Fast Image Retrieval via Embeddings
Piotr Indyk Nitin Thaper

LCS MIT LCS MIT
indyk@theory.lcs.mit.edu nitin@theory.lcs.mit.edu

Abstract

In this paper we present a new algorithm for fast similarity search in large sets of images. The
algorithm is obtained by employing the following two-step process. First, the dis-similarity metric
1s embedded into Euclidean space. Then, a fast nearest neighbor algorithm designed for the latter
space is used.

The dis-similarity metric that we use is the Earth-Mover Distance (EMD). EMD has been exper-
imentally verified to capture well the perceptual notion of a difference between images. However,
the current algorithms for finding the nearest neighbor under EMD have running times linear in
the number of images. This makes them inefficient when used for large data sets.

By embedding EMD into Euclidean space, and then using Locality-Sensitive Hashing (LSH) to
find the nearest neighbor in the latter space, we obtain an approximate nearest neighbor search
algorithm for the EMD metric that is order(s) of magnitude faster than the linear scan approach.

1 Introduction

Image retrieval in large databases is a problem of interest in vision and database communities.
The central questions in this area are:

e How to design a (dis)-similarity measure that quantifies the perceptual notion of two images
being similar, and

e How to build a data structure that quickly identifies the images that are closest to a query
image (the nearest neighbor search problem)

Early work on image retrieval typically solved the first issue by representing each image by a
point in a multidimensional space, and using norms (e.g., Euclidean norm) to define the distance
between two such points. For example, a natural method for extracting color information of an
image is to compute its color histogram, i.e., split the color space into cells, and for each cell, count
the number of pixels that fall into that cell. The advantage of this approach is that, in order to
solve the nearest neighbor problem, one can use data structures specifically designed for points
living in normed space (e.g., kd-trees or R-trees). Such data structures, especially if carefully

implemented, provide mechanisms for query answering that are orders of magnitude faster than,
say, naive linear scan for the nearest neighbor.

It was observed however, that the quality of retrieval achieved by such approaches is not always
satisfactory (e.g., cf. [RTGO0]) Thus, other metrics were proposed in the vision literature that
do not satisfy norm axioms; examples include Hausdorff metric, Earth-Mover-Distance (EMD),
variants of edit distance etc. Empirical evaluations suggest that such metrics often lead to better
retrieval quality than when the normed-space approach is used. Unfortunately, for such metrics,
the aforementioned efficient nearest neighbor data structures cannot be used. Instead, in such
cases, the nearest neighbor search problem tends to be much more difficult. Typically, it is
solved using simple linear scan that computes the distance between the query and all data points.
Although it is possible to improve over a naive implementation of the above idea by exploiting
triangle inequality and pruning (if we know that the distance to a given point is large, we do not
need to actually to compute it), the speedup factors achieved by this method are typically low
(less than 10). In the worst-case, the algorithms still suffer from linear query time.

In recent years, a novel approach for similarity search in un-normed metrics has been pro-
posed [FCI99, CPSV00, MS00, CMS01, Cha02, ADG"03]. The main idea is to embed the metric
into a normed space, i.e., map each point in the metric space into a point in a normed space, so
that the distance between the images of any two points is comparable to the distance between
the points themselves. Given such a mapping (say f), we can implement similarity search data
structure by constructing a nearest neighbor data structure for the images f(p) of the data points
p; then, in order to answer query ¢, we simply query our data structure with argument f(q).
The properties of the embedding imply that this approach guarantees that the answer is an ap-
proximate nearest neighbor, where the approximation factor depends on the distance distortion
incurred by the mapping f.

Note that this approach requires the mapping f to be well-defined and computable for any
argument ¢, since in general ¢ is not known in advance. This means that f needs to be designed for
a specific metric. In particular, embedding techniques for general metrics (e.g., multidimensional
scaling) cannot be used in this context, since they require advance knowledge of all metric points
in order to construct the mapping.

In this paper, we apply the embedding methodology to the Earth-Mover Distance (EMD)
metric [RTG00]. This metric has been experimentally verified to capture well the perceptual
notion of a difference between images (e.g., with respect to their color or texture characteristic).
The basic idea behind EMD is as follows. Assume that the features of an image are represented by
a set of points in low-dimensional space R?. For example, an image could be represented by a set
of pixels, where each pixel is a point in 3-dimensional color space. The distance between two sets
of points (representing two different images) is defined as the minimum amount of work needed
to transform one set into another. Formally, this corresponds to the minimum weight matching
(or flow) between the two sets of points.

