

Computer Audio and Music

Perry R. Cook Princeton Computer Science

(also Music)

First, Some Questions

What is Music?

First, Some Questions

What is Sound?

First, Some Questions

How are sound and music represented on the computer?

Music/Sound Overview

- Basic Audio storage/playback (sampling)
- Human Audio Perception
- Digital Sound and Music
 Compression and Representation
- Sound Synthesis
- Music Control and Expression

Waveform Sampling and Playback

Sample and Hold

(rate vs. Aliasing)

Quantize

Word Size vs. Quantization Noise

Reconstruct: Hold and Smooth (filter)

Waveform Sampling: Quantization

Quantization

Introduces

Noise

Compression and Parametric Representation (Why Bother??)

So Many Bits, So Little Time (Space)

- CD audio rate: 2 * 2 * 8 * 44100 = 1,411,200 bps
- CD audio storage: 10,584,000 bytes / minute
- A CD holds only about 70 minutes of audio
- An ISDN line can only carry 128,000 bps
- Even a cable modem might carry only 1Mbps

Security: Best representation removes all recognizable about the original sound

Graphics people get all the bandwidth, cycles, memory Expression, composition, interaction wanted too!

Views of Sound

- Sound is Perceived: Perception-Based
 Psychoacoustically Motivated Compression
- Sound is Produced: Production-Based
 Physics/Source Model Motivated Compression
- Music(Sound) is Performed/Published/Represented: Event-Based Compression
- Sound is a Waveform / Statistical Distribution / etc. (these are not very good ideas in general, unless we get lucky (LPC))

Psychoacoustics

Human sound perception:

Brain: Higher level cognition, object formation, interpretation

Ear: receive 1-D waves Cochlea: convert to frequency dependent nerve firings

Auditory cortex: further refine time & frequency information

Perceptual Models

Exploit masking, etc., to discard perceptually irrelevant information.

 Example: Quantize soft sounds more accurately, loud sounds less accurately

Benefits:Generic, does not require assumptionsabout what produced the soundDrawbacks:Highest compression is difficult to achieve

Production Models

Build a model of the sound production system, then fit the parameters

 Example: If signal is speech, then a well parameterized vocal model can yield highest quality and compression ratio

Benefits:Highest possible compressionDrawbacks:Signal source(s) must be

assumed, known, or identified

Audio Compression

Classical Data Compression View:

Take advantage of

- Redundancy/Correlation
- Statistics (Local/Global)
- Assumptions / Models

Problem: Much of this doesn't work directly on sound waveform data

Transform (Subband) Coders

Split signal into frequency subbands, then allocate bits to regions adaptively, based on where ear is most sensitive

Lossless (variable bit rate & comp. ratio)

Lossy (fixed rate and ratio) MP3

Production Models

Build a parametric model of the production system, then either

Fit the parameters to a given signal

Use signal processing techniques to extract parameters

Drive the parameters directly (no encode/decode)

Examples: Rule system to drive speech synthesizer MIDI file to drive music synthesizer

Speech Coders (production)

Assume speech is produced by a source-filter system (vocal folds/noise + vocal tract tube)

Identify filter, type of source, then code parameters

Takes advantage of slowly varying nature of vocal tract shape and other speech parameters

Future: Multi-Model Parametric Compressors?

Analysis front end identifies source(s)

Audio is (separated and) sent to optimal model(s) Benefits:

High compression

Other knowledge

Drawbacks:

We don't know how

to do all this yet

What can be (musically or sonically) computed?

MIDI and Other 'Event' Models

<u>Musical Instrument Digital Interface</u>

Represents Music as Notes and Events and uses a synthesis engine to "render" it.

An Edit Decision List (EDL) is another example.

A history of source materials, transformations, and processing steps is kept. Operations can be undone or recreated easily. Intermediate non-parametric files are not saved.

Event Based Music Representation

MIDI and Other Scorefiles

- A Musical Score is a very compact representation of music
- Even the score itself can be compressed further
- Benefits: Highest possible compression
 - Encodes "expression"

Drawbacks: Cannot guarantee the "performance"

- Cannot assure the quality of the sounds
 - Cannot make arbitrary sounds (yet)

MIDI

Vocalise Sagei Bodraminor	
	¢ lenter
	i ¢rrana rana rana rana rana
, ¢	
¢	

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Event Based Representation

Enter General MIDI

- Guarantees a base set of instrument sounds,
- and a means for addressing them,
- but doesn't guarantee any quality
- **Better Yet, Downloadable Sounds**
- Download samples for instruments
- Benefits: Does more to guarantee quality
- Drawbacks: Samples aren't reality

Event Based Representation

Downloadable Algorithms

- Specify the algorithm, the synthesis engine runs it, and we just send parameter changes
- Part of "Structured Audio" (MPEG4)

Benefits: Can upgrade algorithms later Can implement scalable synthesis

Drawbacks: Different algorithm for each class of sounds (but can always fall back on samples)

Physical Modeling for Music

Strings (plucked, struck, bowed) Winds (clarinet, flute, brass), voice Plates, membranes, bar percussion Shakers, scrapers The Voice Physical Modeling: the "Real World" Sounds Effects (PhOLISE)

Synthesizing Solids

O'Brien, Cook, and Essl

SIGGRAPH 01

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Composition and Creation

Garton "Rough Raga Riffs" Lansky"mild und leise"

Music for Unprepared Piano Bargar, Choi, Betts, Cook

Expression and Control

Cook/Morrill Trumpet

Other Controllers

PICOs (musical and "real-world" sonic controllers)

K-Frog J-Mug **P-Pedal PhilGlas P-Grinder T-shoe T-bourine Pico Glove** P-Ray's Cafe

Sound Analysis and Classification

Cochlear Modeling

Multi-feature analysis(Tzanetakis)

Segmentation, Classification, Annotation, Thumbnails

Music (Art) and Technology

COS: Human-Computer Interfacing, Pervasive Information Systems, Transforming Reality FRS: TechnoMusic I: 100,000 BC - 1999 FRS/414: Princeton Laptop Orchestra (PLOrk) MUS 539: Technology and Voice Broad view of Technology: "Any intentionally fashioned tool or technique" **Broad view of Music: Organized Sound**

Audio and Computer Music

Questions ?