
Spring 2005 CS 461 1

Reliable Byte-Stream (TCP)

Outline
Connection Establishment/Termination

Sliding Window Revisited

Flow Control

Adaptive Timeout

Spring 2005 CS 461 2

End-to-End Protocols

• Underlying best-effort network
– drop messages

– re-orders messages

– delivers duplicate copies of a given message

– limits messages to some finite size

– delivers messages after an arbitrarily long delay

• Common end-to-end services
– guarantee message delivery

– deliver messages in the same order they are sent

– deliver at most one copy of each message

– support arbitrarily large messages

– support synchronization

– allow the receiver to flow control the sender

– support multiple application processes on each host

Spring 2005 CS 461 3

Simple Demultiplexor (UDP)

• Unreliable and unordered datagram service

• Adds multiplexing

• No flow control

• Endpoints identified by ports

– servers have well-known ports

– see /etc/services on Unix

• Header format

• Optional checksum

– psuedo header + UDP header + data

SrcPort DstPort

Checksum Length

Data

0 16 31

Spring 2005 CS 461 4

TCP Overview

• Connection-oriented

• Byte-stream

– app writes bytes

– TCP sends segments

– app reads bytes

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

• Full duplex

• Flow control: keep sender
from overrunning receiver

• Congestion control: keep
sender from overrunning
network

Spring 2005 CS 461 5

Data Link Versus Transport

• Potentially connects many different hosts

– need explicit connection establishment and termination

• Potentially different RTT

– need adaptive timeout mechanism

• Potentially long delay in network

– need to be prepared for arrival of very old packets

• Potentially different capacity at destination

– need to accommodate different node capacity

• Potentially different network capacity

– need to be prepared for network congestion

Spring 2005 CS 461 6

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

Spring 2005 CS 461 7

Segment Format (cont)
• Each connection identified with 4-tuple:

– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control

– acknowledgment, SequenceNum, AdvertisedWinow

• Flags

– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum

– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

Spring 2005 CS 461 8

Connection Establishment and

Termination

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Spring 2005 CS 461 9

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN

SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKAC
K + FIN

/AC
K

Timeout after two
segment lifetimes

FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

Spring 2005 CS 461 10

Sliding Window Revisited

• Sending side
– LastByteAcked < =

LastByteSent

– LastByteSent < =

LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead <

NextByteExpected

– NextByteExpected < =

LastByteRcvd +1

– buffer bytes between
NextByteRead and
LastByteRcvd

Spring 2005 CS 461 11

Flow Control

• Send buffer size: MaxSendBuffer

• Receive buffer size: MaxRcvBuffer

• Receiving side
– LastByteRcvd - LastByteRead < = MaxRcvBuffer

– AdvertisedWindow = MaxRcvBuffer - (NextByteExpected -
NextByteRead)

• Sending side
– LastByteSent - LastByteAcked < = AdvertisedWindow

– EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

– LastByteWritten - LastByteAcked < = MaxSendBuffer

– block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

• Always send ACK in response to arriving data segment

• Persist when AdvertisedWindow = 0

Spring 2005 CS 461 12

Silly Window Syndrome

• How aggressively does sender exploit open window?

• Receiver-side solutions

– after advertising zero window, wait for space equal to a
maximum segment size (MSS)

– delayed acknowledgements

Sender Receiver

Spring 2005 CS 461 13

Nagle’s Algorithm

• How long does sender delay sending data?

– too long: hurts interactive applications

– too short: poor network utilization

– strategies: timer-based vs self-clocking

• When application generates additional data

– if fills a max segment (and window open): send it

– else

• if there is unack’ed data in transit: buffer it until ACK arrives

• else: send it

Spring 2005 CS 461 14

Protection Against Wrap Around

• 32-bit SequenceNum

Bandwidth Time Until Wrap Around

T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes

STS-12 (622 Mbps) 55 seconds

STS-24 (1.2 Gbps) 28 seconds

Spring 2005 CS 461 15

Keeping the Pipe Full

• 16-bit AdvertisedWindow

Bandwidth Delay x Bandwidth Product

T1 (1.5 Mbps) 18KB

Ethernet (10 Mbps) 122KB

T3 (45 Mbps) 549KB

FDDI (100 Mbps) 1.2MB

STS-3 (155 Mbps) 1.8MB

STS-12 (622 Mbps) 7.4MB

STS-24 (1.2 Gbps) 14.8MB

 assuming 100ms RTT

Spring 2005 CS 461 16

TCP Extensions

• Implemented as header options

• Store timestamp in outgoing segments

• Extend sequence space with 32-bit timestamp

(PAWS)

• Shift (scale) advertised window

Spring 2005 CS 461 17

Adaptive Retransmission

(Original Algorithm)

• Measure SampleRTT for each segment / ACK pair

• Compute weighted average of RTT
– EstRTT = ! x EstRTT + " x SampleRTT

– where ! + " = 1

! between 0.8 and 0.9

" between 0.1 and 0.2

• Set timeout based on EstRTT

– TimeOut = 2 x EstRTT

Spring 2005 CS 461 18

Karn/Partridge Algorithm

• Do not sample RTT when retransmitting

• Double timeout after each retransmission

Sender Receiver

Original transmission

ACK

S
a

m
p

le
R

T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
a

m
p

le
R

T
T

Retransmission

Spring 2005 CS 461 19

Jacobson/ Karels Algorithm

• New Calculations for average RTT

• Diff = SampleRTT - EstRTT

• EstRTT = EstRTT + ($ x Diff)

• Dev = Dev + $(|Diff| - Dev)

– where $ is a factor between 0 and 1

• Consider variance when setting timeout value

• TimeOut = µ x EstRTT + % x Dev
– where µ = 1 and % = 4

• Notes

– algorithm only as good as granularity of clock (500ms on Unix)

– accurate timeout mechanism important to congestion control (later)