We provide a low-distortion embedding of EMD into ¢ (i.e., R? equipped with Manhattan
norm). Our mapping has a provable distortion upper bound of O(log A), where A is the diameter
of the underlying space (see later sections for formal definition). However, our experimental
results show that the empirical distortion is much smaller (typically, around 10%). This allows us
to reduce the nearest neighbor search problem in EMD to the equivalent problem in [¢, and use
fast data structures for the latter problem.

The vectors f(p) obtained from our embedding are sparse, but live in a very high-dimensional
space (i.e., d is very large). This means that we cannot use nearest neighbor data structures
whose performance degrades quickly as the dimension increases (e.g., kd-trees). Instead, we
use a different algorithm, namely Locality-Sensitive Hashing (LSH). The latter algorithm was
introduced in [IM98, GIM99] and shown to solve the approximate nearest neighbor problem in
time provably sublinear in the number of points n even for large d (see Preliminaries for more
details on this method). In this paper we use a new variant of LSH, introduced in [DIIMO03]. It is
has the advantage of working directly in the Manhattan norm (the earlier method was applicable
directly only to Hamming space). Since in our case the input vectors are high-dimensional but
sparse, we adapted their algorithm to deal with this case.

By combining our embedding with the modified version of LSH, we obtain a very efficient
algorithm for the nearest neighbor search under EMD. Our experiments (on 20,000 color signatures
of Corel-Draw images) show that our algorithm is about 60 times faster than the naive linear scan,
while most often reporting the exact (or almost exact) nearest neighbor. The speed-up is likely
to increase if the number of data points grows.

As a by-product of our approach, we also obtain a very fast approximation algorithm for
computing EMD between two images: to compute EMD between p and ¢, we simply compute
the Manhattan norm of f(p) — f(¢). The running time of our algorithm is linear in the image
size; this should be contrasted with superpolynomial behavior of the simplex algorithm employed
in [RTGO00]. Thus, unlike in [RTGO00], we do not need to precluster image pixels in order to make
the computation of EMD feasible.! Although we did not pursue this direction, it could potentially
lead to higher quality of retrieved images.

Our techniques. Our main technical contribution is the embedding of EMD into R? under
Manhattan norm. The embedding can be viewed as resulting from a combination of the following
two results? 3

1. The result of [Cha02], who (implicitely) showed that the techniques of [KT99] imply the
following: if a metric M can be probabilistically embedded into trees with distortion ¢, then
the EMD over M can be embedded into /; with distortion O(c).

2. The result of [CCG*98] (cf. [Bar96]), who showed that the Euclidean metric over {1...A}¢
can be probabilistically embedded into trees with distortion O(dlogA). Again, that result
is implicit in that paper.

In this paper, we present the resulting embedding explicitely, without going through the afore-
mentioned sequence of steps. In addition, we give a direct proof of the properties of the embedding,
not relying on the statements proved in [Bar96, CCG*98, KT99, Cha02].

!'We mention that we do use preclustered data for our experiments. This is because we need to compare the
answers provided by our approximate algorithm with the exact ones. Computing the exact EMD between two raw
images takes about 1 hour, which makes it infeasible to use it on a 20,000 image data set. Therefore, we had to
resort to preclustered data in order to find the ”ground truth” for our experiments.

2We skip the detailed definition of the terms used here, since we are not going to use them anywhere outside of
this paragraph.

3We apologize for the following explanation being so convoluted. Unfortunately, this seems to be the most
accurate way to depict the related work.

The main idea behind the embedding is as follows.* To embed P, we will compute and concate-
nate together several weighted histograms of P. Each histogram is defined by partitioning of the
color space using a randomly shifted grid. The side lengths of the cells in different partitions form
an exponential sequence (e.g., 1,2,4, etc). In addition, each entry in the histogram is multiplied
by a weight that is proportional to the length of the grid cell.

It is easy to see that one color histogram fails to express similarity between images whose
dominant colors fall to adjacent but different cells; one can call it a quantization problem. Intu-
itively, our embedding avoids this problem by combining several different quantization levels in a
consistent fashion.

