Content Distribution Networks

Outline
Implementation Techniques
Hashing Schemes
Redirection Strategies

Spring 2002 CS 461 1

Design Space

* Caching

— explicit

— transparent (hijacking connections)
» Replication

— server farms

— geographically dispersed (CDN)

Spring 2002 CS 461 2

Story for CDNs

* Traditional: Performance (Response Time)
— move content closer to the clients
— avoid server bottlenecks

* New: Flash Crowds & DDoS (System Throughput)
— distribute load over massive resources

— multiplicatively raise level of resources needed to attack

Spring 2002 CS 461 3

Denial of Service Attacks (DoS)

attacker

Spring 2002 CS 461 4

e =
attqcqu

i slave attacker

Distributed DoS (DDoS)

zombie -

Redirection Overlay
Geographically distributed server clusters

zombie clients + Distributed request-redirectors
o CS 461 Spring 2002 CS 461 6
Techniques
CDN Components 9
 DNS

Spring 2002

aaa.com bbb.com ccc.com

= &5 &

Fe8a8
2m8=8—8
edas

CS 461

Backerd
serves

Geographically
distrbuted
surogate
serves

Redirecors

Clients

\

— one name maps onto many addresses
— works for both servers and reverse proxies
« HTTP
— requires an extra round trip
* Router
— one address, select a server (reverse proxy)
— content-based routing (near client)

* URL Rewriting
— embedded links

Spring 2002 CS 461 8

Redirection: Which Replica?

* Balance Load
 Cache Locality
* Network Delay

Spring 2002 CS 461 9

Hashing Schemes: Modulo

» Easy to compute
/ * Evenly distributed
URL (key) * Good for fixed number of
— . servers
* Many mapping changes after a
single server change

Spring 2002 CS 461 10

Consistent Hashing (CHash)

» Hash server, then URL
* Closest match

* Only local mapping changes
after adding or removing
servers

» Used by State-of-the-art CDNs

Unit circle

Spring 2002 CS 461 11

Highest Random Weight (HRW)
high
* Hash(url, svrAddr)
* Deterministic order of access set of
servers
» Different order for different URLs

* Load evenly distributed after server
changes

<
<

low

Spring 2002 CS 461 12

Redirection Strategies

* Random (Rand)
— Requests randomly sent to cooperating servers
— Baseline case, no pathological behavior
» Replicated Consistent Hashing (R-CHash)
— Each URL hashed to a fixed # of server replicas
— For each request, randomly select one replica
* Replicated Highest Random Weight (R-HRW)
— Similar to R-CHash, but use HRW hashing
— Less likely two URLs have same set of replicas

Redirection Strategies (cont)

» Coarse Dynamic Replication (CDR)
— Using HRW hashing to generate ordered server list
— Walk through server list to find a lightly loaded one
— # of replicas for each URL dynamically adjusted
— Coarse grained server load information

* Fine Dynamic Replication (FDR)
— Bookkeeping min # of replicas of URL (popularity)
— Let more popular URL use more replicas
— Keep less popular URL from extra replication

Spring 2002 CS 461 13 Spring 2002 CS 461 14
: : o Network Topology
Simulation 2 ® © ¢
(R © - © ©
© OO
. | &
* Identifying bottlenecks .. M1 | MA
— Server overload, network congestion... () ©---© ©
. <> <Y
* End-to-end network simulator prototype A ca | v <R @ v
— Models network, application, and OS m o e
— Built on NS + LARD simulators ()
— 100s of servers, 1000s of clients .. m o | e |
— >60,000 req/s using full-TCP transport A m © (R
— Measure capacity, latency, and scalabilit (&3
ure capacity y y oRC ®
S — Server, C — Client, R - Router
Spring 2002 CS 461 15 Spring 2002 CS 461 16

Simulation Setup

 Workload

— Static documents from Web Server trace, available at

each cooperative server

— Attackers from random places, repeat requesting a
subset of random files

* Simulation process
— Gradually increase offered request load
— End when servers very heavily overloaded

Spring 2002

CS 461

17

Throughput reg/s

Capacity: 64 server case

Normal Operation

H R-CHash
E FDR

H Rand
O CDR

B R-HRW
H FDR-Ideal

A single server can handle ~600 reg/s in simulation

Spring 2002

CS 461

18

Capacity: 64 server case
Under Attack (250 zombies, 10 files, avg 6KB)

50000

40000

30000

Throughput reqg/s

H Rand
O CDR

H R-CHash B R-HRW

@ FDR

l FDR-Ideal

A single server can handle ~600 reg/s in simulation

Spring 2002

CS 461

19

Latency: 64 Servers Under Attack

Random’s Max: 11.2k req/s

R-CHash Max: 19.8k req/s

-+~ RHRW ——R-CHash — FDR —RHRW ——R-CHash
- CDR ~ Rand —FDR —CDR

100 S—— 100 e

: i : A

g8 £ 280 S

2 2 /

0 60 f 0 60 1

14 ,g‘ 14 /

540 i 540 id

PR —— R —

o | o | /

0 = T T 0 - T T

0.1

1 10

Response Time in Logscale (Seconds)

Spring 2002

100

0.1

CS 461

10

100

Response Time in Logscale (Seconds)

20

Latency At CDR’s Max: 35.1k req/s

— FDR

— CDR

10 100

Response Time in Logscale (Seconds)

Spring 2002 CS 461

21

Capacity Scalability

Normal Operation Under Attack (250 zombies, 10 files)

45000 50000
o 40000 45000
T 35000 o 40000
£ 30000 : | § 3500
5 T 2 30000 —
2 25000 2 25000 o
£ 20000 £ B
2 5000 R D 20000
0 £ 15000
£ 100 : E 1o |
5000 = 5000
0 T T T T T T T 0 : T T T T T T T
0 16 32 48 64 80 96 112 128 0 16 32 48 64 8 96 112 128
Num of Servers Num of Servers
|~ CDR -+ RHRW + Rand ~+ CDR -~-R-HRW + Rand
Spring 2002 CS 461 22

Various Attacks (32 servers)

1 victim file, 1 KB

35000
30000]
Xy e
g 25000 :
5 20000
£
& 15000
3 . N
£ 10000 - ..
5000 -
0 T T T T T T
100 200 300 400 500 600 700 800
Num of Zombies (slave attackers)
——Rand_+ R-HRW —— CDR]

ro

Throughput reqg/s

T

Spring 2002 CS 461

30000
25000
20000
15000
10000
5000
0

10 victim files, avg 6KB

100

200 300 400 500 600 700
Num of Zombies (slave attackers)

—~ Rand_+ R-HRW - CDR|

23

800

Deployment Issues

 Servers join DDoS protection overlay
— Same story as Akamai
— Get protection and performance

* Clients use DDoS protection service
— Same story as proxy caching
— Incrementally deployable
— Get faster response and help others

Spring 2002 CS 461 24

