
(revised 3/1/2006)

COS 116
 The Computational Universe

Pseudocode Reference

Pseudocode is a way to describe how to accomplish tasks using basic steps like those a
computer might perform. In this week’s lab, you saw how a form of pseudocode can be
used to program the Scribbler robot. The Scribbler control panel has a point and click
interface, but in the rest of the course you will write your own simple pseudocode to
express computations. The advantage of pseudocode over plain English (as you saw in
case of scribbler) is that it has a precise meaning. The exact syntax is not too important—
what counts is expressing a computation clearly and precisely.

You can use the handout below in all your homework and exams (even "closed-book"
exams).

• Variables

In pseudocode you will need to use variables to store data. You can think of these as
little boxes that hold a number, and you are allowed to look at what’s in the box or
replace its contents with something else. We call whatever is inside the box the value
of the variable.

An array is a shorthand way of naming a bunch of variables. If A is an array of
length n, you can imagine it as n boxes lined up in a row. Then we write A[i] to refer
to the i’th box. Here’s a picture of what A might look like in memory:

A = 40.20 62.71 52.54 … 22.05

You can use arrays in pseudocode instructions the same way you use variables:

 x ← A[2] Sets x to the second value in the array A (here, 62.71)

 A[3] ← 2 Sets the third value in the array A to the value 2 (replacing 52.54)

Sometimes you will use a variable to specify which element of the array you mean:

 y ← A[i] Sets y to the i’th array value

Arrays can be multidimensional. While a one-dimensional array is like a list, a two-
dimensional array is like a grid. If A is a two-dimensional array, A[i][j] refers to the
value in row i, column j of the grid.

 2

• Instructions

A pseudocode program is written as a series of instructions that the computer executes
one at a time. These are several kinds of instructions:

• Arithmetic Instructions

Arithmetic instructions affect values stored in variables, named pieces of memory.
These instructions take the form variable ← arithmetic expression. For example:

 x ← 5 Sets the value stored in variable x to the value 5

 y ← x Sets y to the value stored in x; leaves x unchanged

 i ← j + 1 Sets i to the value j + 1; leaves j unchanged

There are only a few arithmetic operations allowed, these are addition, subtraction,
multiplication, and division. Note that exponentiation, logarithms, and more complex
operations are not basic.

Two useful operations that are a little non-standard but that you may also use are the
ceiling and floor operators. ceil(x) denotes the smallest integer greater than or equal
to x. For example, ceil(3.4) = 4, ceil(4.1) = 5, ceil(2) = 2. floor(x) is defined
analogously as the greatest integer less than or equal to x.

(Note: The Scribbler doesn’t support all pseudocode instructions. For instance, it
does not understand arithmetic instructions, variables, or arrays.)

• Simple actions

Sometimes you can use a single instruction to specify a behavior. E.g.:

Move forward for 1s

Read the price from the next jar

Place the box back on the shelf.

Use instructions like these for actions that are secondary to your program’s purpose.

• Conditionals

Conditional (“branch”) instructions perform one set of actions only if some specified
condition is true and another set only if the condition is false. They take this form:

 If true/false condition Then
 {
 First list of instructions…
 }
 Else
 {
 Second list of instructions…

 3

 }

(You can omit the Else { } branch if you don’t want to take any special action when
the condition is false.)

Here is a simple example:

 If x is odd Then
 {
 x ← x – 1
 count ← count + 1
 }
 Else
 {
 x ← x ÷ 2
 }

This conditional checks whether x is odd. If so, it subtracts one from x and adds one
to count; otherwise, it divides x by two.

It’s important to understand that the true/false condition is checked only once, at the
beginning of the conditional. If x is odd, the computer subtracts one from x, making
it even. However, the computer does not go on to divide x by two.