Embeddings and high-dimensional nearest neighbor search. Designing low-distortion
embeddings of complex metrics into simpler ones, as well as designing fast nearest neighbor search
algorithms for high-dimensional normed spaces, has been recently a subject of extensive research
in the theoretical computer science community. For more background information about those
areas, the reader is referred to surveys [Ind03, IM03].

2 The embedding

In this section we formally show how to construct an embedding of EMD into [;, and prove a
bound on its distortion.

Let P, @ be two point sets of cardinality s, each in ®* and V = P U Q. For any pairp € P,q € Q,
the weight of (p, ¢) is the Euclidean (l5) distance between p and g.

Recall that the EMD metric Dy (P, Q) between these two point sets is defined as the cost of the
minimum weight matching in the weighted bipartite graph consisting of all edges between points
in P and Q.5

Assume that the smallest inter-point distance is 1, and let A be the diameter of V. The
embedding is defined as follows. We impose grids on the space RF of sides 1/2,1,2,4,...,2"... A,
Let G; be grid of side 2°. We impose the condition that the grid G; is a refinement of grid G;.
Moreover, the grid is translated by a vector chosen uniformly at random from [0, A]~.

For each grid G;, we construct a vector v;(P) with one coordinate per cell, where each coordi-
nate counts the number of points in the corresponding cell. In other words, each v;(P) forms a
histogram of P. We define mapping f by setting f(P) to be the vector

v_1(P)/2,vo(P), 2v1(P), 4vy(P), ..., 20 (P),

Note that v(P) lives in an O(A*)-dimensional space, but only O(log(A)-|P|) entries in this vector
are non-zero (i.e., the vector v(P) is sparse).

This completes the description of the embedding. In the following, we provide two lemmas that
bound the distortion induced by the embedding. For simplicity, we will show the claims for the
case when k = 2 (i.e., when EMD operates on sets of points in the plane). The generalization to
any constant dimension is straightforward, and only changes the constant factor in the distortion.

4For simplicity we describe here the embedding in the context of EMD over the color space. However, it can
be used for EMD over other feature spaces (e.g., that describe the texture of images).

°In [RTGO0] the authors provided a more general definition of EMD which does not assume |P| = |Q|. We do
not consider this generalization here, since in such a case EMD does not form a metric.

Lemma 1 There is a constant C' such that for any P, Q, we have Dy (P, Q) < C-|v(P) —v(Q)|1-

Proof: Let us consider the matching induced by pairing points within the same cells of grids
G_1,G,. .. etc. Firstly, observe that there are no pairings induced by G_1, since all points fall to
different cells; this implies |v_1(P) —v_1(Q)|; = 2s. Then, there are s — |vy(P) — vo(Q)|/2 pairs of
points from P and () that can be matched together within the same cells of grid GGy, which induces
cost v/2[s — [vg(P) — vo(Q)]/2]. Of the remainder, |vo(P) — vo(Q)| — |v1(P) — v1(Q)| are matched
in cells G, which induces cost v/2 - 2[|vg(P) — vo(Q)]/2 — |v1(P) — v1(Q)|/2], etc. In general, the
grid G; induces the cost v/2 - 2/[|v;_1 (P) — v;_1(Q)]/2 — |vs(P) — v;(Q)|/2]. By summing the costs
up, we observe that

Du(PQ) < Vs + 5 (In(P) — w(@)
—|—12|U1(P) — (@) +..)]
< E(WA(P) —v-1(Q)]

+|vo(P) = vo(Q) +--.)
< C-(P)—v(@)h
O

Lemma 2 There is a constant C' such that, for a fixed pair P,Q, if we shift grids randomly, then
the expected value of |v(P) — v(Q)]1 is at most C - Dy (P, Q) log A.

Proof: Observe that:

ElJo(P) — v(@)1] = X 2 B[]

where X; = |v;(P) — v;(Q)];.
Consider the best matching M between the point sets. Let n; be the number of edges in M
with lengths between 2¢=! and 2!. By averaging argument we have

Dy (P,Q) > > n2"!

