.

We are interested in the total time of the sequence.
Motivation:

In many uses of data structures, a sequence of operations (rather than just one) is performed. We are interested in the total time of the sequence.

Worst-case time per operation may be overly pessimistic, because of correlated effects of operations on data structure.

Average-case time may be inaccurate, since the probabilistic assumptions needed to carry the analysis may be unrealistic.

→ Normalized time (time per operation averaged over a worst-case sequence) might be both realistic and robust.
Worst-case time per operation may be unduly pessimistic, because of correlated effects of operations on data structure.

Average-case time may be inaccurate since the probabilistic assumptions needed to carry out the analysis may be false.

Amortized time (time per operation averaged over a worst-case sequence) is both realistic and robust.
An example: stack manipulation

Unit-time primitives:

push (an item onto the stack)

pop (an item off of the stack)

Operation:

carry out zero or more pops,
followed by a push.

Beginning with an empty stack,
carry out a sequence of \(n \) operations.

Question: How many pushes and pops total?
Answer: $2n$

Each operation causes one push (immediately) and possibly one pop (later).

(After i operations, there have been $2i - k$ pushes and pops, where k is the stack size.)

Applications:

- Linear-time string matching
 (Knuth, Morris, Pratt)
- Planarity testing
 (Hopcroft, Tarjan)

etc.
How can we formalize this phenomenon
and exploit it in
the design and analysis of algorithms
A Banker's View of Amortization

Credits: One will pay for a unit-time computation.

Credits can sit in the data structure, representing time saved.

Debits: Each represents an excess unit of time spent.

Can also sit in data structure, must be accounted for at end of computation.
A banker's analysis of the stack

Each operation gets two credits.

Number of saved credits equals stack size.

⇒ Each pop paid for by a saved credit.

\[
\begin{array}{c|c|c|c|c}
$1 & A & \text{pop A, B, C} & \text{push E} \\
$1 & B & & \\
$1 & C & & \\
$1 & D & & \\
$4 & & & \\
\end{array}
\]

$4 + \$2 - \$2 = \$4$

pays for three pops, one push
A Physicist's View

of Amortization

Each configuration of data structure has a potential \(\Phi \).

\[a_i \text{ (amortized time of operation } i) = t_i \text{ (actual time of operation } i) + \Phi_i \text{ (potential after operation)} - \Phi_{i-1} \text{ (potential before operation)} \]

\[a_i = t_i + \Phi_i - \Phi_{i-1} \]

\[\sum_{i=1}^{m} t_i = \sum_{i=1}^{m} (a_i + \Phi_{i-1} - \Phi_i) \]

\[= \sum_{i=1}^{m} a_i + \Phi_0 - \Phi_m \]

\[\leq \sum_{i=1}^{m} \Phi_i \text{ if } \Phi_0 \geq 0 \text{ and } \Phi_m \geq 0. \]
Definition of potential is arbitrary, but only a good choice gives useful results.

A physicist's analysis of the stack

Potential of stack equals stack size

Amortized time of an operation with k pops:

\[k + 1 \quad (\text{actual time}) \]
\[+ s - k + 1 \quad (\text{new potential}) \]
\[- s \quad (\text{old potential}) \]
\[= 2. \]
Uses of Amortization

As an analytical tool: obtain new bounds for known algorithms: self-organizing sequential search, disjoint set union, etc.

As a design tool: obtain new "self-adjusting" data structures that are simple and have good amortized performance.
Stacks vs. Queues

\[d = | \text{diff in stack ht}| \]
Competitiveness

On-line vs. off-line algorithms:

How much does knowing the future help?

The skier's dilemma:

Renting skis costs \(\mathbf{F} \times \) per ski trip

Buying skis costs \(\mathbf{B} \times \)

When to buy?

Goal: minimize the cost ratio as compared to the best policy when the number of trips is known.

Solution: Buy when total rent equals cost of buying performance ratio (competitive factor) = 2
An on-line algorithm is k-competitive if its performance is within a factor of k of that of the optimum off-line algorithm on any sequence of operations.
Self-organizing linear lists

Data structure: n items stored in a linear list.
Object: perform m access operations.

Cost of accessing i-th item = i.
Update primitive: Swap any two adjacent items, at a cost of 1. Can be performed at any time.

\[a, b, c, d, e, f, \ldots \]
access e
\[e, a, b, c, d, f, \ldots \]
Move-to-front heuristic (MTF): Move each accessed item to front of list (via i-1 swaps)

Total cost to access item i = 2^{i-1}.

Frequency count heuristic (FC): Keep items in decreasing order by access frequency.
Most previous results are average-case:

Fixed access probabilities \(P_1, P_2, \ldots, P_n \),

each access is independent.

Optimum algorithm: static list with item

eranged in decreasing access

probability.

Classic result: Average asymptotic access cost
of FC is optimum,
of MTF is within a factor of 2 of

optimum (not counting update cost).

Rivest: SE asymptotically better than

MTF on average.

Various results about different heuristics,

rate of convergence, etc.
Bentley, McGeough: Amortized cost of MTF within a factor of 2 of any static-list algorithm.

Sleator-Tarjan: Amortized cost of MTF within a factor of 2 of any algorithm.

(both results do not count update cost of MTF, increases constant factor to 4).

Experiments (Bentley, McGeough) show that MTF is sometimes better than FC on realistic data.
Potential = $2 \times \# \text{ inversions in MTF list vs. adversary list (A)}$

\[\leq \binom{n}{2} = \frac{n(n-1)}{2} \]

A: \ldots i \ldots j \ldots

MTF: \ldots j \ldots i \ldots

Access i:

A: 1 2 3 \ldots i \ldots

MTF: \ldots \leftarrow k \rightarrow \ldots

At least $k-i$ items $> i$, $\Phi \downarrow 1$ for each

At most $i-1$ items $< i$, $\Phi \uparrow 1$ for each

Actual cost = $2k-1$

$\Delta \Phi \leq 2(i-1) - 2(k-i)$

Am. cost (MTF) = $2k-1 + \Delta \Phi \leq 4i - 3$

\[\leq 4 \text{ Act. cost (A)} \]
Different cost model:

arbitrary exchanges cost 1

then off-line can beat on-line by a factor of n (always access last in on-line's list)

other settings for competitive analysis:

caching, paging, etc.
BASIC RESEARCH