• Loops

Loops perform a set of actions some number of times. One kind of loop performs an
action over and over again “infinitely” (or at least until the computer or robot is
turned off). These look like this:

 Do forever
 {
 List of instructions…
 }

Another flavor of loop makes the computer follow a series of instructions a fixed
number of times. For example:

 Do for n times
 {
 List of instructions…
 }

A third kind of loop adds a variable that counts the passes through the loop:

 Do for i = a to b
 {

 List of instructions…
 }

On the first pass, the variable i is set to a. At the start of each successive pass, i is
increased by one, until on the final pass it has the value b. In all, the computer

 4

performs the list of instructions b – a + 1 times. You could use such a loop to add the
integers from 1 to 100 (inclusive) as follows:

 sum ← 0
 Do for i = 1 to 100
 {
 sum ← sum + i
 }

The last kind of loop makes the computer perform some instructions repeatedly as
long as a specified condition remains true. It takes the form:

 Do while true/false condition
 {
 List of instructions…
 }

At the beginning of the loop, the computer checks whether the condition is true. If
so, it executes the list of instructions. Then it checks again whether the condition is
true; if so, it executes the instructions again. This process is repeated until the
computer checks the condition and it is false. Here’s an example:

 Do while current < max

 {
 current ← current + 1
 Other instructions…
 }

What happens if current ≥ max the first time the computer evaluates the Do while
instruction? In this case, the operations inside the loop are not executed at all.

• Input and Output

Sometimes you want to get values from outside the program. For example:

 Get price Sets the variable price to a value from outside the program

Similarly, your program can present its results using instructions like these:

 Print “The lowest price was:” Display a fixed message

 Print minimum Display the value of the variable minimum

• Comments

Comments are not actually instructions; instead, they provide hints about what the
program does to help humans understand it. A comment begins with two slashes //
and continues until the end of the line, for example:

 f ← (9/5) * c + 32 // Convert Celsius to Fahrenheit

Remember, comments don’t change the meaning of your program, since computers
skip over them entirely. They do help make the meaning clearer to human readers.

• Caveat

 5

Pseudocode looks deceptively like English, and that is its advantage: it should be
understandable by your average lay-person. However, please be aware of the
differences between pseudocode and plain English: pseudocode is meant to be
executed verbatim, and not “interpreted” with human common sense. For example, a
conditional statement is executed only once, whereas a loop is repeated.

Understanding pseudocode

Just as a child first learns to understand language, and then to speak, and finally to write,
you also should first learn to understand pseudocode written by others and only then
attempt to write your own.

In order to understand pseudocode, you don’t just read it as you would a poem or a novel.
You work through it. You take a blank sheet of paper, designate some space on the paper
for the variables, arrays etc. Then you “execute” the pseudocode line by line on this data.
After you do this a few times, you begin to understand what it does.

Example 1: Vote counting machine

We illustrate this with the following program that counts votes for two candidates.
Votes—for candidate 1 or candidate 2—are read one by one. Let’s assume that the votes
are given to us in an array A, and that there are n votes total. Let’s also assume for
simplicity that each vote is stored as either “1” or “2”.

1 // Set initial vote counts to zero

2 v1 ← 0 // v1 holds the tally for candidate 1

3 v2 ← 0 // v2 holds the tally for candidate 2
4 Do for i = 1 to n

5 {
6 // See who the next vote is for
7 If A[i] = 1 then

8 {
9 // If it’s for candidate 1, then increment his tally

10 v1 ← v1 + 1

11 }

12 else
13 {

14 // Otherwise it’s for candidate 2, so increment his tally

15 v2 ← v2 + 1

16 }
17 }
18 Print “Totals:”, v1, v2

 6

Let’s work through an example with this pseudocode and see exactly what happens when
we execute it. Suppose n = 5 and we have the following data in an array A.

We have our two variables to keep a tally v1 and v2, and our loop variable i. We will
initialize v1 and v2 to 0, and the first time through the loop we have i = 1, which we will
depict as pointing to the first spot in A. Thus at the beginning of the first loop the picture
looks like this:

Now we look to see if A[i] = 1. In this case it is indeed, so we increment v1.

Now we loop around and increment i, which gives us the picture

We check whether A[i] = 1, which it is, so we increment v1 again.