Observe that any edge of M left "uncut” by grid G; contributes nothing to X; and any edge
"cut” by the grid contributes at most 2 to X;. Thus X; can be bounded by:

BLX;) <23 ElY)

where Yj; is the number of edges between lengths 2/~ ! and 2/ cut by grid G;.
Since the probability of an edge of length [being cut by grid G; is bounded by [/2, it follows
that:
BIX;) <2y n;27/2" < 2Dy (P,Q) /2"
J
from which it follows that

Ello(P) = v(Q)h] < 2log ADy (P, Q)

T T T T
“Histogram_ranks' s “Histogram_distances" e

Frequency

o 5 10 15 20 25 30 35 40 45 50 1 1.2 14 16 18 2
Rank of p' Distance ratio to Nearest Neighbor

(a) Rank (b) Distance ratio

Figure 1: Quality of the nearest neighbors obtained via embeddings

2.1 Empirical distortion

The theoretical bounds on the distortion showed in the previous section are not strong enough
to give meaningful practical guarantees. However, in practice, the distortion induced by the
embedding is much lower. To verify that, we performed the following experiment. We took the
20,000 point data set (described in detail in the next section) and embedded all data elements into
<. Then, for a few query points ¢, we computed their exact nearest neighbors p (with respect
to EMD metric) and p’ (with respect to the [; distance between f(q) and f(p')). As Figure 1
illustrates, the nearest neighbor p’ in the embedded space is very likely to be among the top 10
near neighbors of the image in the original EMD space. Also, typically, the reported point was a
(1 + ¢)-approximate nearest neighbor, with € < 20%.

If we repeat the randomized embedding process a few times, the chances of finding the nearest
neighbor of the image increase. We did not perform additional experiments in this direction, since
they would have been superseded by the experiments described in the next section.

3 Locality-Sensitive Hashing

In this section we describe the Locality-Sensitive Hashing algorithm [IM98, GIM99, DIIM03] for
fast nearest neighbor search in R¢ under the [, norm.

We employ the following notation. For any point v € R¢, we denote by ||&]], the [, norm of
the vector ¥. Let M = (X, D) be any metric space, and v € X. The ball of radius r centered at
v is defined as B(v,r) = {g € X | D(v,q) <r}.

3.1 Nearest Neighbor and its decision version

In this paper we focus on solving the approzrimate decision version of the nearest neighbor problem,
and show how to use our solution for the optimization version.

Following [IM98], we define the (R, €)-Point Location in Equal Balls (PLEB) problem as follows.

Definition 1 ((R,¢)-PLEB) Given n radius-R balls centered at P = {py,...,pn} in M =
(X, D), devise a data structure which for any query point ¢ € X does the following:

e if there ezists p € P with ¢ € B(p, R) then return YES and a point p' such that q €
B, (1+e)R),

e if g ¢ B(p,(1+¢€)R) for all p € P then return NO,

e if for the point p closest to ¢ we have R < D(q,p) < ((1 + €)R) then return either YES or
NO.

Henceforth we will use ¢ to denote the approximation factor (1+4¢) and refer to the (R, ¢)-PLEB
problem as (R, ¢)-PLEB problem.

Observe that (R, c)-PLEB is simply a decision version of the Approximate Nearest Neighbor
problem. Although in many applications solving the decision version is good enough, one can also
reduce the approximate NN problem to approximate PLEB via binary-search-like approach. In
particular, it is known [IM98, HPO01] that the e-approximate NN problem reduces to O(log(n/¢))
instances of (R,¢)-PLEB. Then, the complexity of e-approximate NN is the same (within log
factor) as that of the (R, €)-PLEB problem.

3.2 Using LSH to solve (R,c)-PLEB problem

To solve the (R, c)-PLEB problem we employ the Locality Sensitive Hashing or LSH [IM98]. Its
main idea is use hash functions such the probability of collision is higher for points that are “close”
to each other than for those that are “far apart”. Formally, for a domain S of the points set with
distance measure D, an LSH family is defined as:

Definition 2 A familyH = {h: S — U} is called (ry, 72, p1, p2)-sensitive for D if for anyv,q € S

e if v € B(q,r) then Pry[h(q) = h(v)] > p1,
e ifv & B(q,rs) then Prylh(q) = h(v)] < pa.

In order for a locality-sensitive hash (LSH) family to be useful, it has to satisfy inequalities p; > py
and r; < 9.

