Subdivision Surfaces

Adam Finkelstein
Princeton University
COS 426, Spring 2005

Modeling

- How do we ...
 - Represent 3D objects in a computer?
 - Construct 3D representations quickly/easily?
 - Manipulate 3D representations efficiently?

Different representations for different types of objects

3D Object Representations

- Raw data
 - Voxels
 - Point cloud
 - Range image
 - Polymers

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

- Solids
 - Octree
 - BSP tree
 - CSG
 - Sweep

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Surfaces

- What makes a good surface representation?
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

H&B Figure 10.46
Subdivision

• How do you make a smooth curve?

Subdivision Surfaces

• Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements

Key Questions

• How refine mesh?
 - Aim for properties like smoothness

• How store mesh?
 - Aim for efficiency for implementing subdivision rules

Loop Subdivision Scheme

• How refine mesh?
 - Refine each triangle into 4 triangles by splitting each edge and connecting new vertices
 - Need rules for "even / odd" (white / black) vertices

• How position new vertices?
 - Choose locations for new vertices as weighted average of original vertices in local neighborhood

• Rules for extraordinary vertices and boundaries:

 a. Masks for odd vertices
 b. Masks for even vertices

What if odd vertex only touches one triangle?
What if even vertex does not have degree 6?
Loop

- How to choose β?
 - Analyze properties of limit surface
 - Interested in continuity of surface and smoothness
 - Involves calculating eigenvalues of matrices

 » Original Loop
 $\beta = \frac{1}{n} \left(\frac{3}{n} - \left(\frac{3}{n} + \frac{1}{2} \cos \frac{3\pi}{n} \right)^2 \right)$

 » Warren
 $\beta = \begin{cases}
 \frac{1}{8n} & n > 3 \\
 \frac{1}{16} & n = 3
 \end{cases}$

Subdivision Schemes

- There are different subdivision schemes
 - Different methods for refining topology
 - Different rules for positioning vertices
 - Interpolating versus approximating

<table>
<thead>
<tr>
<th>Face split for triangles</th>
<th>Face split for quads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face split</td>
<td>Face split</td>
</tr>
<tr>
<td>Face split</td>
<td>Face split</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triangular mesh</th>
<th>Quad mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximating</td>
<td>Loop n^2</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Mod. butterfly n^3</td>
</tr>
</tbody>
</table>

Subdivision Surfaces

- Properties:
 - Accurate
 - Concise
 - Intuitive specification
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections
Key Questions

- How refine mesh?
 - Aim for properties like smoothness
- How store mesh?
 - Aim for efficiency for implementing subdivision rules

Polygon Meshes

- Mesh Representations
 - Independent faces
 - Vertex and face tables
 - Adjacency lists
 - Winged-Edge

Independent Faces

- Each face lists vertex coordinates
 - Redundant vertices
 - No topology information

Vertex and Face Tables

- Each face lists vertex references
 - Shared vertices
 - Still no topology information

Adjacency Lists

- Store all vertex, edge, and face adjacencies
 - Efficient topology traversal
 - Extra storage

Partial Adjacency Lists

- Can we store only some adjacency relationships and derive others?
Winged Edge

- Adjacency encoded in edges
 - All adjacencies in $O(1)$ time
 - Little extra storage (fixed records)
 - Arbitrary polygons

![Winged Edge Diagram]

Triangle Meshes

- Relevant properties:
 - Exactly 3 vertices per face
 - Any number of faces per vertex

- Useful adjacency structure for Loop subdivision:
 - Do not represent edges explicitly
 - Faces store refs to vertices and neighboring faces
 - Vertices store refs to adjacent faces and vertices

![Triangle Meshes Diagram]

Assignment 3

- Interactive editing of subdivision surfaces
 - Loop subdivision scheme
 - Partial adjacency list mesh representation
 - Interactive vertex dragging

![Assignment 3 Diagram 1]

- Store hierarchy of meshes
 - Full triangle mesh at every level
 - Vertices store references to counterparts one level up and one level down
 - Enables efficient re-positioning of mesh vertices after interactive dragging

![Assignment 3 Diagram 2]
Summary

• Advantages:
 o Simple method for describing complex surfaces
 o Relatively easy to implement
 o Arbitrary topology
 o Local support
 o Guaranteed continuity
 o Multiresolution

• Difficulties:
 o Intuitive specification
 o Parameterization
 o Intersections