0

2

1 v1 v2

i

A 1 1 2 1 2

0

1

1 v1 v2

i

A 1 1 2 1 2

A 1 1 2 1 2

0

1

0 v1 v2

i

A 1 1 2 1 2

 7

Then we increment i again to get

We check if A[i] = 1, and in this case it is not, so we increment v2.

Then we increment i and repeat two more times. At the end, our pseudocode will give us
something that looks like:

Example 2: Sorting a list of numbers

This program sorts a list of n numbers using the selection sort method discussed in
lecture. Notice how comments make the program easier to understand.

1 // Input n and the list of numbers, which are stored in the array A

2

5

3 v1 v2

i

A 1 1 2 1 2

1

3

2 v1 v2

i

A 1 1 2 1 2

0

3

2 v1 v2

i

A 1 1 2 1 2

0

2

2 v1 v2

i

A 1 1 2 1 2

 8

2 Get n, A[1], …, A[n]
3 Do for i = 1 to n-1
4 {
5 // Search from position i to position n in the array; find the minimum value,
6 // and record its position in best.

7 best ← i
8 Do for j = i+1 to n

9 {
10 If A[i] < A[best] then

11 {

12 best ← i

13 }

14 }
15 // Swap the minimum value (A[best]) with the i'th value

16 tmp ← A[best]

17 A[best] ← A[i]

18 A[i] ← tmp

19 }
20 Print A[1], …, A[n]

21 END

Example 3: The Game of life

This example simulates rounds in the Game of Life. The programs starts by getting the
number of rounds to simulate (t), the size of the square grid (n) and the initial state of the
grid (the array A). A grid value of 1 indicates an occupied square, and 0 indicates an
unoccupied square. In every round, the program applies the rules of the game to each
square to determine whether the square will be occupied in the next round. At the end of
the round, the next round state (array B) replaces the current round state (array A).

1 // Input the number of rounds, the size of the grid, and the initial state of the grid
2 Get t, n, A[1][1], A[1][2], … , A[n][n]

3 Do for step = 1 to t

4 {

5 // On each round, examine every grid square
6 Do for i = 1 to n

7 {
8 Do for j = 1 to n

9 {

10 // Count neighbors by adding all adjacent squares

11 neighbors ← A[i-1][j-1] + A[i-1][j] + A[i-1][j+1] +
 A[I][j-1] + A[i][j+1] +
 A[i+1][j-1] + A[i+1][j] + A[i+1][j+1];

12 // Determine if current square will be occupied in the next round
13 If A[i][j] = 1 then

 9

14 {
15 If neighbors = 2 or neighbors = 3 then

16 { B[i][j] ← 1 // Survival }

17 Else

18 { B[i][j] ← 0 // Death }

19 }

20 Else
21 {
22 If neighbors = 3 then

23 { B[i][j] ← 1 // Birth }

24 }
25 }
26 // Update the grid with the next round’s state
27 Do for i = 1 to n

28 {
29 Do for j = 1 to n

30 {

31 A[i][j] ← B[i][j]

32 }
33 }

34 }
35 // Output the final state of the game
36 Print L[1][1], L[1][2], … , L[n][n]

37 END

(Notice that this program isn’t correct for the squares at the corners and edges of the grid,
which don’t have 8 neighbors. How would you fix this?)

Suggestions for writing your own pseudocode

Unfortunately there is no one way to convert an idea of an algorithm into a pseudocode.
(Think about it, this would in essence be an algorithm for writing algorithms!) But to get
you pointed in the right direction, here are several general guidelines that will help you in
writing your own pseudocode.

Let’s think again about Example 1: the vote counting machine. Remember our goal:
count all the votes and then print out the number of votes for each candidate. Let’s think
about how to write the pseudocode for this task.

Points to consider when thinking about the algorithm:

1. Imagine giving your program to a 7-year old who can understand English and do
elementary arithmetic but doesn’t have much common sense or experience. He or
she should be able to understand exactly what to do given your pseudocode.

