(revised 3/1/2006)
COS 116
The Computational Universe
Pseudocode Reference

Pseudocodés a way to describe how to accomplish tasks usinig beeps like those a
computer might perform. In this week’s lab, you saw laof@rm of pseudocode can be
used to program the Scribbler robot. The Scribbler cop&mél has a point and click
interface, but in the rest of the course you wiltessjour own simple pseudocode to
express computations. The advantage of pseudocode over pigishEas you saw in
case of scribbler) is that it has a precise meaningeXaet syntax is not too important—
what counts is expressing a computation clearly and precisel

You can use the handout below in all your homework aadexeven "closed-book"
exams).

e Variables

In pseudocode you will need to usariablesto store data. You can think of these as
little boxes that hold a number, and you are allowdddk at what'’s in the box or
replace its contents with something else. We caditesrer is inside the box thalue

of the variable.

An array is a shorthand way of naming a bunch of variable# idfan array of
lengthn, you can imagine it asboxes lined up in a row. Then we wrif] to refer
to thei’'th box. Here’s a picture of wha& might look like in memory:

A= 40.20 62.71 52.54 22.05

You can use arrays in pseudocode instructions the samgowayse variables:
X « Al2] Setsx to the second value in the arrdyhere, 62.71)
Al3] ~ 2 Sets the third value in the arrAyto the value 2 (replacing 52.54)

Sometimes you will use a variable to specify which elgroéthe array you mean:
y « Ali] Setsy to thei’th array value
Arrays can benultidimensional While a one-dimensional array is like a list, atwo

dimensional array is like a grid. Afis a two-dimensional arraj\[i][j] refers to the
value in rowi, columnj of the grid.



e |nstructions

A pseudocode program is written as a serigastfuctionsthat the computer executes
one at atime. These are several kinds of instructions:

e Arithmetic Instructions

Arithmetic instructions affect values stored ariables named pieces of memory.
These instructions take the fokariable — arithmetic expression. For example:

X 5 Sets the value stored in varialléo the value 5
y « X Setsy to the value stored xj leavesx unchanged
e j+1 Setsi to the valug + 1; leaveg unchanged

There are only a few arithmetic operations allowkdsé are addition, subtraction,
multiplication, and division. Note that exponentiatitogarithms, and more complex
operations areot basic.

Two useful operations that are a little non-standardhaityou may also use are the
ceiling and floor operators. ced(denotes the smallest integer greater than or equal
to x. For example, ceil(3.4) = 4, ceil(4.1) = 5, ceil(2) =for(x) is defined
analogously as the greatest integer less than or exxal t

(Note: The Scribbler doesn’t support all pseudocode instrgctieor instance, it
does not understand arithmetic instructions, variables, @ysayr

* Simpleactions

Sometimes you can use a single instruction to speci@havior. E.g.:
Move forward for 1s
Read the price from the next jar

Place the box back on the shelf.

Use instructions like these for actions that are secgridajour program’s purpose.
» Conditionals

Conditional (“branch”) instructions perform one setofions only if some specified
condition is true and another set only if the condits false. They take this form:

If true/false condition Then

{
}

Else

First list of instructions...

Second list of instructions...



}

(You can omit thelse { } branch if you don’t want to take any special action when
the condition is false.)

Here is a simple example:

If x is odd Then
{

X «X—-1
count « count + 1

}

Else

{
}

X « X+2

This conditional checks whetheiis odd. If so, it subtracts one fronand adds one
to count otherwise, it dividesg by two.

It's important to understand that the true/false condisazhecked only once, at the
beginning of the conditional. Xis odd, the computer subtracts one frgrmaking
it even. However, the computéoes not go on to dividex by two.

L oops

Loops perform a set of actions some number of tindage kind of loop performs an
action over and over again “infinitely” (or at leastilithe computer or robot is
turned off). These look like this:

Do forever

{
}

List of instructions...

