
Spring 2005 CS 461 1

Replication

Outline

Failure Models

Mirroring

Quorums

Spring 2005 CS 461 2

Why Replicate?

• Performance

– keep copy close to remote users

– caching is a special case

• Survive Failures

– availability: provide service during temporary failure

– fault tolerance: provide service despite catastrophic failure

Spring 2005 CS 461 3

Fault Models

• Crashed

– failed device doesn’t do anything (i.e., fails silently)

• Fail-Stop

– failed device tells you that it has failed

• Byzantine

– failed device can do anything

– adversary

• playing a game against an evil opponent

• opponent knows what you’re doing and tries to fool you

• usually some limit on opponent’s actions (e.g. at most k failures)

Spring 2005 CS 461 4

Byzantine Army Problem

3000
Blue

Soldiers

3000
Blue

Soldiers

4000
Red

Soldiers

Spring 2005 CS 461 5

Synchrony

• Assumptions concerning boundedness of component
execution or network transmissions

• Synchronous
– always performs function in a finite & known time bound

• Asynchronous

– no such bound

• Famous Result: A group of processes cannot agree
on a value in an asynchronous system given a single
crash failure

Spring 2005 CS 461 6

Network Partitions

• Can’t tell the difference between a crashed process

and a process that’s inaccessible due to a network

failure.

• Network Partition: network failure that cuts

processes into two or more groups

– full communication within each group

– no communication between groups

– danger: each group thinks everyone else is dead

Spring 2005 CS 461 7

Mirroring

• Goal: service up to K failures

• Approach: keep K+1 copies of everything

• Clients do operations on “primary” copy

• Primary makes sure other copies do operations too

• Advantage: simple

• Disadvantages:

– do every operation K times

– use K times more storage than necessary

Spring 2005 CS 461 8

Mirroring Details

• Optimization: contact one replica to read

• What if a replica fails?
– get up-to-date data from primary after recovering

• What if primary fails?

– elect a new primary

Spring 2005 CS 461 9

Election Problem

• When algorithm terminates, all non-failed

processes agree on which replica is the primary

• Algorithm works despite arbitrary failures and

recoveries during the election

• If there are no more failures and recoveries, the

algorithm must eventually terminate

Spring 2005 CS 461 10

Bully Algorithm

• Use fixed “pecking order” among processes

– e.g., use network addresses

• Idea: choose the “biggest” non-failed machine as
primary

• Correctness proof is difficult

Spring 2005 CS 461 11

Bully Algorithm Details

• Process starts an election whenever it recovers or

whenever primary has failed

– how know primary has failed?

• To start an election, send election messages to all

machines bigger than yourself

– if somebody responds with an ACK, give up

– if nobody ACKs, declare yourself the primary

• On receiving election message, reply with ACK

and start an election yourself (unless in progress)

Spring 2005 CS 461 12

Quorums

• Quorum: a set of server machines

• Define what constitutes a “read quorum” and a

“write quorum”

• To write

– acquire locks on all members of some write quorum

– do writes on all locked servers

– release locks

• To read: similar, but use read quorum

Spring 2005 CS 461 13

Quorums

• Correctness requirements

– any two write quorums must share a member

– any read quorum and any write quorum must share a

member (read quorums need not overlap)

• Locking ensures that

– at most one write happening at a time

– never have a write and a read happening at the same time

Spring 2005 CS 461 14

Defining Quorums

• Many alternatives

• Example

– write quorum must contain all replicas

– read quorum may contain any one replica

• Consequence

– writes are slow, reads are fast

– can write only if all replicas are available

– can read if any one replica is available

Spring 2005 CS 461 15

Defining Quorums (cont)

• Example: Majority Quorum

– write quorum: any set with more than half the replicas

– read quorum: any set with more than half the replicas

• Consequences

– modest performance for read and write

– can proceed as long as more than half the replicas are

available

Spring 2005 CS 461 16

Quorums & Version Numbers

• Write operation writes only a subset of the servers

– some servers are out-of-date

• Remedy

– put version number stamp on each item in each replica

– when acquiring locks, get current version number from

each replica

– quorum overlap rules ensure that one member of your

quorum has the latest version

Spring 2005 CS 461 17

Version Numbers (cont)

• When reading, get the data from the latest version

number in your quorum

• When writing, set version number of all replicas

you wrote equal to 1 + (max version number in

your quorum beforehand)

• Guarantees correctness even if no recovery action

is taken when replica recovers from a crash

Spring 2005 CS 461 18

Quorums and Partitions

• One group has a write quorum (and thus usually a
read quorum);
– that group can do anything

– other groups are frozen

• No group has a write quorum, but some groups have
a read quorum
– some groups can read

– no groups can write

• No group contains any quorum
– everyone is frozen

