Reliable Byte-Stream (TCP)

Outline

Connection Establishment/Termination

Sliding Window Revisited
Flow Control
Adaptive Timeout

Spring 2005 CS 461

Simple Demultiplexor (UDP)

* Unreliable and unordered datagram service

* Adds multiplexing
* No flow control
* Endpoints identified by ports

— servers have well-known ports

— see /ete/services on Unix
0

e Header format Sroport

DstPort

Checksum

Length

N A AATA A A
* Optional checksum (T

— psuedo header + UDP header + data

Spring 2005 CS 461

End-to-End Protocols

* Underlying best-effort network

— drop messages

— re-orders messages

— delivers duplicate copies of a given message

— limits messages to some finite size

— delivers messages after an arbitrarily long delay
* Common end-to-end services

— guarantee message delivery

— deliver messages in the same order they are sent

— deliver at most one copy of each message

— support arbitrarily large messages

— support synchronization

— allow the receiver to flow control the sender

— support multiple application processes on each host

Spring 2005 CS 461

TCP Overview

» Connection-oriented * Full duplex
* Byte-stream * Flow control: keep sender
— app writes bytes from overrunning receiver
— TCP sends segments » Congestion control: keep
— app reads bytes sender from overrunning
network
3 [
C—3 write CJ Read
: bytes i bytes
— —
TCP TCP
[Send buffer] [Reseive buffer
[Segment] [Segment]** [Segment]

Transmit segments

Spring 2005 CS 461

Data Link Versus Transport

Potentially connects many different hosts

— need explicit connection establishment and termination

Potentially different RTT

— need adaptive timeout mechanism

Potentially long delay in network

— need to be prepared for arrival of very old packets
Potentially different capacity at destination

— need to accommodate different node capacity
Potentially different network capacity

— need to be prepared for network congestion

Spring 2005 CS 461

Segment Format (cont)

» Each connection identified with 4-tuple:
— (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

+ Sliding window + flow control

— acknowledgment, SequenceNum, AdvertisedWinow

Data(SequenceNum)

Sender Receivef

~

Acknowledgment +
AdvertisedWindow

* Flags

- SYN, FIN, RESET, PUSH, URG, ACK
* Checksum

— pseudo header + TCP header + data

Spring 2005 CS 461

Segment Format

0 4 10 16 31
SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen 0 \ Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

N\

Spring 2005 CS 461

Connection Establishment and
Termination

Active participant Passive participant
(client) (server)

Spring 2005 CS 461

State Transition Diagram

CLOSED

Active open/'SYN
Passive opel Close

LISTEN

SYN_RCVD SYNISYN + ACK SYN_SENT
W SYN + ACKIACK

Close/FIN

CLOSE_WAIT

Close/FIN

CLOSING LAST_ACK
Ack Timeout aflter.two ACK
segment lifetimes
TIME_WAIT CLOSED

Spring 2005 CS 461 9

FIN/ACK

Flow Control

Send buffer size: MaxSendBuffer
Receive buffer size: MaxRecvBuffer

Receiving side
— LastByteRcvd - LastByteRead < =MaxRcvBuffer

— AdvertisedWindow =MaxRcvBuffer - (NextByteExpected -

NextByteRead)

Sending side
— LastByteSent - LastByteAcked < = AdvertisedWindow

- EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

— LastByteWritten - LastByteAcked <=MaxSendBuffer

— block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

Always send ACK in response to arriving data segment
Persist when AdvertisedWindow = 0

Spring 2005 CS 461 11

Sliding Window Revisited

Sending application

TCP TCP
LastByteWritten LastByteRead

Receiving applicatio

{ I [! P I I% ;
LastByteAcked LastByteSent NextByteExpected LastByteRcvd
* Sending side * Receiving side

- LastByteAcked <= - LastByteRead <
LastByteSent NextByteExpected

- LastByteSent <= - NextByteExpected <=
LastByteWritten LastByteRcvd +1

— buffer bytes between — buffer bytes between
LastByteAcked and NextByteRead and
LastByteWritten LastByteRcvd

Spring 2005 CS 461 10

Silly Window Syndrome
* How aggressively does sender exploit open window?

[)
_/—\k

Sender Receiver

~ A
(N |

» Receiver-side solutions

— after advertising zero window, wait for space equal to a
maximum segment size (MSS)

— delayed acknowledgements

Spring 2005 CS 461 12

Nagle’s Algorithm

» How long does sender delay sending data?
— too long: hurts interactive applications
— too short: poor network utilization
— strategies: timer-based vs self-clocking

* When application generates additional data
— if fills a max segment (and window open): send it

— else
« if there is unack’ed data in transit: buffer it until ACK arrives
* else: send it

Spring 2005 CS 461 13
Keeping the Pipe Full
* 16-bit AdvertisedWindow
Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
STS-3 (155 Mbps) 1.8MB
STS-12 (622 Mbps) 7.4MB
STS-24 (1.2 Gbps) 14.8MB

assuming 100ms RTT

Spring 2005 CS 461 15

Protection Against Wrap Around

* 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours

Ethernet (10 Mbps) 57 minutes

T3 (45 Mbps) 13 minutes

FDDI (100 Mbps) 6 minutes

STS-3 (155 Mbps) 4 minutes

STS-12 (622 Mbps) 55 seconds

STS-24 (1.2 Gbps) 28 seconds

Spring 2005 CS 461 14

TCP Extensions

* Implemented as header options
* Store timestamp in outgoing segments

» Extend sequence space with 32-bit timestamp
(PAWS)

Shift (scale) advertised window

Spring 2005 CS 461 16

Adaptive Retransmission

Karn/Partridge Algorithm
(Original Algorithm)

Sender Receiver Sender Receiver
* Measure SsampleRTT for each segment / ACK pair %
i 'Ssiop,
* Compute weighted average of RTT Ret
a .
— EstRTT = a X EstRTT + 3 X SampleRTT SMission,
— where a+f =1
— a between 0.8 and 0.9
— B between 0.1 and 0.2

» Set timeout based on EstRTT
— TimeOut =2 X EstRTT

SampleR TT
SampleR TT

* Do not sample RTT when retransmitting

* Double timeout after each retransmission

Spring 2005 CS 461 17 Spring 2005 CS 461 18

Jacobson/ Karels Algorithm

» New Calculations for average RTT
* Diff = SampleRTT - EstRTT
« EstRTT = EstRTT + (6 X Diff)
« Dev = Dev + O(|Diff| - Dev)
— where 9 is a factor between 0 and 1
* Consider variance when setting timeout value
* TimeOut = u X EstRTT + ¢ X Dev
— where u=1and ¢p=4
* Notes

— algorithm only as good as granularity of clock (500ms on Unix)
— accurate timeout mechanism important to congestion control (later)

Spring 2005 CS 461 19