Another flavor of loop makes the computer follow aeeof instructions a fixed
number of times. For example:

Do for n times

List of instructions...

}
A third kind of loop adds a variable that counts the passesigh the loop:

Dofori=atob

{
}

On the first pass, the variablés set toa. At the start of each successive pass,
increased by one, until on the final pass it has the \mlua all, the computer

List of instructions...



performs the list of instructions b —a + 1 times. Yould use such a loop to add the
integers from 1 to 100 (inclusive) as follows:

sum « 0
Do fori=1to 100

{
}

The last kind of loop makes the computer perform someurtgins repeatedly as
long as a specified condition remains true. It take$am:

sum « sum+i

Do while true/false condition

{
}

At the beginning of the loop, the computer checks whetigecondition is true. If
S0, it executes the list of instructions. Then @alts again whether the condition is
true; if so, it executes the instructions again. Thiegss is repeated until the
computer checks the condition and it is false. Hexe’'sxample:

List of instructions...

Do while current < max

{
current — current+ 1
Other instructions...

}

What happens durrent > max the first time the computer evaluates thewvhile
instruction? In this case, the operations inside the dvemot executed at all.
+ Input and Output
Sometimes you want to get values from outside the progF@mexample:
Get price Sets the variablprice to a value from outside the program

Similarly, your program can present its results usinguesbns like these:
Print “The lowest price was:”  Display a fixed message
Print minimum Display the value of the variabhinimum

« Comments

Comments are not actually instructions; instead, theyigedhints about what the
program does to help humans understand it. A commemsdegh two slashes
and continues until the end of the line, for example:

f — (9/5) * c + 32 // Convert Celsius to Fahrenheit

Remember, comments don’t change the meaning of your progirasa,computers
skip over them entirely. They do help make the meaneayet to human readers.

+ Caveat



Pseudocode looks deceptively like English, and that is itswalye: it should be
understandable by your average lay-person. Howpiease be aware of the
differences between pseudocode and plain English: pseudisameant to be
executedrerbatim and not “interpreted” with human common sense. kamgple, a
conditional statement is executed oohce whereas a loop is repeated.

Understanding pseudocode

Just as a child first learns to understand language, andatispeak, and finally to write,
you also should first learn to understand pseudocode writtethibys and only then
attempt to write your own.

In order to understand pseudocode, you don't just read ittawgold a poem or a novel.
You work through it. You take a blank sheet of paper, desigruaite space on the paper
for the variables, arrays etc. Then you “execute’pgeudocode line by line on this data.
After you do this a few times, you begin to understandtvthidoes.

Example 1: Vote counting machine

We illustrate this with the following program that countges for two candidates.
Votes—for candidate 1 or candidate 2—are read one by cgtés dssume that the votes
are given to us in an arrdy and that there arevotes total. Let's also assume for
simplicity that each vote is stored as either “1” or.*2”

/I Set initial vote counts to zero
vl < 0 // vl holds the tally for candidate 1
v2 « 0 //v2 holds the tally for candidate 2
Dofori=1ton
{

/I See who the next vote is for

If Ali]=1then

{

© 00 N O o b~ W N PP

/['If it's for candidate 1, then increment his tally

10 vl «vl+1

11 }

12 else

13 {

14 /I Otherwise it's for candidate 2, so increment his tally
15 V2 « v2+1

16 }

17}

18 Print “Totals:”, v1, v2




Let’s work through an example with this pseudocode and setlgxwhat happens when
we execute it. Suppose= 5 and we have the following data in an aay

A 1 1 2 1 2

We have our two variables to keep a tallyandv2, and our loop variable We will
initialize vl andv2to 0, and the first time through the loop we hawel, which we will
depict as pointing to the first spotAn Thus at the beginning of the first loop the picture
looks like this:

A 1 1 2 1 2

t—/\

i1

vl |0 v2 |0

Now we look to see iA[ i ] = 1. In this case it is indeed, so we incremeint

A 1 1 2 1 2

Y

i1

vli |1 v2 |0

Now we loop around and incremeantvhich gives us the picture

A 1 1 2 1 2

A~

|2

vli |1 v2 |0

We check whethed[ i ] = 1, which it is, so we increment again.



