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Implicit curves
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Parametric curves
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An implicit curve in the plane is expressed as:

f(x,y)=0

Example: a circle with radius r centered at origin:

y
N

X2+y2_r2:0

A parametric curve in the plane is expressed as:

x = f,(u)
y=f,u)

Example: a circle with radius r centered at origin:

y
W X

X=TrCoS U
y=rsinu
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Parametric curves P Parametric curves 20
How can we define arbitrary curves? How can we define arbitrary curves?

x =1 (u) x =f(u) Vi

y =f(u) y =fy(u)
VO

Use functions that “blend” control points

x = f(u) =VO,*(1 - u) + V1 *u
y =fy(u) =VO*(1 - u) + V1 *u

J
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Parametric curves B Parametric curves ;»
More generally: What B(u) functions should we use?

X(W)= Y BV, X(U) = Y B (U)* Vi,
i=0 i=0

y(u) =2 B (U)*Vi, y(u)=> B (W)*Vi,
i=0 i=0

X,y v,




o Continuity .
o Predictable control :
o Local control

» We'll satisfy these goals using: L
o Piecewise ::"
o Parametric ®
o Polynomials i
........ o
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Parametric curves Es ] Parametric curves e 4
What B(u) functions should we use? What B(u) functions should we use?
X(U) = Y B (W)* Vi, va X(UW) =Y B (W)*V, VA
i=0 i=0
y(u) =D B (u)*Vi, VO y(u) = B (u)*Vi, VO V2
i=0 i=0
BO Bl BO Bl B2
1 1 1 1 1
0 0 t 0 }
°5 It o5 u 0 T uo 1 U o0 1 U
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Goals EL Continuity Q
* Some attributes we might like to have: ' « Parametric continuity (C")
o Interpolation o How many times differentiable is the V¢

curve at a given point

¢ Continuity at joints:
o CO continuity means curve is connected at joint
o C1 continuity means that segments
share same first derivative at joint
o C" continuity means that segments
share same nth derivative at joint V,
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Parametric Polynomial Curves Lo
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Parametric Polynomial Curves B 4

¢ Blending functions are polynomials:

= ; B (u)*Vi m
XW =3B, 8- Sau

ORITORYS

¢ Advantages of polynomials
o Easy to compute
o Infinitely continuous
o Easy to derive curve properties

 Derive polynomial Bj(u) to ensure properties
o Example: interpolation of control vertices
o What about easy of control?

Vo ViV, V, v, A A
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Piecewise Parametric Polynomial Curve%
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Piecewise Parametric Polynomial CUI’VEQ;

¢ Splines:
o Split curve into segments
o Each segment defined by
blending subset of control vertices

» Motivation:
o Provides control & efficiency
o Same blending function for every segment
o Prove properties from blending functions

¢ Challenges
o How choose blending functions?
o How guarantee continuity at joints?

« Compute polynomial B;(u) to ensure properties
o Example: interpolation of control vertices
and C2 continuity at joints with cubics

Vo ViV, Vs v, Vs A
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Cubic Piecewise Parametric Polynomial Curveg¥: Types of Splines ]
¢ From now on, consider cubic blending functions ¢ Splines covered in this lecture
o All ideas generalize to higher degrees o Hermite
. . o Bezi
¢ In CAGD, higher-order functions are often used ezer
g | wigal o Catmull-Rom
o Hard to control wiggles - B-Spline
« In graphics, piecewise cubic curv'es'wnl do « There are many others
o Smallest degree that allows C2 continuity
for arbitrary curves
Each has different blending functions
resulting in different properties
J
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Cubic Hermite Splines EL Cubic Hermite Splines Q

« Definition:

o Each segment defined by
position and derivative at
two adjacent control vertices

o Blending functions are
cubic polynomials

¢ Properties:
o Interpolates control points
o C1 continuity at joints

 Definition:

o Each segment defined by
position and derivative at
two adjacent control vertices

o Blending functions are
cubic polynomials

¢ Properties:
o Interpolates control points
o C1 continuity at joints

P(u) = Bo(u)* Do + By(U)* Vo + By(U)* V; + By(u)* D,
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Cubic Hermite Splines EL Types of Splines B 4
Blending functions: . Spllnes_ covered in this lecture
m o Hermite
B(u)=>au » Bezier
=0 o Catmull-Rom
Bi, B; o B-Spline
1 1
i ¢ There are many others
ng—» 0
0 1 0 1
B, B,
! 1 Each has different blending functions
resulting in different properties
0 + 0 A
0 1 0 1
J
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Bezier curves
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Bézier curves L

Blending functions:

BW=Yau
j=0
B, B,
1 1
00 + 00 +
B, !B !

