Switching and Forwarding

Outline

Store-and-Forward Switches Bridges and Extended LANs Cell Switching Segmentation and Reassembly

Spring 2005

CS 461

1

Scalable Networks

- Switch
 - forwards packets from input port to output port
 - port selected based on address in packet header

• Advantages

Spring 2005

- cover large geographic area (tolerate latency)
- support large numbers of hosts (scalable bandwidth)

CS 461

a			· •
Nour	ре К	<u>' הווי</u>	rino
DUUN		l u	UIIZ

Virtual Circuit Switching

- Explicit connection setup (and tear-down) phase
- Subsequence packets follow same circuit
- Sometimes called *connection-oriented* model

Spring 2005

Datagram Switching

- No connection setup phase
- Each packet forwarded independently
- Sometimes called *connectionless* model

Example Tables

• Circuit Table (switch 1, port 2)

• Forwarding Table (switch 1)

Address	Port
A	2
С	3
F	1
G	1

Spring 2005

CS 461

Virtual Circuit Model

- Typically wait full RTT for connection setup before sending first data packet.
- While the connection request contains the full address for destination, each data packet contains only a small identifier, making the per-packet header overhead small.
- If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
- Connection setup provides an opportunity to reserve resources.

Datagram Model

- There is no round trip delay waiting for connection setup; a host can send data as soon as it is ready.
- Source host has no way of knowing if the network is capable of delivering a packet or if the destination host is even up.
- Since packets are treated independently, it is possible to route around link and node failures.
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model.

Spring 2005

7

5

Spring 2005

Bridges and Extended LANs

- LANs have physical limitations (e.g., 2500m)
- Connect two or more LANs with a *bridge*
 - accept and forward strategy
 - level 2 connection (does not add packet header)

• Ethernet Switch = Bridge on Steroids

Spring 20	005
-----------	-----

CS 461

Spanning Tree Algorithm

• Problem: loops

- Bridges run a distributed spanning tree algorithm
 - select which bridges actively forward
 - developed by Radia Perlman
 - now IEEE 802.1 specification

11

9

Learning Bridges

- Do not forward when unnecessary
- Maintain forwarding table

- Learn table entries based on source address
- Table is an optimization; need not be complete
- Always forward broadcast frames

Spring 2005

Spring 2005

CS 461

10

Algorithm Overview

CS 461

- Each bridge has unique id (e.g., B1, B2, B3)
- Select bridge with smallest id as root
- Select bridge on each LAN closest to root as designated bridge (use id to break ties)
- Each bridge forwards frames over each LAN for which it is the designated bridge

Algorithm Details

- Bridges exchange configuration messages
 - id for bridge sending the message
 - $-\,$ id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
- Initially, each bridge believes it is the root

Algorithm Detail (cont)

- When learn not root, stop generating config messages – in steady state, only root generates configuration messages
- When learn not designated bridge, stop forwarding config messages
 - in steady state, only designated bridges forward config messages
- Root continues to periodically send config messages
- If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root

Spring 2005	CS 461	13	Spring 2005	CS 461	14

Broadcast and Multicast

- Forward all broadcast/multicast frames
 - current practice
- Learn when no group members downstream
- Accomplished by having each member of group G send a frame to bridge multicast address with G in source field

Limitations of Bridges

- Do not scale
 - spanning tree algorithm does not scale
 - broadcast does not scale
- Do not accommodate heterogeneity
- Caution: beware of transparency

Cell Switching (ATM)

- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signaling (connection setup) Protocol: Q.2931
- Specified by ATM forum
- Packets are called *cells*
 - 5-byte header + 48-byte payload
- Commonly transmitted over SONET
 - other physical layers possible

CS 461

Variable vs Fixed-Length Packets

- No Optimal Length
 - if small: high header-to-data overhead
 - if large: low utilization for small messages
- Fixed-Length Easier to Switch in Hardware
 - simpler
 - enables parallelism

Spring	2005
--------	------

CS 461

18

Big vs Small Packets

- Small Improves Queue behavior
 - finer-grained preemption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = 4096 x 8/100 = 327.68us
 - high priority packet may sit in the queue 327.68us
 - in contrast, 53 x 8/100 = 4.24us for ATM
 - near cut-through behavior
 - two 4KB packets arrive at same time
 - link idle for 327.68us while both arrive
 - at end of 327.68us, still have 8KB to transmit
 - in contrast, can transmit first cell after 4.24us
 - at end of 327.68us, just over 4KB left in queue

Big vs Small (cont)

- Small Improves Latency (for voice)
 - voice digitally encoded at 64KBps (8-bit samples at 8KHz)
 - need full cell's worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need for echo cancellers
- ATM Compromise: 48 bytes = (32+64)/2

Cell Format

• User-Network Interface (UNI)

	4	8	16	3	1	8	384 (48 bytes)		
	GFC	VPI	VCI	Туре	CLP	HEC (CRC-8)	Payload	4	
•	GFC VPI VCI Type CLP HEC (CRC-8) Payload 7 - host-to-switch format - GFC: Generic Flow Control (still being defined) - VCI: Virtual Circuit Identifier - VPI: Virtual Path Identifier - VVI: Virtual Path Identifier - Type: management, congestion control, AAL5 (later) - CLPL Cell Loss Priority - HEC: Header Error Check (CRC-8) - - - • Network-Network Interface (NNI) - switch-to-switch format - GFC becomes part of VPI field - -								
Sprin	Spring 2005 CS 461 21							21	

Segmentation and Reassembly

- ATM Adaptation Layer (AAL)
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data

AAL 3/4

• Convergence Sublayer Protocol Data Unit (CS-PDU)

8	8	16	< 64 KB	0-24	8	8	16
CPI	Btag	BASize	User data	Pad	0	Etag	Len

- CPI: commerce part indicator (version field)
- Btag/Etag:beginning and ending tag
- BAsize: hint on amount of buffer space to allocate
- Length: size of whole PDU

Cell Format

40	2	4	10	352 (44 bytes)	6	10
ATM header	Туре	SEQ	MID	Payload	Length	CRC-10

- Type
 - BOM: beginning of message
 - COM: continuation of message
 - EOM end of message
- SEQ: sequence of number
- MID: message id
- Length: number of bytes of PDU in this cell

Spring 2005

AAL5

CS-PDU Format

< 64 KB	0-47 bytes	16	16	32
Data	Pad	Reserved	Len	CRC-32

- pad so trailer always falls at end of ATM cell
- Length: size of PDU (data only)
- CRC-32 (detects missing or misordered cells)
- Cell Format
 - end-of-PDU bit in Type field of ATM header

Spring 2005	CS 461
Spring 2005	C3 401