vl |2 v2 |0

Then we incremeritagain to get

A 1 1 2 1 2
*

vl |2 v2 |0

We check ifA[ i ] = 1, and in this case it is not, so we incremeit

A 1 1 2 1 2
*

vl |2 v2 |1

Then we incremeritand repeat two more times. At the end, our pseudocobgivelus
something that looks like:

A 1 1 2 1 2
— %
1 |5
vli |3 v2 |2

Example 2: Sorting a list of numbers

This program sorts a list ofnumberausing the selection sort method discussed in
lecture. Notice how comments make the program easianderstand.

‘ 1 /l'Input n and the list of numbers, which are stored in the array A



w N

© 00 ~N o o b

10
11
12
13
14
15
16
17
18
19

21

Getn, A[1], ..., A[n]
Dofori=1ton-1

{

}

/I Search from position i to position n in the array; find the minimum value,
/I and record its position in best.
best ~ i
Doforj=i+lton
{
If Ali] < A[best] then
{

best « i

}

/I Swap the minimum value (A[best]) with the i'th value
tmp < Albest]

Albest] « AJi]

Ali] ~ tmp

20 Print A[1], ..., A[n]

END

Example 3: The Game of life

This example simulates rounds in the Game of Lifee gifograms starts by getting the
number of rounds to simulaty,(the size of the square gri) @nd the initial state of the
grid (the arrayd). A grid value of 1 indicates an occupied square, andifates an
unoccupied square. In every round, the program appliesidgeof the game to each
square to determine whether the square will be occupidx inext round. At the end of
the round, the next round state (arByeplaces the current round state (akay

© 00 N o o b~ W N P

[
= O

12
13

/I Input the number of rounds, the size of the grid, and the initial state of the grid
Gett, n, A[1][1], A[1][2], ... , A[n][n]
Doforstep=1tot
{
/I On each round, examine every grid square
Dofori=1ton

{
Doforj=1ton
{
/I Count neighbors by adding all adjacent squares
neighbors «  A[i-1][j-1] + A[i-1][j] + A[i-1][j+1] +
Al 10-1] + Al (+1] +
Ali+1][j-1] + Afi+1][j] + Ali+1][j+1];
/I Determine if current square will be occupied in the next round
If Afi][j] = 1 then



14 {

15 If neighbors = 2 or neighbors = 3 then
16 { BIi[l] «1 // Survival }
17 Else

18 { B[] « 0 //Death }
19 }

20 Else

21 {

22 If neighbors = 3 then

23 { B[]l <21 /Birth }
24 }

25 }

26 /I Update the grid with the next round’s state
27 Dofori=1ton

28 {

29 Doforj=1ton

30 {

31 Al ~ B[]

32 }

33 }

34}

35 /I Output the final state of the game

36 Print L[1][1], L[1]{2], ..., L[N][n]

37 END

(Notice that this program isn’t correct for the squatdb@corners and edges of the grid,
which don’'t have 8 neighbors. How would you fix this?)

Suggestions for writing your own pseudocode

Unfortunately there is no one way to convert an mffean algorithm into a pseudocode.
(Think about it, this would in essence be an algorithnwiating algorithms!) But to get
you pointed in the right direction, here are severaégsdrguidelines that will help you in
writing your own pseudocode.

Let’s think again about Example 1: the vote counting machiRemember our goal:
count all the votes and then print out the number ofsvimleeach candidate. Let’s think
about how to write the pseudocode for this task.

Points to consider when thinking about the algorithm:
1. Imagine giving your program to a 7-year old who can undadldianglish and do

elementary arithmetic but doesn’t have much commosesenexperience. He or
she should be able to understand exactly what to do giverpgeudocode.