We will briefly describe, from [IM98], how a LSH family can be used to solve the (R, ¢)-PLEB
problem: We choose r; = R and ry = ¢+ R. Given a family H of hash functions with parameters
(r1,79,p1,p2) as in Definition 2, we amplify the gap between the “high” probability p; and “low”
probability ps by concatenating several functions. In particular, for k specified later, define a
function family G = {g : S — U*} such that g(v) = (hi(v),...,h(v)), where h; € H. For
an integer L we choose L functions g, ..., gy from G, independently and uniformly at random.
During preprocessing, we store each v € P (input point set) in the bucket g;(v), for j =1,..., L.
Since the total number of buckets may be large, we retain only the non-empty buckets by resorting
to hashing. To process a query ¢, we search all buckets ¢;(q), ..., gr(q); as it is possible (though
unlikely) that the total number of points stored in those buckets is large, we interrupt search after

finding first 3L points (including duplicates). Let vy,...,v; be the points encountered therein.
For each v, if v; € B(g,72) then we return YES and vj, else we return NO.

The parameters k£ and L are chosen so as to ensure that with a constant probability the following
two properties hold: (1) a point within distance r; from ¢ (if exists) collides with ¢ under some
hash function, and (2) the number of points that are further than ro from ¢ and that collide with
¢, under all hash functions, is < 3L. Observe that if (1) and (2) hold, then the algorithm is
correct. It follows (see [IM98] Theorem 5 for details) that if we set k = log;,, n, and L = n”

where p = % then (1) and (2) hold with a constant probability. Thus, we get following

theorem (slightly different version of Theorem 5 in [IM98]), which relates the efficiency of solving
(R, c¢)-PLEB problem to the sensitivity parameters of the LSH.

Theorem 1 Suppose there is a (R, cR, p1, pa)-sensitive family H for a distance measure D. Then
there exists an algorithm for (R,c)-PLEB under measure D which uses O(dn + n'*?) space, with

query time dominated by O(n’) distance computations, and O(n”log,,,, n) evaluations of hash

In1/p1

functions from H, where p = - s

In this paper, we use a novel LSH scheme based on p-stable distributions, first proposed in
[DITMO3].

3.3 LSH using p-stable distributions

A distribution D over R is called p-stable, if there exists p > 0 such that for any n real numbers
vy ...v, and i.i.d. variables X ... X, with distribution D, the random variable >, v; X; has the
same distribution as the variable (3; |v;|?)'/? X, where X is a random variable with distribution
D. Tt is known [Zol86] that stable distributions exist for any p € (0,2]. In particular, Cauchy
distribution D¢, defined by the density function ¢(x) = 1, is 1-stable.

Given a vector v of dimension d, the dot product a.v is a random variable which is distributed
as (3 [vi|))PX (i.e., ||v|[,X), where X is a random variable with p-stable distribution. The
dot products (a@.v) can be used to assign a hash value to each vector v. Intuitively, the hash
function family should be locality sensitive, i.e. if two vectors (v, vs) are close (small ||v; —v2]|,)
then they should collide (hash to the same value) with high probability and if they are far they
should collide with small probability. The dot product a.v projects each vector to the real line;
It follows from p-stability that for two vectors (vy,vs) the distance between their projections
(a.v1 — @.vy) is distributed as ||v; — v2||,X where X is a p-stable distribution. If we “chop” the
real line into equi-width segments of appropriate size r and assign hash values to vectors based
on which segment they project onto, then it is intuitively clear that this hash function will be
locality preserving in the sense described above.

Formally, each hash function hq ;(v) : R? — N maps a d dimensional vector v onto the set of
integers. Each hash function in the family is indexed by a choice of random a and b where a is,
as before, a d dimensional vector with entries chosen independently from a p-stable distribution
and b is a real number chosen uniformly from the range [0,7]. For a fixed a,b the hash function
ha is given by hg ,(v) = | V4|

The probability that two vectors vy, vs collide under a hash function drawn uniformly at random
from this family, can be computed as follows. Let f,(¢) denote the probability density function of

the absolute value of the p-stable distribution. We may drop the subscript p whenever it is clear
from the context.