¢ Developed simultaneously in 1960 by
o Bézier (at Renault)
o deCasteljau (at Citroen)

» Curve Q(u) is defined by nested interpolation:

V,’s are control points
{Vo V4, ..., V. } is control polygon
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Basic properties of Bézier curves :&: Explicit formulation B 4

« Endpoint interpolation:
Q(0) =V
QD =V,

e Convex hull:
o Curve is contained within convex hull of control polygon

e Symmetry

Q(u) defined by{V,,...V,} = Q(1-u)defined by{V,....V,}

« Let's indicate level of nesting with superscript j:
« An explicit formulation of Q(u) is given by:

V! =(1-uV v
¢ Case n=3 (expand recurrence):

Qu) =V
=(1- UV +uv?
= (1-u)[(X-uV, + UV +u[(L- UV +uvy]
=(1-u)[(X-wL-uV. +uVT+u[(@-uVe2 +uvyl......
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More properties
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Matrix form 7

« General case: Bernstein polynomials
c n i n-i
Q(U)=ZV.(JU (1-u)
i=0
« Degree: is a polynomial of degree n

Q0= n(\/1 _Vo)
QM =n(V,-V,4)

e Tangents:

Bézier curves may be described in matrix form:

Q) = va U (- Uy

= (1-u)®V, + 3u(L- u)?V, + 3U*(L-u)V, + U,
-1 3 -31

o
o oo
S S <K<
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Display
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Display 208

Q: How would you draw it using line segments?

A: Recursive subdivision!

Pseudocode for displaying Bézier curves:

procedure Display({V}):
if {V} flatwithine
then
output line segment VoV,
else
subdivide to produce {L;} and { R}
Display({L})
Display({R})
end if
end procedure
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Flatness
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Splines 5;»
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Q: How do you test for flatness?

A: Compare the length of the control polygon
to the length of the segment between endpoints

|V1 _Vo |+ |Vz _Vl |+ |V3 _Vz |

<l+e
|V3 _Vo |

¢ For more complex curves, piece together Béziers

« We want continuity across joints:
o Positional (C°) continuity
o Derivative (C') continuity

¢ Q: How would you satisfy continuity constraints?

¢ Q: Why not just use higher-order Bézier curves?

¢ A: Splines have several of advantages:
« Numerically more stable

« Easier to compute

« Fewer bumps and wiggles
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Types of Splines
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Catmull-Rom splines

¢ Splines covered in this lecture
o Hermite
o Bezier
» Catmull-Rom
o B-Spline

¢ There are many others

Each has different blending functions
resulting in different properties

¢ Properties
o Interpolate control points
o Have C%and C! continuity

« Derivation
o Start with joints to interpolate
o Build cubic Bézier between each joint N
o Endpoints of Bézier curves are obvious |

* What should we do for the other
Bézier control points?
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Catmull-Rom Splines
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Properties
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e Catmull & Rom use:
o half the magnitude of the vector between adjacent CP’s

» Many other formulations work, for example:

o Use an arbitrary constant T times this vector
o Gives a “tension” control

o Could be adjusted for each joint

¢ Catmull-Rom splines have these attributes:
o C1 continuity
o Interpolation
o Locality of control
o No convex hull property

(Proof left as an exercise.)
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Types of Splines Es ] B-Splines B 4
 Splines covered in this lecture « Properties:
o Hermite o Local control Vv
- Bezier > C2 continuity %
» Catmull-Rom o Cubic polynomials oV
> B-Spline ¢ Constraints:
. Th th o Three continuity conditions at each joint |
ere are many others » Position of two curves same
» Derivative of two curves same Vs oV,
L °
» Second derivatives same
- : : o Local control
EaCTthas.d'f;%mt btlendl ngtfunctlons » Each joint affected by 4 ° (
WEVININE) M CIMAE REL [SIRTEE NS control vertices
* Give up interpolation :) Ve
4 4
Matrix formulation for B-splines %% B-Splines g
 List mathematical constraints: ¢ Blending functions: V,
V. o Local control: how can we tell? i
i N=0
° QM =Q.0) o Interpolates control points? oV1
V, . .
QU= v U DMggne V"z Q'M=Q..'(0
QUM =Q.,"(0)
v,
Vi, oV,
¢ Grind through some messy math to get: ®
-1 3 -31
u °
113 -6 3 0
MBS’LINEIE 3 0 3 0
1 4 10 Vs®
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Summary
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What's next?
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P

¢ Splines: mathematical way to express curves

* Motivated by “loftsman’s spline”
o Long, narrow strip of wood/plastic
o Used to fit curves through specified data points

o Shaped by lead weights called “ducks” P
o Gives curves that are “smooth” or “fair” ,'
/7
* Have been used to design: )
o Automobiles I'
o Ship hulls ’
o Aircraft fuselage/wing - -/
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Use curves to create parameterized surfaces
Surface of revolution
Swept surfaces

Surface patches

Przemyslaw Prusinkiewicz

Demetri Terzopoulos
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