
Spring 2005 CS 461 1

Congestion Control

Outline

Queuing Discipline

Reacting to Congestion

Avoiding Congestion

Spring 2005 CS 461 2

Issues
• Two sides of the same coin

– pre-allocate resources so at to avoid congestion

– control congestion if (and when) is occurs

• Two points of implementation
– hosts at the edges of the network (transport protocol)

– routers inside the network (queuing discipline)

• Underlying service model
– best-effort (assume for now)

– multiple qualities of service (later)

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Spring 2005 CS 461 3

Framework
• Connectionless flows

– sequence of packets sent between source/destination pair

– maintain soft state at the routers

• Taxonomy
– router-centric versus host-centric

– reservation-based versus feedback-based

– window-based versus rate-based

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Spring 2005 CS 461 4

Evaluation

• Fairness

• Power (ratio of throughput to delay)

Optimal
load

Load
T

h
ro

u
g
h
p
u
t/
d
e
la

y

Spring 2005 CS 461 5

Queuing Discipline

• First-In-First-Out (FIFO)
– does not discriminate between traffic sources

• Fair Queuing (FQ)
– explicitly segregates traffic based on flows

– ensures no flow captures more than its share of capacity

– variation: weighted fair queuing (WFQ)

• Problem?
Flow 1

Flow 2

Flow 3

Flow 4

Round-robin

service

Spring 2005 CS 461 6

FQ Algorithm

• Suppose clock ticks each time a bit is transmitted

• Let Pi denote the length of packet i

• Let Si denote the time when start to transmit packet i

• Let Fi denote the time when finish transmitting packet i

• Fi = Si + Pi

• When does router start transmitting packet i?

– if before router finished packet i - 1 from this flow, then
immediately after last bit of i - 1 (Fi-1)

– if no current packets for this flow, then start
transmitting when arrives (call this Ai)

• Thus: Fi = MAX (Fi - 1, Ai) + Pi

Spring 2005 CS 461 7

FQ Algorithm (cont)

• For multiple flows
– calculate Fi for each packet that arrives on each flow

– treat all Fi’s as timestamps

– next packet to transmit is one with lowest timestamp

• Not perfect: can’t preempt current packet

• Example

Flow 1 Flow 2

(a) (b)

Output Output

F = 8 F = 10

F = 5

F = 10

F = 2

Flow 1

(arriving)

Flow 2

(transmitting)

Spring 2005 CS 461 8

TCP Congestion Control

• Idea

– assumes best-effort network (FIFO or FQ routers) each

source determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)

• Challenge

– determining the available capacity in the first place

– adjusting to changes in the available capacity

Spring 2005 CS 461 9

Additive Increase/Multiplicative

Decrease

• Objective: adjust to changes in the available capacity

• New state variable per connection: CongestionWindow
– limits how much data source has in transit

MaxWin = MIN(CongestionWindow,
 AdvertisedWindow)

EffWin = MaxWin - (LastByteSent -
 LastByteAcked)

• Idea:
– increase CongestionWindow when congestion goes down

– decrease CongestionWindow when congestion goes up

Spring 2005 CS 461 10

AIMD (cont)

• Question: how does the source determine whether
or not the network is congested?

• Answer: a timeout occurs
– timeout signals that a packet was lost

– packets are seldom lost due to transmission error

– lost packet implies congestion

Spring 2005 CS 461 11

AIMD (cont)

• In practice: increment a little for each ACK

Increment = (MSS * MSS)/CongestionWindow

CongestionWindow += Increment

Source Destination

…

• Algorithm

– increment CongestionWindow by

one packet per RTT (linear increase)

– divide CongestionWindow by two

whenever a timeout occurs

(multiplicative decrease)

Spring 2005 CS 461 12

AIMD (cont)

• Trace: sawtooth behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30

40

50

10

10.0

Spring 2005 CS 461 13

Slow Start

• Objective: determine the available
capacity in the first

• Idea:
– begin with CongestionWindow = 1

packet

– double CongestionWindow each RTT
(increment by 1 packet for each ACK)

Source Destination

…

Spring 2005 CS 461 14

Slow Start (cont)

• Exponential growth, but slower than all at once

• Used…

– when first starting connection

– when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a CongestionWindow’s
worth of data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30

