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Congestion Control

Outline

Queuing Discipline

Reacting to Congestion

Avoiding Congestion
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Issues
• Two sides of the same coin

– pre-allocate resources so at to avoid congestion

– control congestion if (and when) is occurs

• Two points of implementation
– hosts at the edges of the network (transport protocol)

– routers inside the network (queuing discipline)

• Underlying service model
– best-effort (assume for now)

– multiple qualities of service (later)
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Framework
• Connectionless flows

– sequence of packets sent between source/destination pair

– maintain soft state at the routers

• Taxonomy
– router-centric versus host-centric

– reservation-based versus feedback-based

– window-based versus rate-based
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Evaluation

• Fairness

• Power (ratio of throughput to delay)
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Queuing Discipline

• First-In-First-Out (FIFO)
– does not discriminate between traffic sources

• Fair Queuing (FQ)
– explicitly segregates traffic based on flows

– ensures no flow captures more than its share of capacity

– variation: weighted fair queuing (WFQ)

• Problem?
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Flow 4

Round-robin
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FQ Algorithm

• Suppose clock ticks each time a bit is transmitted

• Let Pi denote the length of packet i

• Let Si denote the time when start to transmit packet i

• Let Fi denote the time when finish transmitting packet i

• Fi = Si + Pi

• When does router start transmitting packet i?

– if before router finished packet i - 1 from this flow, then
immediately after last bit of i - 1 (Fi-1)

– if no current packets for this flow, then start
transmitting when arrives (call this Ai)

• Thus: Fi = MAX (Fi - 1, Ai) + Pi
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FQ Algorithm (cont)

• For multiple flows
– calculate Fi for each packet that arrives on each flow

– treat all Fi’s as timestamps

– next packet to transmit is one with lowest timestamp

• Not perfect: can’t preempt current packet

• Example
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TCP Congestion Control

• Idea

– assumes best-effort network (FIFO or FQ routers) each

source determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)

• Challenge

– determining the available capacity in the first place

– adjusting to changes in the available capacity
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Additive Increase/Multiplicative

Decrease

• Objective: adjust to changes in the available capacity

• New state variable per connection: CongestionWindow
– limits how much data source has in transit

MaxWin = MIN(CongestionWindow, 
 AdvertisedWindow)

EffWin = MaxWin - (LastByteSent - 
 LastByteAcked)

• Idea:
– increase CongestionWindow when congestion goes down

– decrease CongestionWindow when congestion goes up
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AIMD (cont)

• Question: how does the source determine whether
or not the network is congested?

• Answer: a timeout occurs
– timeout signals that a packet was lost

– packets are seldom lost due to transmission error

– lost packet implies congestion
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AIMD (cont)

• In practice: increment a little for each ACK

Increment = (MSS * MSS)/CongestionWindow

CongestionWindow += Increment

Source Destination

…

• Algorithm

– increment CongestionWindow by

one packet per RTT (linear increase)

– divide CongestionWindow by two

whenever a timeout occurs

(multiplicative decrease)
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AIMD (cont)

• Trace: sawtooth behavior
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Slow Start

• Objective: determine the available
capacity in the first

• Idea:
– begin with CongestionWindow = 1

packet

– double CongestionWindow each RTT
(increment by 1 packet for each ACK)

Source Destination

…
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Slow Start (cont)

• Exponential growth, but slower than all at once

• Used…

– when first starting connection

– when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a CongestionWindow’s
worth of data
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Fast Retransmit and Fast Recovery

• Problem: coarse-grain

TCP timeouts lead to idle

periods

• Fast retransmit: use

duplicate ACKs to trigger

retransmission
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Results

• Fast recovery

– skip the slow start phase

– go directly to half the last successful
CongestionWindow (ssthresh)
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Congestion Avoidance

• TCP’s strategy

– control congestion once it happens

– repeatedly increase load in an effort to find the point at which

congestion occurs, and then back off

• Alternative strategy

– predict when congestion is about to happen

– reduce rate before packets start being discarded

– call this congestion avoidance, instead of congestion control

• Two possibilities

– router-centric: DECbit and RED Gateways

– host-centric: TCP Vegas
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DECbit
• Add binary congestion bit to each packet header

• Router

– monitors average queue length over last busy+idle cycle

– set congestion bit if average queue length > 1

– attempts to balance throughout against delay

Queue length

Current
time

Time
Current
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cycle
Averaging
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End Hosts

• Destination echoes bit back to source

• Source records how many packets resulted in set bit

• If less than 50% of last window’s worth had bit set

– increase CongestionWindow by 1 packet

• If 50% or more of last window’s worth had bit set

– decrease CongestionWindow by 0.875 times
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Random Early Detection (RED)

• Notification is implicit

– just drop the packet (TCP will timeout)

– could make explicit by marking the packet

• Early random drop

– rather than wait for queue to become full, drop each
arriving packet with some drop probability whenever
the queue length exceeds some drop level
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RED Details

• Compute average queue length
AvgLen = (1 - Weight) * AvgLen +

          Weight * SampleLen

0 < Weight < 1 (usually 0.002)

SampleLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvgLen
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RED Details (cont)

• Two queue length thresholds

if AvgLen <= MinThreshold then

  enqueue the packet

if MinThreshold < AvgLen < MaxThreshold then

  calculate probability P

  drop arriving packet with probability P

if MaxThreshold <= AvgLen then

  drop arriving packet

Spring 2005 CS 461 23

RED Details (cont)
• Computing probability P

TempP = MaxP * (AvgLen - MinThreshold)/ 
 (MaxThreshold - MinThreshold)

P = TempP/(1 - count * TempP)

• Drop Probability Curve

P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen
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Tuning RED
• Probability of dropping a particular flow’s packet(s) is

roughly proportional to the share of the bandwidth that flow
is currently getting

• MaxP is typically set to 0.02, meaning that when the average

queue size is halfway between the two thresholds, the
gateway drops roughly one out of 50 packets.

• If traffic id bursty, then MinThreshold should be
sufficiently large to allow link utilization to be maintained at
an acceptably high level

• Difference between two thresholds should be larger than the
typical increase in the calculated average queue length in one
RTT; setting MaxThreshold to twice MinThreshold is
reasonable for traffic on today’s Internet

• Penalty Box for Offenders
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TCP Vegas
• Idea: source watches for some sign that router’s queue is

building up and congestion will happen too; e.g.,

– RTT grows

– sending rate flattens
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Algorithm
• Let BaseRTT be the minimum of all measured RTTs

(commonly the RTT of the first packet)

• If not overflowing the connection, then

ExpectRate = CongestionWindow/BaseRTT

• Source calculates sending rate (ActualRate) once per RTT

• Source compares ActualRate with ExpectRate

Diff = ExpectedRate - ActualRate

if Diff < !

increase CongestionWindow linearly

else if Diff > "

decrease CongestionWindow linearly

else

leave CongestionWindow unchanged
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Algorithm (cont)

• Parameters
# ! = 1 packet
# " = 3 packets

• Even faster retransmit
– keep fine-grained timestamps for each packet

– check for timeout on first duplicate ACK
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