 10

2. Your program should work for arbitrarily long input, in this case arbitrarily many
votes. Thus, although saying “Just count the votes” might make sense for 10
votes, if you are given 10,000,000,000 votes then it’s not as obvious what “Just
count the votes” means.

3. Remember that the instructions are executed step by step. Whoever is running

your program is not allowed to look at the program “as a whole” to guess what
you actually meant it to do.

With these points in mind, let’s think about how to count votes. Say we are given the
votes in a big pile. One way to count would be:

Idea A:
Take the first vote, see who it’s for. If it’s for candidate 1 then mark a tally for 1, or if
it’s for 2 then mark a tally for 2. Then keep repeating this for the rest of the votes until
you go through the entire pile.

This is the idea (or the algorithm). Now we need to turn it into pseudocode.

Points to consider when you are trying to turn an idea into pseudocode:

1. What kind of information is recorded in the process of doing the task? This
information will have to be stored in variables when you write the pseudocode.

2. Where do you make decisions about selecting one of two actions to do? These

will usually become conditional statements in the pseudocode.

3. Where do you repeat things? These will become loops in the pseudocode.

OK now let’s look at Idea A and try to translate it into pseudocode.

1. What are we keeping track of? The tallies of votes for each candidate. Thus,
these two tallies will become variables in the pseudocode.

2. Where do we make a decision between two actions? When we decide which

candidate’s tally we should add to. This will become a conditional statement.

3. Where do we repeat? When we are done with one vote we move on to the next
and repeat the same procedure. Going through the pile of votes is like looping
through an array, where each element tells us someone’s vote.

Now if you go back and look at the pseudocode for Example 1, you’ll see exactly how
the idea was transformed into pseudocode. Also, remember that there’s more than one
way to write pseudocode for the same algorithm, just like there’s more than one way to
express the same idea in English.

 11

How fast does your algorithm run?

The central measure of “goodness” of an algorithm (assuming it does its job correctly!) is
how fast it runs. We want a machine-independent measure and this necessarily implies
we have to sacrifice some precision. In general, the relative speeds of arithmetic
operations (+, * etc.) differ among machines, but we will assume all of them take the
same amount of time. The three central points to remember when discussing running time
are:

1. Even though we call the speed of an algorithm its “running time”, we won’t
actually measure it in seconds or minutes, but in the number of “elementary
operations” it takes to run. For this class, elementary operations are arithmetic
(addition, subtraction, multiplication, division), assigning a value to a variable,
and condition checks (either in an “if” statement or in a “do” statement).

2. The running time in general depends on the size of the input. For example, if we

are sorting an array of n elements, it is natural (and unavoidable) that it will take
longer to sort n = 10,000,000 elements than to sort n = 10 elements.

3. We will usually analyze worst-case running time. That is, how long will this

algorithm run given the worst possible input of size n? Whenever in doubt, we err
on side of overestimation rather than underestimation.

Let’s analyze the running time in Example 1.

1 // Set initial vote counts to zero

2 votes_for_candidate_1 ← 0

3 votes_for_candidate_2 ← 0

4 Do for i = 1 to n

5 {

6 // See who the next vote is for
7 If A[i] = 1 then

8 {
9 // If it’s for candidate 1, then increment his tally

10 votes_for_candidate_1 ← votes_for_candidate_1 + 1

11 }
12 else

13 {
14 // Otherwise it’s for candidate 2, so increment his tally

15 votes_for_candidate_2 ← votes_for_candidate_2 + 1

16 }

17 }
18 Print “Totals:”, votes_for_candidate_1, votes_for_candidate_2

 12

It takes 2 steps to initialize the variables. Then we run the loop n times: each time, we
check 1 condition (i.e. who the vote is for) and possibly make 1 assignment (i.e.
incrementing the tally). Thus each time we go through the loop we execute at most 2
steps. Finally it takes 1 step at the end to print the results. Thus adding everything up the
algorithm runs in time 2n + 3.

