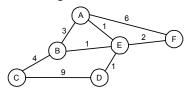
Routing

Outline

Algorithms

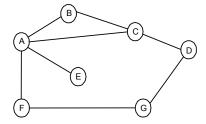
Scalability


Spring 2005 CS 461

Distance Vector

- Each node maintains a set of triples
 - (Destination, Cost, NextHop)
- Directly connected neighbors exchange updates
 - periodically (on the order of several seconds)
 - whenever table changes (called *triggered* update)
- Each update is a list of pairs:
 - (Destination, Cost)
- Update local table if receive a "better" route
 - smaller cost
 - came from next-hop
- Refresh existing routes; delete if they time out

Overview


- Forwarding vs Routing
 - forwarding: to select an output port based on destination address and routing table
 - routing: process by which routing table is built
- Network as a Graph

- Problem: Find lowest cost path between two nodes
- Factors
 - static: topologydynamic: load

Spring 2005 CS 461 2

Example

Destination	Cost	NextHop
Α	1	A
C	1	C
D	2	C
E	2	A
F	2	A
G	3	A

Routing Loops

• Example 1

- F detects that link to G has failed
- F sets distance to G to infinity and sends update t o A
- A sets distance to G to infinity since it uses F to reach G
- A receives periodic update from C with 2-hop path to G
- A sets distance to G to 3 and sends update to F
- F decides it can reach G in 4 hops via A

• Example 2

- link from A to E fails
- A advertises distance of infinity to E
- B and C advertise a distance of 2 to E
- B decides it can reach E in 3 hops; advertises this to A
- A decides it can read E in 4 hops; advertises this to C
- C decides that it can reach E in 5 hops...

Spring 2005 CS 461 5

Link State

Strategy

- send to all nodes (not just neighbors) information about directly connected links (not entire routing table)
- Link State Packet (LSP)
 - id of the node that created the LSP
 - cost of link to each directly connected neighbor
 - sequence number (SEQNO)
 - time-to-live (TTL) for this packet

Loop-Breaking Heuristics

- Set infinity to 16
- Split horizon
- Split horizon with poison reverse

Spring 2005 CS 461 6

Link State (cont)

- Reliable flooding
 - store most recent LSP from each node
 - forward LSP to all nodes but one that sent it
 - generate new LSP periodically
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each stored LSP
 - discard when TTL=0

Spring 2005 CS 461 7 Spring 2005 CS 461 8

Route Calculation

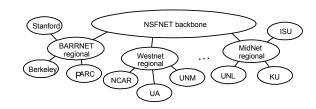
- Dijkstra's shortest path algorithm
- Let
 - N denotes set of nodes in the graph
 - l(i, j) denotes non-negative cost (weight) for edge (i, j)
 - s denotes this node
 - M denotes the set of nodes incorporated so far
 - -C(n) denotes cost of the path from s to node n

```
M = {s}
for each n in N - {s}
   C(n) = 1(s, n)
while (N != M)
   M = M union {w} such that C(w) is the minimum for
        all w in (N - M)
   for each n in (N - M)
        C(n) = MIN(C(n), C (w) + 1(w, n ))
```

Spring 2005 CS 461 9

How to Make Routing Scale

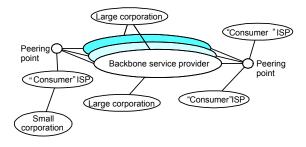
- Flat versus Hierarchical Addresses
- Inefficient use of Hierarchical Address Space
 - class C with 2 hosts (2/255 = 0.78%) efficient)
 - class B with 256 hosts (256/65535 = 0.39% efficient)
- Still Too Many Networks
 - routing tables do not scale
 - route propagation protocols do not scale


Metrics

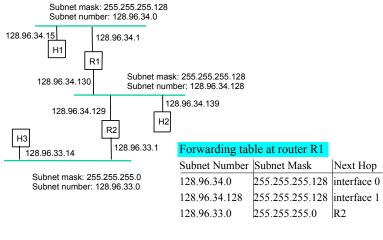
- Original ARPANET metric
 - measures number of packets queued on each link
 - took neither latency or bandwidth into consideration
- New ARPANET metric
 - stamp each incoming packet with its arrival time (AT)
 - record departure time (**DT**)
 - when link-level ACK arrives, compute Delay = (DT - AT) + Transmit + Latency
 - if timeout, reset **DT** to departure time for retransmission
 - link cost = average delay over some time period
- Fine Tuning
 - compressed dynamic range
 - replaced **Delay** with link utilization

