Self-improvement for dummies (Machine Learning)

COS 116 4/27/2006 Instructor: Sanjeev Arora

Artificial Intelligence

- Definition of AI (Merriam-Webster):
 - 1. The capability of a machine to imitate intelligent human behavior
- Today:
 - 2. Branch of computer science dealing with the simulation of intelligent behavior in computers

Definition of Learning:

To gain knowledge or understanding of or skill in by study, instruction, or experience

Lecture organization

Brief look at learning in humans/animals

Brief look at human brain

Brief look at how today's machines learn

Caveat: imitating nature may not be best strategy

VS

Examples:

Birds

Airplanes

Race cars

VS

Cheetahs

Intelligence in animal world

Is an ant intelligent?

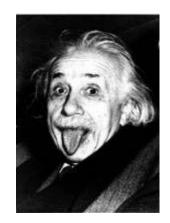
 Build huge, well-structured colonies organized using chemical-based messaging ("Super-organism")

What about dogs?

Deep mystery: How do higher animals (including humans) learn?

How does

turn into



A crude first explanation: Behaviorism [Pavlov 1890's, Skinner 1930's]

- Animals and humans can be understood in a "black box" way as a sum total of all direct conditioning events
- Bell \rightarrow "Food is coming" \rightarrow Salivate

"This person likes me more if I call her "Mama" and that one likes me more if I call him "Papa".

Aside: What does behaviorism imply for societal organization?

More thoughts on behaviorism

Original motivation: "Can't look inside the working brain anyway, so theory that assumes anything about its working is not scientific or testable."



Today,...

Gives little insight into how to design machines with } intelligence. How did dogs, rats, humans sort through sensory experiences to understand reward/punishment?

Chomsky's influential critique of Behaviorism [1957]

"Internal mental structures crucial for learning."

Evidence: universal linguistic rules ("Chomsky grammars"); "self-correction" in language learning, ability to appreciate puns.

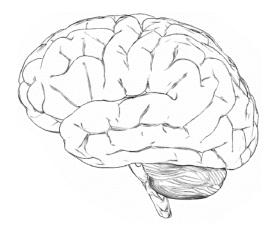
1. Brain is "prewired" for language.

2. Must understand mental structures to understand behavior

Presenting:

Your brain

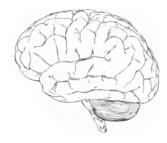
The brain



- Network of 100 billion neurons
- Evidence of timing mechanisms ("clock")
- About 100 firings per second
 - □ Total of 10¹³ firings ("operations") per second
 - □ Number of operations per sec in fast desktop PC: 10^{10}

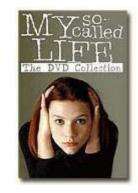
A comparison

Your brain



10¹¹ neurons

Your life on a DVD

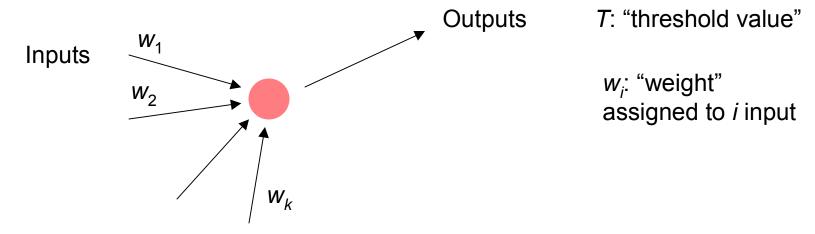


4.3 Gb for 3 hours
> 10¹⁷ bytes for entire life

Conclusion: Brain must contain structures that compress information and store it in an interconnected way for quick associations and retrieval

A simplistic model of neurons— Neural Net [McCulloch – Pitts 1943]

Neuron computes "thresholds"



Take the sum of weights of all neighbors that are firing
If sum > T, fire

Does a neural network model remind you of something??

Why AI is feasible in principle: the simulation argument

- Write a simulation program that simulates all 10¹¹ neurons in the brain and their firings.
- For good measure, also simulates underlying chemistry, blood flow, etc.
- Practical difficulty: How to figure out properties (threshold value, w_i's) of each of 10¹⁰ neurons, the intricate chemistry

Only hope: brain is organized around simpler principles.

