
Scan Conversion

& Shading

Adam Finkelstein

Princeton University

COS 426, Spring 2005

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Modeling
Transformation

Projection
Transformation

Projection
Transformation

ClippingClipping

LightingLighting

Image

Viewport
Transformation

Viewport
Transformation

Scan
Conversion

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Scan Conversion
& Shading

P1

P2

P3

Overview

• Scan conversion
! Figure out which pixels to fill

• Shading
! Determine a color for each filled pixel

Scan Conversion

• Render an image of a geometric primitive
by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)void SetPixel(int x, int y, Color rgba)

Scan Conversion

• Render an image of a geometric primitive
by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)void SetPixel(int x, int y, Color rgba)

Triangle Scan Conversion

• Properties of a good algorithm
! Symmetric

! Straight edges

! Antialiased edges

! No cracks between adjacent primitives

! MUST BE FAST!

P1

P2

P3

P4



Triangle Scan Conversion

• Properties of a good algorithm
! Symmetric

! Straight edges

! Antialiased edges

! No cracks between adjacent primitives

! MUST BE FAST!

P1

P2

P3

P4

Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P))
SetPixel(x, y, rgba);

}
}

void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P))
SetPixel(x, y, rgba);

}
}

• Color all pixels inside triangle

P1

P2

Line defines two halfspaces

• Implicit equation for a line
! On line: ax + by + c = 0

! On right: ax + by + c < 0

! On left: ax + by + c > 0

L

Inside Triangle Test

• A point is inside a triangle if it is in the
positive halfspace of all three boundary lines
! Triangle vertices are ordered counter-clockwise

! Point must be on the left side of every boundary line

P

L1

L2

L3

Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{

for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d < 0.0) return FALSE;

}
return TRUE;

}

L1

L2

L3

Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P))
SetPixel(x, y, rgba);

}
}

void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P))
SetPixel(x, y, rgba);

}
}

• What is bad about this algorithm?



Triangle Sweep-Line Algorithm

• Take advantage of spatial coherence
! Compute which pixels are inside using horizontal spans

! Process horizontal spans in scan-line order

• Take advantage of edge linearity
! Use edge slopes to update coordinates incrementally

dx
dy

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba){
for each edge pair {

initialize xL, xR;
compute dxL/dyL and dxR/dyR;
for each scanline at y 

for (int x = xL; x <= xR; x++)
SetPixel(x, y, rgba);

xL += dxL/dyL;
xR += dxR/dyR;

}
}

xL xR

dxL

dyL

dxR

dyR

Bresenham’s algorithm
works the same way,
but uses only integer
operations!

Polygon Scan Conversion

• Fill pixels inside a polygon
! Triangle

! Quadrilateral

! Convex

! Star-shaped

! Concave

! Self-intersecting

! Holes

What problems do we encounter with arbitrary polygons?

Polygon Scan Conversion

• Need better test for points inside polygon
! Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4

L5

L1

L2

L3A

L4

L5

Concave Polygon

L3B

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
! Any ray from P to infinity crosses odd number of edges



Polygon Sweep-Line Algorithm

• Incremental algorithm to find spans,
and determine insideness with odd parity rule
! Takes advantage of scanline coherence

xL xR

Triangle Polygon

Polygon Sweep-Line Algorithm

void ScanPolygon(Triangle T, Color rgba){
sort edges by maxy
make empty “active edge list”
for each scanline (top-to-bottom) { 

insert/remove edges from “active edge list”
update x coordinate of every active edge

 sort active edges by x coordinate
for each pair of active edges (left-to-right)

SetPixels(xi, xi+1, y, rgba);
}

}

Hardware Scan Conversion

• Convert everything into triangles
! Scan convert the triangles

Hardware Antialiasing

• Supersample pixels
! Multiple samples per pixel

! Average subpixel intensities (box filter)

! Trades intensity resolution for spatial resolution

P1

P2

P3

Overview

• Scan conversion
! Figure out which pixels to fill

• Shading
! Determine a color for each filled pixel

Shading

• How do we choose a color for each filled pixel?
! Each illumination calculation for a ray from the eyepoint

through the view plane provides a radiance sample

» How do we choose where to place samples?

» How do we filter samples to reconstruct image?

Angel Figure 6.34

Emphasis on methods that can 

be implemented in hardware 

Emphasis on methods that can 

be implemented in hardware 



Ray Casting

• Simplest shading approach is to perform
independent lighting calculation for every pixel
! When is this unnecessary?

))()((! •+•++=
i i

n

iSiiDALAE
IRVKILNKIKII

Polygon Shading

• Can take advantage of spatial coherence
! Illumination calculations for pixels covered by same

primitive are related to each other

))()((! •+•++=
i i

n

iSiiDALAE
IRVKILNKIKII

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

Flat Shading

• What if a faceted object is illuminated only by
directional light sources and is either diffuse or
viewed from infinitely far away

))()((! •+•++=
i i

n

iSiiDALAE
IRVKILNKIKII

Flat Shading

• One illumination calculation per polygon
! Assign all pixels inside each polygon the same color

N



Flat Shading

• Objects look like they are composed of polygons
! OK for polyhedral objects

! Not so good for smooth surfaces

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

Gouraud Shading

• What if smooth surface is represented by
polygonal mesh with a normal at each vertex?

))()((! •+•++=
i i

n

iSiiDALAE
IRVKILNKIKII

Watt Plate 7

Gouraud Shading

• Method 1: One lighting calculation per vertex
! Assign pixels inside polygon by interpolating colors

computed at vertices

Gouraud Shading

• Bilinearly interpolate colors at vertices
down and across scan lines

Gouraud Shading

• Smooth shading over adjacent polygons
! Curved surfaces

! Illumination highlights

! Soft shadows

Mesh with shared normals at vertices

Watt Plate 7



Gouraud Shading

• Produces smoothly shaded polygonal mesh
! Piecewise linear approximation

! Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

Phong Shading

• What if polygonal mesh is too coarse to capture
illumination effects in polygon interiors?

))()((! •+•++=
i i

n

iSiiDALAE
IRVKILNKIKII

Phong Shading

• One lighting calculation per pixel
! Approximate surface normals for points inside polygons

by bilinear interpolation of normals from vertices

Phong Shading

• Bilinearly interpolate surface normals at vertices
down and across scan lines

Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7



Shading Issues

• Problems with interpolated shading:
! Polygonal silhouettes

! Perspective distortion

! Orientation dependence (due to bilinear interpolation)

! Problems computing shared vertex normals

! Problems at T-vertices

Summary

• 2D polygon scan conversion
! Paint pixels inside primitive

! Sweep-line algorithm for polygons

• Polygon Shading Algorithms
! Flat

! Gouraud

! Phong

! Ray casting

• Key ideas:
! Sampling and reconstruction

! Spatial coherence

Less expensive

More accurate