For the two vectors vy, vg, let ¢ = ||vg — va||,. For a random vector @ whose entries are drawn
from a p-stable distribution, a.vy — a.vs is distributed as ¢X where X is a random variable drawn
from a p-stable distribution. Since b is drawn uniformly from [0, 7] it is easy to see that

t

Praplhas(v1) = hap(vz)] = /UT %fp(é)(l - ;)dt

For a fixed parameter r the probability of collision decreases monotonically with ¢ = ||vg —v2|],.
Thus, as per Definition 2 the family of hash functions above is (71, 72, p1, p2)-sensitive for p; =
Iy Fp()(1 = L)dt and p, = [§ 2f,(4)(1 — L)dt for ro/ry = c.

Henceforth, we shall restrict our attention to the p = 1 case since we are only concerned with

LSH in /; space. For this case, it was shown in [DIIMO03] that the ratio p = min, iﬂ%; (which, as

discussed earlier, corresponds to the exponent in the query time) is close to 1/c. Thus, we expect
sublinear query time from this hash family.

4 Experimental Evaluation

In this section we present an experimental evaluation of our image retrieval scheme. We dis-
cuss some of the issues pertaining to the implementation of our technique and then report some
preliminary performance results.

4.1 Implementation details

In this section we describe the issues that arise when implementing the embedding and LSH
algorithms, as well as our solutions.

4.1.1 [, Embedding

Within each embedding, the signature of each image is mapped into a series of vectors, one for
each grid, and concatenated into one vector. The resulting vector can still be stored compactly
owing to it’s (very) sparse nature.

Since our embedding process is randomized, and the low-distortion guarantee (in particular,
the upper bound) holds only in the expectation, the embedding process needs to be replicated a
few times to guarantee good results. In our implementation, we replicate the embedding process
5 times for the entire image database.

It should be noted that the above replication process increases the query time as well as the
overall memory used by a factor of 5. However, the increase in the memory usage is secondary to
our main goal of achieving fast retrieval time. As far as the running time is concerned, note that
the experimental query times reported in later sections account for the 5-fold slowdown caused by
the replication; despite the slowdown, the resulting algorithm is still order(s) of magnitude faster
than the linear scan.

4.1.2 Nearest neighbor vs PLEB

Our goal was to design a fast algorithm for solving (approximately) the nearest neighbor problem.
However, as mentioned earlier, the LSH approach solves only its decision version. In principle,
we could use the aforementioned reductions of [IM98, HPO1] to reduce the former problem to
logarithmically many instances of the latter one. However, instead, we decided to use only one
LSH data structure to solve the nearest neighbor problem. This is due to the fact that, in practice,
an LSH data structure works well for a range of radii R, not just for one value. For data sets in
which the distance to the nearest neighbor varies a lot, several instances of LSH data structure
(for different values of R) could be used.

4.1.3 p-stable LSH

It might appear from the way we have described the hash family that it requires a large number
of random bits to represent each function from this family: Each hash function is specified by a
vector of Cauchy random variables, a (of length equal to the dimension of the embedded space)
and a scalar b. This obstacle can be avoided by using Nisan’s pseudorandom number generator for
space bounded computation [Nis90], which enables reducing the number of required random bits
to O(log? d). However, in our implementation, we use a much simpler approach to generate the
random Cauchy distributed variable a;. We store one random variable, r per hash function, and use
it to generate a uniform random variable, u; € [0,1) for coordinate i as follows: w; = ir modp/p
for some large prime p. Given the uniform random variable u;, the corresponding Cauchy random
variable a; is generated simply by a; = tan(m(u; — 1/2)). It might be pertinent to mention here
that we use a simple table lookup to approximate the tan function, thus avoiding the overhead of
a potentially expensive floating point trigonometric routine.

As the total number of buckets for each each hash function g; = (hj1, hjo, ... hj,) may be large

(potentially unbounded), we compress the buckets by resorting to standard hashing. Thus, we
use two levels of hashing: the LSH function maps a point p to bucket g;(p) and a standard hash
function maps the contents of these buckets into a hash table of size M, using chaining to handle
overflows.
Parameters and Performance Tradeoffs: The three main parameters that affect the perfor-
mance of the LSH algorithm are: number of projections per hash value (k), number of hash tables
(1) and the width of the projection (r). In general, one could also introduce another parameter
(say T'), such that the query procedure stops after retrieving 7" points. In our analysis, T was set
to 3[. In our experiments, however, the query procedure retrieved all points colliding with the
query (i.e., we used 7' = 00). This reduces the number of parameters and simplifies the choice of
the optimal.

