COS116: Computational Universe Spring 2006

Tentative Course Plan

Week	Lecture Topic	Lab topic
1	Intro: Computer science, a new way of	Creating and understanding a weblog.
	looking at the world.	(To be used in later assignments.)
	$(CS \neq Programming!)$	
	Telling a robot how to behave.	
2	Telling a computer how to behave. (Via	Understanding a simple robot and the
	pseudocode).	determinants of its behavior. (Each
	"Everything's a number."	student gets a robot for the rest of the
	(Simulation. Creating new worlds.	semester.)
	Games and Life.)	
3	"It ain't no good if it ain't snappy	Modifying the robot's behavior.
	enough."	
	(Efficiency in computations.)	
	"It sure is clever, but can it swing?"	
	(Computer music.)	
4	How the computer raises its IQ.	Computer Music.
	("Intelligent" programs and how they	
	view the world.)	
	What is a computation? Can we make a	
	fundamentally different computer?	
5	What computers just cannot do.	Robotic fine art (drawing, painting,
		music, dance, or maybe something
	The fluid boundary between program	else?)
	and data. Implications for computational	
	technologies.	
	Bioinformatics. The parallels between	
	molecular basis of life and the	
	computer. How computers enable the	
	study of life.	X 11
6	Logic: How the Greeks and medieval	No lab session. Instead, students write
	philosophers tried to formalize thought.	an analytical article on their blogs.
	Boolean logic and Boolean circuits: the	
	basis of computational hardware.	
7	How a Boolean circuit (and the	Understanding properties of
	computer) acquires memory: the	elementary gates and circuits.
	importance of feedback.	
	Clocked circuits and finite state	
	machines.	
8	How to juggle the various demands of	Understanding finite state machines.
	life. (Multitasking and operating	
	systems.)	

	What do computers talk about when they talk? (Networking and the internet.)	
9	Physics of the silicon chip. What can computers not do efficiently? And is that good or bad?	Strategies for congestion control on the internet.
10	Secrets and Lies, Knowledge and Trust. (Modern cryptography.) Viruses, worms, zombies, and other beasties.	More about congestion control. Fairness, quality of service, etc. Network phenomena.
11	How do search engines work? What is intelligence? (What is your computer's Turing Quotient?)	Study of Virus propagation in networks. Implications for epidemiology.
12	Can computers think?	Dissecting a computer.

Some memorable quotes:

This 'telephone' has too many shortcomings to be seriously considered as a means of communication. The device is inherently of no value to us.

-- Western Union internal memo, 1876

I think there is a world market for maybe five computers.

-- Thomas Watson, chairman of IBM, 1943

Computers in the future may weigh no more than 1.5 tons.

-- Popular Mechanics, forecasting the relentless march of science, 1949

I have traveled the length and breadth of this country and talked with the best people, and I can assure you that data processing is a fad that won't last out the year.

-- The editor in charge of business books for Prentice Hall, 1957

But what ... is it good for?

-- Engineer at the Advanced Computing Systems Division of IBM,1968, commenting on the microchip

There is no reason anyone would want a computer in their home.

-- Ken Olson, president, chairman and founder of Digital Equipment Corp., 1977

There has been a great deal said about a 3,000-mile high-angle rocket. In my opinion, such a thing is impossible today and will be impossible for many years [...]

-- Vannevar Bush, author of *As We May Think*, Director of the Office of Scientific Research and Development, as stated before the Special Senate Committee on Atomic Energy [http://www.hq.nasa.gov/office/pao/History/SP-4404/ch3-7.htm, http://www.hq.nasa.gov/office/pao/History/SP-4201/ch1-4.htm]