40

50

10

Spring 2005 CS 461 15

Fast Retransmit and Fast Recovery

• Problem: coarse-grain

TCP timeouts lead to idle

periods

• Fast retransmit: use

duplicate ACKs to trigger

retransmission

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Spring 2005 CS 461 16

Results

• Fast recovery

– skip the slow start phase

– go directly to half the last successful
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30

40

50

10

Spring 2005 CS 461 17

Congestion Avoidance

• TCP’s strategy

– control congestion once it happens

– repeatedly increase load in an effort to find the point at which

congestion occurs, and then back off

• Alternative strategy

– predict when congestion is about to happen

– reduce rate before packets start being discarded

– call this congestion avoidance, instead of congestion control

• Two possibilities

– router-centric: DECbit and RED Gateways

– host-centric: TCP Vegas

Spring 2005 CS 461 18

DECbit
• Add binary congestion bit to each packet header

• Router

– monitors average queue length over last busy+idle cycle

– set congestion bit if average queue length > 1

– attempts to balance throughout against delay

Queue length

Current
time

Time
Current

cycle
Previous

cycle
Averaging
interval

Spring 2005 CS 461 19

End Hosts

• Destination echoes bit back to source

• Source records how many packets resulted in set bit

• If less than 50% of last window’s worth had bit set

– increase CongestionWindow by 1 packet

• If 50% or more of last window’s worth had bit set

– decrease CongestionWindow by 0.875 times

Spring 2005 CS 461 20

Random Early Detection (RED)

• Notification is implicit

– just drop the packet (TCP will timeout)

– could make explicit by marking the packet

• Early random drop

– rather than wait for queue to become full, drop each
arriving packet with some drop probability whenever
the queue length exceeds some drop level

Spring 2005 CS 461 21

RED Details

• Compute average queue length
AvgLen = (1 - Weight) * AvgLen +

 Weight * SampleLen

0 < Weight < 1 (usually 0.002)

SampleLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvgLen

Spring 2005 CS 461 22

RED Details (cont)

• Two queue length thresholds

if AvgLen <= MinThreshold then

 enqueue the packet

if MinThreshold < AvgLen < MaxThreshold then

 calculate probability P

 drop arriving packet with probability P

if MaxThreshold <= AvgLen then

 drop arriving packet

Spring 2005 CS 461 23

RED Details (cont)
• Computing probability P

TempP = MaxP * (AvgLen - MinThreshold)/
 (MaxThreshold - MinThreshold)

P = TempP/(1 - count * TempP)

• Drop Probability Curve

P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

Spring 2005 CS 461 24

Tuning RED
• Probability of dropping a particular flow’s packet(s) is

roughly proportional to the share of the bandwidth that flow
is currently getting

• MaxP is typically set to 0.02, meaning that when the average

queue size is halfway between the two thresholds, the
gateway drops roughly one out of 50 packets.

• If traffic id bursty, then MinThreshold should be
sufficiently large to allow link utilization to be maintained at
an acceptably high level

• Difference between two thresholds should be larger than the
typical increase in the calculated average queue length in one
RTT; setting MaxThreshold to twice MinThreshold is
reasonable for traffic on today’s Internet

• Penalty Box for Offenders

Spring 2005 CS 461 25

TCP Vegas
• Idea: source watches for some sign that router’s queue is

building up and congestion will happen too; e.g.,

– RTT grows

– sending rate flattens
60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

K
B

Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300

100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

S
e
n
d
in

g
 K

B
p
s 1100

500

700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

u
e
u
e
 s

iz
e
 i
n
 r

o
u
te

r

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Spring 2005 CS 461 26

Algorithm
• Let BaseRTT be the minimum of all measured RTTs

(commonly the RTT of the first packet)

• If not overflowing the connection, then

ExpectRate = CongestionWindow/BaseRTT

• Source calculates sending rate (ActualRate) once per RTT

• Source compares ActualRate with ExpectRate

Diff = ExpectedRate - ActualRate

if Diff < !

increase CongestionWindow linearly

else if Diff > "

decrease CongestionWindow linearly

else

leave CongestionWindow unchanged

Spring 2005 CS 461 27

Algorithm (cont)

• Parameters
! = 1 packet
" = 3 packets

• Even faster retransmit
– keep fine-grained timestamps for each packet

– check for timeout on first duplicate ACK

70
60
50
40
30
20
10

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

C
A

M
 K

B
p
s

240

200

160

120

80

40

Time (seconds)

