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Parametric Curves
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COS 426, Spring 2005

Curves in Computer Graphics

• Fonts ABC
• Animation paths

• Shape modeling

• etc…

Animation
(Angel, Plate 1)

Shell
(Douglas Turnbull, 

CS 426, Fall99)

Implicit curves
An implicit curve in the plane is expressed as:

f(x, y) = 0

Example: a circle with radius r centered at origin:

x2 + y2 - r2 = 0
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Parametric curves
A parametric curve in the plane is expressed as:

x = fx(u)
y = fy(u)

Example: a circle with radius r centered at origin:

x = r cos u
y = r sin u
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Parametric curves
How can we define arbitrary curves?

x = fx(u)
y = fy(u)

Parametric curves
How can we define arbitrary curves?

x = fx(u)
y = fy(u)

Use functions that “blend” control points

x = fx(u) = V0x*(1 - u) + V1x*u
y = fy(u) = V0y*(1 - u) + V1y*u
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Parametric curves
More generally:
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Parametric curves
What B(u) functions should we use?
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Parametric curves
What B(u) functions should we use?
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Parametric curves
What B(u) functions should we use?
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Goals
• Some attributes we might like to have:

o Interpolation
o Continuity
o Predictable control
o Local control

• We’ll satisfy these goals using:
o Piecewise
o Parametric
o Polynomials

Continuity
• Parametric continuity (Cn)

o How many times differentiable is the 
curve at a given point

• Continuity at joints:
o C0 continuity means curve is connected at joint
o C1 continuity means that segments 

share same first derivative at joint
o Cn continuity means that segments 

share same nth derivative at joint
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Parametric Polynomial Curves
• Blending functions are polynomials:

• Advantages of polynomials
o Easy to compute
o Infinitely continuous
o Easy to derive curve properties

∑
=

=
m

j

j
ji uauB

0

)(
x

n

i
i ViuBux *)()(

0
∑
=

=

y

n

i
i ViuBuy *)()(

0
∑
=

=

V1

V2
V3

V5

V6

V0

V4

Parametric Polynomial Curves
• Derive polynomial Bi(u) to ensure properties

o Example: interpolation of control vertices
o What about easy of control?
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Piecewise Parametric Polynomial Curves

• Splines:
o Split curve into segments
o Each segment defined by 

blending subset of control vertices

• Motivation:
o Provides control & efficiency
o Same blending function for every segment
o Prove properties from blending functions

• Challenges 
o How choose blending functions?
o How guarantee continuity at joints?
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Piecewise Parametric Polynomial Curves

• Compute polynomial Bi(u) to ensure properties
o Example: interpolation of control vertices

and C2 continuity at joints with cubics
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Cubic Piecewise Parametric Polynomial Curves

• From now on, consider cubic blending functions
o All ideas generalize to higher degrees

• In CAGD, higher-order functions are often used
o Hard to control wiggles

• In graphics, piecewise cubic curves will do
o Smallest degree that allows C2 continuity 

for arbitrary curves

Types of Splines
• Splines covered in this lecture

o Hermite 
o Bezier
o Catmull-Rom
o B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties

Cubic Hermite Splines
• Definition:

o Each segment defined by 
position and derivative at
two adjacent control vertices

o Blending functions are
cubic polynomials

• Properties:
o Interpolates control points
o C1 continuity at joints
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Cubic Hermite Splines
• Definition:

o Each segment defined by 
position and derivative at
two adjacent control vertices

o Blending functions are
cubic polynomials

• Properties:
o Interpolates control points
o C1 continuity at joints
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P

P(u) = B0(u)*D0 + B1(u)*V0 + B2(u)* V1 + B3(u)* D1

D0

D1



6

Cubic Hermite Splines

Blending functions:
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Types of Splines
• Splines covered in this lecture

o Hermite 
!Bezier
o Catmull-Rom
o B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties

Bezier curves
Blending functions:
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Bézier curves
• Developed simultaneously in 1960 by

o Bézier (at Renault) 
o deCasteljau (at Citroen)

• Curve Q(u) is defined by nested interpolation:

Vi’s are control points
{V0, V1, …, Vn} is control polygon
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Basic properties of Bézier curves
• Endpoint interpolation:

• Convex hull: 
o Curve is contained within convex hull of control polygon

• Symmetry
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Explicit formulation
• Let’s indicate level of nesting with superscript j:

• An explicit formulation of Q(u) is given by:

• Case n=3 (expand recurrence):
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More properties
• General case: Bernstein polynomials

• Degree: is a polynomial of degree n

• Tangents:
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Matrix form
Bézier curves may be described in matrix form:
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Display
Q: How would you draw it using line segments?

A: Recursive subdivision!
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Display
Pseudocode for displaying Bézier curves:

procedure Display({Vi}):
if {Vi} flat within ε
then

output line segment V0Vn
else

subdivide to produce {Li} and {Ri}
Display({Li})
Display({Ri})

end if
end procedure

Flatness
Q: How do you test for flatness?

A: Compare the length of the control polygon
to the length of the segment between endpoints
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Splines
• For more complex curves, piece together Béziers

• We want continuity across joints:
o Positional (C0) continuity
o Derivative (C1) continuity

• Q: How would you satisfy continuity constraints?

• Q: Why not just use higher-order Bézier curves?

• A: Splines have several of advantages:
• Numerically more stable

• Easier to compute

• Fewer bumps and wiggles
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Types of Splines
• Splines covered in this lecture

o Hermite 
o Bezier
!Catmull-Rom
o B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties

Catmull-Rom splines
• Properties

o Interpolate control points
o Have C0 and C1 continuity

• Derivation
o Start with joints to interpolate
o Build cubic Bézier between each joint
o Endpoints of Bézier curves are obvious

• What should we do for the other 
Bézier control points?

Catmull-Rom Splines
• Catmull & Rom use:

o half the magnitude of the vector between adjacent CP’s

• Many other formulations work, for example:
o Use an arbitrary constant τ times this vector
o Gives a “tension” control 
o Could be adjusted for each joint

Properties
• Catmull-Rom splines have these attributes:

o C1 continuity

o Interpolation

o Locality of control

o No convex hull property

(Proof left as an exercise.)
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Types of Splines
• Splines covered in this lecture

o Hermite 
o Bezier
o Catmull-Rom
!B-Spline

• There are many others

Each has different blending functions
resulting in different properties

Each has different blending functions
resulting in different properties

B-Splines
• Properties:

o Local control
o C2 continuity
o Cubic polynomials

• Constraints:
o Three continuity conditions at each joint j

» Position of two curves same
» Derivative of two curves same
» Second derivatives same

o Local control
» Each joint affected by 4 

control vertices

• Give up interpolation :)
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Matrix formulation for B-splines
• List mathematical constraints:

• Grind through some messy math to get:
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B-Splines
• Blending functions:

o Local control: how can we tell?
o Interpolates control points?
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Summary
• Splines: mathematical way to express curves

• Motivated by “loftsman’s spline”
o Long, narrow strip of wood/plastic
o Used to fit curves through specified data points
o Shaped by lead weights called “ducks”
o Gives curves that are “smooth” or “fair”

• Have been used to design:
o Automobiles
o Ship hulls
o Aircraft fuselage/wing

What’s next?
• Use curves to create parameterized surfaces

• Surface of revolution

• Swept surfaces

• Surface patches

Demetri Terzopoulos Przemyslaw Prusinkiewicz 