As we increase the value of k£ the probability of two points colliding decreases exponentially.
This decreases the number of false positives per hash tables, i.e. points that are not near neighbors
but hash into the same bucket as the query point. At the same time, increasing k also increases
the number of false negatives, i.e. points that are true near neighbors but do not hash into the
same bucket as the query point. If we increase k, we also have to increase [in order to maintain
the fraction of false negatives below a certain threshold. As a result, not only does the time to
compute a single hash function increase, but we also need to evaluate more hash functions per
query point. However, the total number of data points that collide with the query point over all

10

the hash functions, i.e. candidate near neighbors, is reduced. Effectively, we spend more time
doing hashing and less time checking distances with the candidate near neighbors.

Decreasing the width of the projection (r) decreases the probability of collision for any two
points. Thus, it has the same effect as increasing k. As a result, we would like to set r as small as
possible and in this way decrease the number of projections we need to make. However, decreasing
r below a certain threshold increases the quantity p, thereby requiring us to increase [. Thus we
cannot decrease r by too much.

For a given value of k, it is easy to find the optimal value of [which will guarantee that the
fraction of false negatives are no more than a user specified threshold. This process is exactly the
same as in earlier work on LSH.

In our experiments we tried different values of £ and r and found that £ = 6 and r = 5.0 semed
to provide the best tradeoff between fast query time and quality of solution. With this set of
parameters, we found that the query processing time for our algorithm is orders of magnitude
faster (median speedup = 60, average speedup & 90) than the linear scan. Before we report our
performance numbers we describe the data set that we used for testing.

4.2 Experiments

Data Set: We performed our image retrieval experiments on a collection of 20, 000 color images
from the Corel Stock Photo Library. The data set is identical to the one used in [RTGO00]. Each
color image was first transformed into the CIE-Lab color space (after appropriate preprocessing to
remove dithering artifacts). The distribution of points was then coalesced into clusters of similar
colors, using a two-stage clustering algorithm based on a k-d tree. In this database, the average
image signature turned out to have 8.8 clusters.

Experimental Results: There are two main parameters of interest in our approach, namely the
retrieval time and the accuracy of the answer. In this section, we experimentally evaluate both
parameters for our proposed algorithm.

For all our experiments we set the parameters £ = 6 and r = 5.0. Moreover, we set the
percentage of false negatives that we can tolerate to 10%. For this choice of parameters, ¢ evaluated
to 25. All experiments were performed on a dual-processor Intel machine (Pentium II, 300 Mhz)
with 256 Mb main memory and 512 Kb cache on each processor, running Redhat Linux 6.2.

The first set of experiments measured the accuracy and retrieval time for 100 randomly selected
query images against the naive EMD computation technique. The median speedup achieved by
the algorithm was 59 while the average speedup was 90. The median rank of the retrieved image
was 3. Figures 2(a) and 2(b) show the distribution of speedups and ranks of retrieved images for
the 100 queries.

There are a few outlier query images for which the rank of the retrieved images is high. A
closer look at one such query image (with rank 204) reveals the reason for the somewhat poor
performance. A distance profile of a query is the number of its c-approximate nearest neighbors
as a function of ¢. The LSH technique for finding near neighbors works best for smooth profiles.
As Figure 3 illustrates, the distance profile curve for the outlier image is much steeper than the
average.

For the second set of experiments, we varied the number of images in the database from 5000
to 20000 and observed the retrieval times for the query images. Figures 4(a) and 4(b) show the

11

Frequency

Speedup Distribution

2
IIII

030 % 1 9 1

190 150 170 190 210 230 %0 270 20 30 30 B0 M0 0

Speedup Factor

(a) speedup

Frequency

Rank Distribution
[}
%
kil
%
b
1
10
5
0 1 1 11 1 1 1
0 10 20 30 4 5 6 70 8 9 100 10 120 130 140 150 160 70 180 1% A0
Rank
(b) rank

Figure 2: Distribution of speedup and accuracy

20000

18000

16000

14000

12000

10000

8000

Number of images

6000

4000

2000

4

5

6

7 8 9

Normalized distance from query

Figure 3: Distance profile for outlier query

12

20 . . 100

"EMDtime" —— ! ' "Speedup” —+—
"LSHtime" ------

15

Retrieval time (sec)
N
5
Speedup

40

f i 20 I I
5000 10000 15000 20000 5000 10000 15000 20000

Database size Database size

(a) query time vs n (b) speedup vs n

Figure 4: Improvement in speedup with data size

average processing times and speedups respectively as n is varied. As we see from the Figures,
the running time of our technique is sublinear in n. Thus, our algorithm scales much better than
the brute force EMD computation algorithm.

