Content Distribution Networks

Outline
Implementation Techniques
Hashing Schemes
Redirection Strategies
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Design Space

* Caching

— explicit

— transparent (hijacking connections)
» Replication

— server farms

— geographically dispersed (CDN)
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Story for CDNs

* Traditional: Performance (Response Time)
— move content closer to the clients
— avoid server bottlenecks

* New: Flash Crowds & DDoS (System Throughput)
— distribute load over massive resources

— multiplicatively raise level of resources needed to attack
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Denial of Service Attacks (DoS)

attacker
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— one name maps onto many addresses
— works for both servers and reverse proxies
« HTTP
— requires an extra round trip
* Router
— one address, select a server (reverse proxy)
— content-based routing (near client)

* URL Rewriting
— embedded links
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Redirection: Which Replica?

* Balance Load
 Cache Locality
* Network Delay
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Hashing Schemes: Modulo

» Easy to compute
/ * Evenly distributed
URL (key) * Good for fixed number of
— . servers
* Many mapping changes after a
single server change
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Consistent Hashing (CHash)

» Hash server, then URL
* Closest match

* Only local mapping changes
after adding or removing
servers

» Used by State-of-the-art CDNs

Unit circle
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Highest Random Weight (HRW)
high
* Hash(url, svrAddr)
* Deterministic order of access set of
servers
» Different order for different URLs

* Load evenly distributed after server
changes

<
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low
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Redirection Strategies

* Random (Rand)
— Requests randomly sent to cooperating servers
— Baseline case, no pathological behavior
» Replicated Consistent Hashing (R-CHash)
— Each URL hashed to a fixed # of server replicas
— For each request, randomly select one replica
* Replicated Highest Random Weight (R-HRW)
— Similar to R-CHash, but use HRW hashing
— Less likely two URLs have same set of replicas

Redirection Strategies (cont)

» Coarse Dynamic Replication (CDR)
— Using HRW hashing to generate ordered server list
— Walk through server list to find a lightly loaded one
— # of replicas for each URL dynamically adjusted
— Coarse grained server load information

* Fine Dynamic Replication (FDR)
— Bookkeeping min # of replicas of URL (popularity)
— Let more popular URL use more replicas
— Keep less popular URL from extra replication

Spring 2002 CS 461 13 Spring 2002 CS 461 14
: : o Network Topology
Simulation 2 ® © ¢
(R © - © ©
© OO
. | &
* Identifying bottlenecks .. M1 | MA
— Server overload, network congestion... () ©---© ©
. <> <Y
* End-to-end network simulator prototype A ca | v <R @ v
— Models network, application, and OS m o e
— Built on NS + LARD simulators ()
— 100s of servers, 1000s of clients .. m o | e |
— >60,000 req/s using full-TCP transport A m © (R
— Measure capacity, latency, and scalabilit (&3
ure capacity y y oRC ®
S — Server, C — Client, R - Router
Spring 2002 CS 461 15 Spring 2002 CS 461 16




Simulation Setup

 Workload

— Static documents from Web Server trace, available at

each cooperative server

— Attackers from random places, repeat requesting a
subset of random files

* Simulation process
— Gradually increase offered request load
— End when servers very heavily overloaded
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Throughput reg/s

Capacity: 64 server case

Normal Operation

H R-CHash
E FDR

H Rand
O CDR

B R-HRW
H FDR-Ideal

A single server can handle ~600 reg/s in simulation
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Capacity: 64 server case
Under Attack (250 zombies, 10 files, avg 6KB)
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Latency: 64 Servers Under Attack

Random’s Max: 11.2k req/s

R-CHash Max: 19.8k req/s
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Latency At CDR’s Max: 35.1k req/s
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Capacity Scalability

Normal Operation Under Attack (250 zombies, 10 files)
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Various Attacks (32 servers)

1 victim file, 1 KB
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Deployment Issues

 Servers join DDoS protection overlay
— Same story as Akamai
— Get protection and performance

* Clients use DDoS protection service
— Same story as proxy caching
— Incrementally deployable
— Get faster response and help others
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