Non-Photorealistic Rendering (NPR)

Adam Finkelstein Princeton University COS 426, Spring 2005

Thanks: Lee Markosian

Computer graphics today

Computer graphics today Entertainment

Geri's Game [Pixar]

How can we create 3D content?

- 1. Generate it procedurally.
- 2. Scan the real world.
- 3. Create it "by hand."

<section-header>

2. Scan the world

Real-Time 3D Model Acquisition [Rusinkiewicz 2002]

Model by drawing Image: state of the state o

- Gestural interface: strokes & interactors
- Create, edit, or group by manipulation

Non-photorealism in painting

van Gogh 1889

Gris 1912

Kandinsky 1923

Realistic modeling and rendering

Photorealism in computer graphics

Stunning budget!

"Final Fantasy" Square 2001

Non-photorealism

Extra semantic information

Non-photorealism

Guide viewer's eye

"The New Chair" [Curtis 98]

Non-photorealism

Emotionally rich

"Curse of Monkey Island" LucasArts

NPR: Simulating various media

Technical Illustration [Saito 90]

Watercolor [Curtis 97]

Paint [Hertzmann 98]

NPR: Dynamic imagery

Painterly rendering for 3D models [Meier 96]

Painterly rendering for video [Litwinowicz 97]

NPR: Interactive Rendering

[Kowalski 99]

[Gooch 98]

[Praun 01]

Non-photorealistic rendering (NPR)

Elision of detail Selective enhancement Stylization and abstraction

Complexity is suggested

Overview of remaining topics

Technical illustration Pen & ink Painterly rendering Silhouette detection Graftals WYSIWYG NPR Suggestive contours

Technical illustration

Saito and Takahashi, Siggraph 90 Purpose: render 3D models in styles that are more "comprehensible" Method:

- Render various intermediate images
- Do image-processing operations on them
- · Combine the results

Fig.9 Process of drawing illustrations.

Problem

Parameters need careful tuning to achieve good results

Overview of remaining topics

Technical illustration Pen & ink Painterly rendering Silhouette detection Graftals WYSIWYG NPR Suggestive contours

Pen and Ink

Winkenbach and Salesin, Siggraph 94 Purpose: render 3D models as pen & ink drawings Method:

- annotate model with procedural "textures"
- Render tonal "reference image"
- Use it to guide pen and ink textures

Pen and Ink

- Salisbury, Anderson, Lischinski and Salesin, Siggraph 96
- Purpose: define a scale-independent representation for pen & ink images

Salisbury et al., cont'd

Method:

- Store lo-res greyscale image annotated with discontinuities
- filter greyscale image to desired size, run stroke generation algorithm on it

Problems

Only produces still images

- Would not provide temporal coherence
- What's the application?

Talk overview

Technical illustration Pen & ink Painterly rendering Silhouette detection Graftals WYSIWYG NPR Coherent stylized silhouettes

Painterly rendering

Meier, Siggraph 96

Problem: produce animations in a "painterly" style with temporal coherence of strokes Method:

- Populate surfaces with stroke "particles"
- Render with the help of reference images

Particles have fixed distribution

• Need prescribed camera path

Overview of remaining topics

Technical illustration Pen & ink Painterly rendering Silhouette detection Graftals WYSIWYG NPR Suggestive contours

Silhouette detection

Real-Time Nonphotorealistic Rendering. Markosian, Kowalski, Trychin, Bourdev, Goldstein, & Hughes. SIGGRAPH 1997.

Observation: silhouette edges are

- sparse
- connected in long chains
- temporally coherent

Randomized silhouette detection

Check a fraction of edges.

• Find one, find whole chain Check old silhouettes

Analysis

For fixed probability: check $O(\sqrt{n})$ edges

Refinement scheme:

- silhouette chains "persist"
- mesh edges quadruple
- silhouette edges double

Example

Suppose at coarsest level mesh has 128 edges, and we want to detect a chain of 8 edges w/ probability p = 0.95Then $\beta \approx 0.707$ We must take $\alpha = -\log(1-p)/\beta \approx 4.24$

Deterministic schemes

- Hierarchical methods: pre-computed spatial data structure
 - Illustrating Smooth Surfaces. Hertzmann & Zorin. SIGGRAPH 2000.
 - Silhouette Clipping. Sander, Gu, Gortler, Hoppe, & Snyder. SIGGRAPH 2000.

Comparison

Randomized:

- Simple
- Effective
- Small silhouettes come in late

Deterministic:

- Requires pre-process
- Not for animated models

Overview of remaining topics

Technical illustration Pen & ink Painterly rendering Silhouette detection Graftals WYSIWYG NPR Suggestive contours

<u>Art-based Rendering of Fur, Grass and Trees</u>. Kowalski, Markosian, Northrup, Bourdev, Barzel, Holden & Hughes. SIGGRAPH 1999.

Dr. Seuss

Graftals

Oriented in local frame Can choose level of detail

Needed for placement of graftals:

Controlled *screen-space* density Placement on surfaces Controlled placement (e.g. at silhouettes) Persistence of graftals

Problems

Graftal textures defined in code

- hard to edit
- how to extend with UI?

Coherence

- Graftals popping in/out
- Better at low frame rates!

<u>Art-based Rendering w/ Continuous Levels of Detail</u>. Markosian, Meier, Kowalski, Holden, Northrup, & Hughes. NPAR 2000.

Basic graftals

Collection of drawing primitives • triangle strips / fans Canonical vertices Local coordinate frame

Tuft: hierarchy of graftals

The local frame

Base position (e.g. on surface) y' (e.g. surface normal) x' (e.g. cross product of y' and view vector) y' local frame canonical space

Placement and duplication

Designer creates a few "example graftals" Duplicates generated on surfaces

- explicitly
- procedurally

Random variation

Level of detail (LOD)

Graftal computes current LOD Draws primitives that exceed threshold

Computing LOD

LOD derived from:

- apparent size
- orientation
- elapsed time

Orientation

Value used to selectively suppress LOD E.g.: $1 - |v \cdot n|$

Discussion

Coherence: much better! Slower Introducing / removing elements • Fading & thinning work well • Growing looks creepy LOD mechanism too inflexible

Need direct UI

Overview of remaining topics

Technical illustration Pen & ink Painterly rendering Silhouette detection Graftals WYSIWYG NPR Suggestive contours

WYSIWYG NPR: Drawing Strokes Directly on 3D Models. Kalnins, Markosian, Meier, Kowalski, Lee, Davidson, Webb, Hughes & Finkelstein. SIGGRAPH 2002.

Contributions

Direct user-control for NPR Better silhouettes New media simulation Stroke synthesis by example Hatching with LODs

Overview of Components

Brush Style

Per stroke:

- Color
- Width
- Paper effect

Rendered as triangle strips.

Strokes in OpenGL Based on "Skeletal strokes" Hsu *et al.*, UIST '93

Paper Effect

Height field texture:

- Peaks catch pigment
- Valleys resist pigment

Implementation:

• Pixel shader

Discussion

Huge benefit from user-control Wide range of effects Interactive rates

Future work

- Stroke patterns / synthesis
- Stroke behavior
- Graftals / LOD
- Silhouette coherence

Overview of remaining topics

Technical illustration Pen & ink Painterly rendering Silhouette detection Graftals WYSIWYG NPR Suggestive contours

Silhouettes & "suggestive contours" [DeCarlo 2003]

Suggestive contours: definition 1

Suggestive contours: definition 2

 $n \cdot v$ not quite zero, but a local minimum (in the direction of w)

Suggestive contour demo...

Much remains to be done....

