

Princeton University COS 426, Spring 2005

Modeling

- How do we ...
 - o Represent 3D objects in a computer?
 - o Construct 3D representations quickly/easily?
 - o Manipulate 3D representations efficiently?

3D Object Representations Raw data Solids o Voxels o Octree o Point cloud o BSP tree o Range image o CSG o Polygons o Sweep Surfaces High-level structures o Mesh o Scene graph o Subdivision o Skeleton

- o Parametric
- o Implicit

- o Application specific
- o ripplication op

Surfaces

- · What makes a good surface representation?
 - o Accurate
 - o Concise
 - o Intuitive specification
 - o Local support
 - o Affine invariant
 - o Arbitrary topology
 - o Guaranteed continuity
 - o Natural parameterization
 - o Efficient display
 - o Efficient intersections

Surfaces

What makes a good surface representation?
Accurate
Concise
Intuitive specification
Local support
Affine invariant
Arbitrary topology
Guaranteed continuity
Natural parameterization
Efficient display
Efficient intersections

low refine mesh

- o Aim for properties like smoothness
- How store mesh?
 - o Aim for efficiency for implementing subdivision rules

Triangle Meshes

- Relevant properties:
 - o Exactly 3 vertices per face
 - $o\ \mbox{Any}\ \mbox{number}\ \mbox{of}\ \mbox{faces}\ \mbox{per\ vertex}$
- Useful adjacency structure for Loop subdivision:
 o Do not represent edges explicitly

- ${\rm o}\,$ Faces store refs to vertices and neighboring faces
- ${\rm o}\,$ Vertices store refs to adjacent faces and vertices

 (x_3, y_3, z_3) (x_4, y_4, z_4) (x_1, y_1, z_1) (x_2, y_2, z_2) (x_5, y_5, z_5)

Summary

Advantages:

- o Simple method for describing complex surfaces
- $o\,$ Relatively easy to implement
- ${\rm o}\,$ Arbitrary topology
- o Local support
- ${\rm o}\,$ Guaranteed continuity
- o Multiresolution
- · Difficulties:
 - ${\rm o}\,$ Intuitive specification
 - ${\rm o}\ {\rm Parameterization}$
 - ${\rm o}$ Intersections