5 Conclusions

In this paper we present a self-contained and direct method for embedding Earth Mover Distance
into [, with provably bounded distortion. By combining it with the recent algorithm for approxi-
mate nearest neighbor in /;, we obtain fast approximate nearest neighbor algorithm for the EMD
metric.

The technique used for the embedding can be modifed to work as well for the following metric
(we call it a Connectivity Metric, or CM). Let P, Q be two sets of points in #¢. Then CM (P, Q) is
equal to the minimum value of 3, e [|p — ¢|| over all graphs G = (P U@, E) with the property
that every point in P is connected (in G) to some point in (), and vice-versa. Note that two
vertices p and ¢ in G are connected if G contains a path (not necessarily an edge) from p to ¢. The
embedding of CM is very similar to the one for EMD; the only difference is that each coordinate in
f(P) is equal to 1 if the corresponding cell contains any point from P, and is equal to 0 otherwise.
We are not aware of any previous work on (and therefore motivation for) the Connectivity Metric.
However, we plan to investigate applications of this metric to visual information retrieval in the
future.

13

References

[ADG"03] A. Andoni, M. Deza, A. Gupta, P. Indyk, and S. Raskhodnikova. Lower bounds

[Bar96]

[CCGH98]

[Cha02]

[CMS01]

[CPSV00]

[DIIM03]

[FCI99)]

[GIM99)]

[HPO1]

[IM98]

[IM03]

[Ind03]

for embedding of edit distance into normed spaces. Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, 2003.

Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applica-
tions. Proceedings of the Symposium on Foundations of Computer Science, 1996.

M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a finite
metric by a small number of tree metrics. Proceedings of the Symposium on Founda-
tions of Computer Science, 1998.

M. Charikar. Similarity estimation techniques from rounding. Proceedings of the
Symposium on Theory of Computing, 2002.

G. Cormode, M. Muthukrishnan, and C. Sahinalp. Permutation editing and matching
via embeddings. Proceedings of International Colloquium on Automata, Languages
and Programming (ICALP), 2001.

G. Cormode, M. Paterson, C. Sahinalp, and U. Vishkin. Communication complex-
ity of document exchange. Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, 2000.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. DIMACS Workshop on Streaming Data Analysis and
Mining, 2003.

M. Farach-Colton and P. Indyk. Approximate nearest neighbor algorithms for haus-
dorff metrics via embeddings. Proceedings of the Symposium on Foundations of Com-
puter Science, 1999.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing.
Proceedings of the 25th International Conference on Very Large Data Bases (VLDB),
1999.

S. Har-Peled. A replacement for voronoi diagrams of near linear size. Proceedings of
the Symposium on Foundations of Computer Science, 2001.

P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the curse
of dimensionality. Proceedings of the Symposium on Theory of Computing, 1998.

P. Indyk and J. Matousek. Low distortion embeddings of finite metric spaces. CRC
Handbook of Discrete and Computational Geometry, 2003.

P. Indyk. Nearest neighbors in high-dimensional spaces. CRC Handbook of Discrete
and Computational Geometry, 2003.

14

[KT99)

[MS00]

[Nis90]

[RTGOO]

[Z0186]

J. M. Kleinberg and E. Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and markov random fields. Proceedings of
the Symposium on Foundations of Computer Science, 1999.

S. Muthukrishnan and C. Sahinalp. Approximate nearest neighbors and sequence com-
parison with block operations. Proceedings of the Symposium on Theory of Computing,
2000.

N. Nisan. Pseudorandom generators for space-bounded computation. Proceedings of
the Symposium on Theory of Computing, pages 204-212, 1990.

Y. Rubner, C. Tomassi, and L. J. Guibas. The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2):99-121, 2000.

V.M. Zolotarev. Omne-Dimensional Stable Distributions. Vol. 65 of Translations of
Mathematical Monographs, American Mathematical Society, 1986.

15

