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Simple Demultiplexor (UDP)

* Unreliable and unordered datagram service

* Adds multiplexing
* No flow control
* Endpoints identified by ports

— servers have well-known ports

— see /ete/services on Unix
0

e Header format Sroport

DstPort

Checksum

Length

N A AATA A A
* Optional checksum (T

— psuedo header + UDP header + data
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End-to-End Protocols

* Underlying best-effort network

— drop messages

— re-orders messages

— delivers duplicate copies of a given message

— limits messages to some finite size

— delivers messages after an arbitrarily long delay
* Common end-to-end services

— guarantee message delivery

— deliver messages in the same order they are sent

— deliver at most one copy of each message

— support arbitrarily large messages

— support synchronization

— allow the receiver to flow control the sender

— support multiple application processes on each host
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TCP Overview

» Connection-oriented * Full duplex
* Byte-stream * Flow control: keep sender
— app writes bytes from overrunning receiver
— TCP sends segments » Congestion control: keep
— app reads bytes sender from overrunning
network
3 [
C—3 write CJ Read
: bytes i bytes
— —
TCP TCP
[ Send buffer] [Reseive buffer
[Segment] [Segment]** [Segment]

Transmit segments
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Data Link Versus Transport

Potentially connects many different hosts

— need explicit connection establishment and termination

Potentially different RTT

— need adaptive timeout mechanism

Potentially long delay in network

— need to be prepared for arrival of very old packets
Potentially different capacity at destination

— need to accommodate different node capacity
Potentially different network capacity

— need to be prepared for network congestion
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Segment Format (cont)

» Each connection identified with 4-tuple:
— (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

+ Sliding window + flow control

— acknowledgment, SequenceNum, AdvertisedWinow

Data(SequenceNum)

Sender Receivef

~

Acknowledgment +
AdvertisedWindow

* Flags

- SYN, FIN, RESET, PUSH, URG, ACK
* Checksum

— pseudo header + TCP header + data
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Segment Format

0 4 10 16 31
SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen 0 \ Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

N\
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Connection Establishment and
Termination

Active participant Passive participant
(client) (server)
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State Transition Diagram
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Passive opel Close
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Close/FIN

CLOSE_WAIT

Close/FIN

CLOSING LAST_ACK
Ack Timeout aflter.two ACK
segment lifetimes
TIME_WAIT CLOSED
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FIN/ACK

Flow Control

Send buffer size: MaxSendBuffer
Receive buffer size: MaxRecvBuffer

Receiving side
— LastByteRcvd - LastByteRead < =MaxRcvBuffer

— AdvertisedWindow =MaxRcvBuffer - (NextByteExpected -

NextByteRead)

Sending side
— LastByteSent - LastByteAcked < = AdvertisedWindow

- EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

— LastByteWritten - LastByteAcked <=MaxSendBuffer

— block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

Always send ACK in response to arriving data segment
Persist when AdvertisedWindow = 0
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Sliding Window Revisited

Sending application

TCP TCP
LastByteWritten LastByteRead

Receiving applicatio

{ I [ ! P I I% ;
LastByteAcked LastByteSent NextByteExpected  LastByteRcvd
* Sending side * Receiving side

- LastByteAcked <= - LastByteRead <
LastByteSent NextByteExpected

- LastByteSent <= - NextByteExpected <=
LastByteWritten LastByteRcvd +1

— buffer bytes between — buffer bytes between
LastByteAcked and NextByteRead and
LastByteWritten LastByteRcvd
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Silly Window Syndrome
* How aggressively does sender exploit open window?

[ )
_/—\k

Sender Receiver

~ A
(N |

» Receiver-side solutions

— after advertising zero window, wait for space equal to a
maximum segment size (MSS)

— delayed acknowledgements
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Nagle’s Algorithm

» How long does sender delay sending data?
— too long: hurts interactive applications
— too short: poor network utilization
— strategies: timer-based vs self-clocking

* When application generates additional data
— if fills a max segment (and window open): send it

— else
« if there is unack’ed data in transit: buffer it until ACK arrives
* else: send it
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Keeping the Pipe Full
* 16-bit AdvertisedWindow
Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) 7.4MB
STS-24 (1.2 Gbps) 14.8MB

assuming 100ms RTT
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Protection Against Wrap Around

* 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes

STS-12 (622 Mbps) 55 seconds

STS-24 (1.2 Gbps) 28 seconds
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TCP Extensions

* Implemented as header options
* Store timestamp in outgoing segments

» Extend sequence space with 32-bit timestamp
(PAWS)

Shift (scale) advertised window
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Adaptive Retransmission

Karn/Partridge Algorithm
(Original Algorithm)

Sender Receiver Sender Receiver
* Measure SsampleRTT for each segment / ACK pair %
i 'Ssiop,
* Compute weighted average of RTT Ret
a .
— EstRTT = a X EstRTT + 3 X SampleRTT SMission,
— where a+f =1
— a between 0.8 and 0.9
— B between 0.1 and 0.2

» Set timeout based on EstRTT
— TimeOut =2 X EstRTT

SampleR TT
SampleR TT

* Do not sample RTT when retransmitting

* Double timeout after each retransmission
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Jacobson/ Karels Algorithm

» New Calculations for average RTT
* Diff = SampleRTT - EstRTT
« EstRTT = EstRTT + (6 X Diff)
« Dev = Dev + O( |Diff| - Dev)
— where 9 is a factor between 0 and 1
* Consider variance when setting timeout value
* TimeOut = u X EstRTT + ¢ X Dev
— where u=1and ¢p=4
* Notes

— algorithm only as good as granularity of clock (500ms on Unix)
— accurate timeout mechanism important to congestion control (later)
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