Spring 2005 CS 461 10

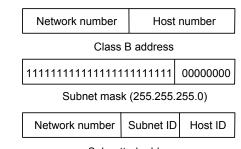
Internet Structure


Recent Past

Spring 2005 CS 461 11 Spring 2005 CS 461 12


Internet Structure

Today


Spring 2005 CS 461 13

Subnet Example

Subnetting

- Add another level to address/routing hierarchy: subnet
- Subnet masks define variable partition of host part
- Subnets visible only within site

Subnetted address

14

Spring 2005 CS 461

Forwarding Algorithm

```
D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)
  D1 = SubnetMask & D
  if D1 = SubnetNum
    if NextHop is an interface
        deliver datagram directly to D
  else
        deliver datagram to NextHop
```

- Use a default router if nothing matches
- Not necessary for all 1s in subnet mask to be contiguous
- Can put multiple subnets on one physical network
- Subnets not visible from the rest of the Internet

Spring 2005 CS 461 15 Spring 2005 CS 461 16

Supernetting

- Assign block of contiguous network numbers to nearby networks
- Called CIDR: Classless Inter-Domain Routing
- Represent blocks with a single pair
 (first network address, count)
- Restrict block sizes to powers of 2
- Use a bit mask (CIDR mask) to identify block size
- All routers must understand CIDR addressing

Spring 2005 CS 461 17

Route Propagation

- Know a smarter router
 - hosts know local router
 - local routers know site routers
 - site routers know core router
 - core routers know everything
- Autonomous System (AS)
 - corresponds to an administrative domain
 - examples: University, company, backbone network
 - assign each AS a 16-bit number
- Two-level route propagation hierarchy
 - interior gateway protocol (each AS selects its own)
 - exterior gateway protocol (Internet-wide standard)

IP Router

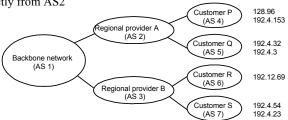
- Forwarding Equivalence Classes (FEC)
 - e.g., 172.200.0.0/16
- Forwarding table: FEC \rightarrow < next hop, port >
 - match address to FEC with longest prefix
 - forward to "smarter" router by default
- Core routers have ~150,000 FECs

Spring 2005 CS 461 18

Popular Interior Gateway Protocols

- RIP: Route Information Protocol
 - developed for XNS
 - distributed with Unix
 - distance-vector algorithm
 - based on hop-count
- OSPF: Open Shortest Path First
 - recent Internet standard
 - uses link-state algorithm
 - supports load balancing
 - supports authentication

Spring 2005 CS 461 19 Spring 2005 CS 461 20


EGP: Exterior Gateway Protocol

- Overview
 - designed for tree-structured Internet
 - concerned with *reachability*, not optimal routes
- Protocol messages
 - neighbor acquisition: one router requests that another be its peer; peers exchange reachability information
 - neighbor reachability: one router periodically tests if the another is still reachable; exchange HELLO/ACK messages; uses a k-out-of-n rule
 - routing updates: peers periodically exchange their routing tables (distance-vector)

Spring 2005 CS 461 21

BGP Example

- Speaker for AS2 advertises reachability to P and Q
 - network 128.96, 192.4.153, 192.4.32, and 192.4.3, can be reached directly from AS2

- Speaker for backbone advertises
 - networks 128.96, 192.4.153, 192.4.32, and 192.4.3 can be reached along the path (AS1, AS2).
- Speaker can cancel previously advertised paths

BGP-4: Border Gateway Protocol

- AS Types
 - stub AS: has a single connection to one other AS
 - carries local traffic only
 - multihomed AS: has connections to more than one AS
 - refuses to carry transit traffic
 - transit AS: has connections to more than one AS
 - · carries both transit and local traffic
- Each AS has:
 - one or more border routers
 - one BGP *speaker* that advertises:
 - local networks
 - other reachable networks (transit AS only)
 - gives path information

Spring 2005 CS 461 22

IP Version 6

- Features
 - 128-bit addresses (classless)
 - multicast
 - real-time service
 - authentication and security
 - autoconfiguration
 - end-to-end fragmentation
 - protocol extensions
- Header
 - 40-byte "base" header
 - extension headers (fixed order, mostly fixed length)
 - fragmentation
 - source routing
 - · authentication and security
 - other options

Spring 2005 CS 461 23 Spring 2005 CS 461 2-2-