2. Your program should work for arbitrarily long input, in th&se arbitrarily many
votes. Thus, although saying “Just count the votes” nmigikte sense for 10
votes, if you are given 10,000,000,000 votes then it's not asubwibat “Just
count the votes” means.

3. Remember that the instructions are executed step by ¥{bpever is running
your program is not allowed to look at the program “agale” to guess what
you actually meant it to do.

With these points in mind, let’s think about how to cowotes. Say we are given the
votes in a big pile. One way to count would be:

ldea A

Take the first vote, see who it’s for. If it's for candidatinen mark a tally for 1, or if
it's for 2 then mark a tally for 2. Then keep repeating this foraiseof the votes until
you go through the entire pile.

This is the idea (or the algorithm). Now we need to tumt® pseudocode.

Pointsto consider when you are trying to turn an idea into pseudocode:

1. What kind of information is recorded in the process afigithe task? This
information will have to be stored in variables wiyen write the pseudocode.

2. Where do you make decisions about selecting one of tiianad¢o do? These
will usually become conditional statements in theugseode.

3. Where do you repeat things? These will become loopg®ipseudocode.
OK now let’s look at Idea A and try to translate ibiiseudocode.

1. What are we keeping track of? The tallies of voteg&mh candidate. Thus,
these two tallies will become variables in the pseadec

2. Where do we make a decision between two actions? Wheleaide which
candidate’s tally we should add to. This will becomerddional statement.

3. Where do we repeat? When we are done with one voteonve on to the next
and repeat the same procedure. Going through the pilées igdike looping
through an array, where each element tells us someeoie's

Now if you go back and look at the pseudocode for Exampleulll see exactly how
the idea was transformed into pseudocode. Also, remeimdtethere’s more than one
way to write pseudocode for the same algorithm, just ligeeth more than one way to
express the same idea in English.

10



How fast does your algorithm run?

The central measure of “goodness” of an algorithm (asguindoes its job correctly!) is
how fast it runs. We want a machine-independent measdréhis necessarily implies
we have to sacrifice some precision. In general, théve speeds of arithmetic
operations (+, * etc.) differ among machines, but we agiflume all of them take the
same amount of time. The three central points to ma#mee when discussing running time
are:

1. Even though we call the speed of an algorithm its “runnmeg’tiwe won't
actually measure it in seconds or minutes, but in tihebeu of ‘elementary
operations’ it takes to run. For this class, elementary opera@rasarithmetic
(addition, subtraction, multiplication, division),ségning a value to a variable,
and condition checks (either in an “if” statemeniroa “do” statement).

2. The running time in generdépends on the size of theinput. For example, if we
are sorting an array ofelements, it is natural (and unavoidable) that it talle
longer to sorh = 10,000,000 elements than to sort 10 elements.

3. We will usually analyzevorst-case running time. That is, how long will this
algorithm run given thevorst possiblenput of sizen? Whenever in doubt, we err
on side of overestimation rather than underestimation

Let’s analyze the running time in Example 1.

1 /I Setinitial vote counts to zero

2 votes_for_candidate 1 — 0

3 votes_for_candidate 2 — 0

4 Dofori=1ton

5

6 /I See who the next vote is for

7 If Ali]=1then

8 {

9 /l'If it's for candidate 1, then increment his tally

10 votes_for_candidate_1 — votes for_candidate 1 + 1
11 }

12 else

13 {

14 /I Otherwise it's for candidate 2, so increment his tally
15 votes_for_candidate 2 — votes for_candidate 2 + 1
16 }

17}

18 Print “Totals:”, votes_for_candidate_1, votes_for_candidate 2

11



It takes 2 steps to initialize the variables. Thenuvethe loop times: each time, we
check 1 condition (i.e. who the vote is for) and possiifike 1 assignment (i.e.
incrementing the tally). Thus each time we go througHdbp we execute at most 2
steps. Finally it takes 1 step at the end to printekalts. Thus adding everything up the
algorithm runs in tim&n + 3

12