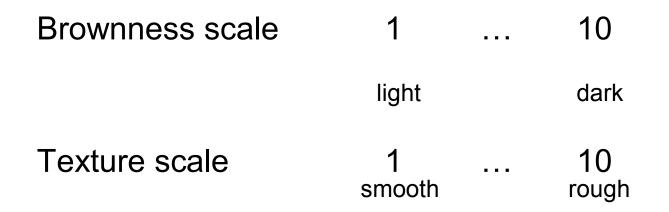
Rest of the lecture: Some Principles of machine learning

A machine's "experience" of the world

n sensors, each produces a number
 "experience" = an array of *n* numbers

- Example: video camera: 480 x 640 pixels n = 480 × 640 = 307200
- In practice, reduce n via compression or preprocessing

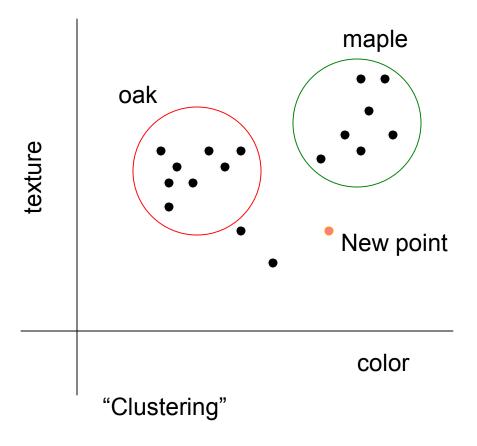
Example: Representing wood samples



(3, 7) = wood that is fairly light brown but kind of on the rough side

A learning task and its mathematical formulation

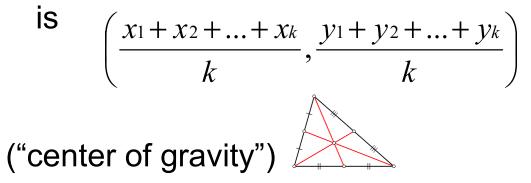
- Given: 100 samples of oak, maple
- Figure out labeling ("clustering")
- Given a new sample, classify it as oak, maple, or mahogany



An algorithm to produce 2 clusters

Some notions:

□ Mean of *k* points $(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$



□ Distance between points (x_1, y_1) , (x_2, y_2) is $(x_1 - x_2)^2 + (y_1 - y_2)^2$

2-means Algorithm (cont.)

{

Start by randomly breaking points into 2 clusters Repeat many times:

- Compute means of the current two clusters, say
 (a, b), (c, d)
- Reassign each point to the cluster whose mean is closest to it; this changes the clustering

What about learning a more dynamic object?

Speech?

Motion?

Similar data representation

Handwriting?

One major idea: modeling uncertainty using probabilities

Example: Did I just hear "Ice cream" or "I scream"?

Assign probability ½ to each

Listen for subsequent phoneme

If "is", use knowledge of usage patterns to increase probability of "Ice cream" to 0.9

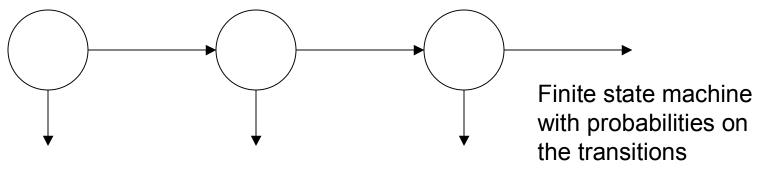
Probabilities + states = Markovian models

Markov decision processHidden Markov models

Are "learnt" by machine after extensive training. (Condensed representation of data corpus)

Rough overview of speech recognition

 Markovian model of language (machine's idea of how language is produced)



 Estimate model parameters using data corpus + user training

Next lecture: Turing test

Turinghub.com

- Randomly assigns you to chat with a machine or a human
- Note: Machine cannot possibly store answers to all possible 5-minute conversations!

