
COS 423 Theory of Algorithms Spring 2005

Writing Solutions to Problem Sets

Learning how to write clear and rigorous solutions is an important component of this course.
Vague and sloppy solutions often turn out to have inaccuracies that render them incorrect. You
will lose a significant number of points if your solution is imprecise or lacks sufficient explanation,
even if the solution turns out to be correct. Here are a few guidelines.

• Your solutions should be neatly written and well-organized. It need not be typed, unless you
have really awful handwriting.

• You’ll notice that the problem sets contain some “word problems” that consist primarily
of an English description of a problem, with little or no mathematical notation. This is
intentional. For such problems, you should first extract the essence of the underlying problem
and formalize it mathematically, then solve the problem.

• When a question asks you to “design an algorithm” or “solve” a problem, you are expected
to provide an efficient algorithm, along with a proof of correctness, and an analysis of its
running time.

• Typically, the clearest way to describe your solution is to first explain the key ideas in English,
possibly with the use of some notation (that you clearly define), and possibly some high-level
pseudocode. A solution consisting solely of pseudocode and no accompanying explanation
will receive little if any credit.

• We will award partial credit for partial solutions. However, to be considered for partial credit,
you must clearly indicate where your proof or algorithm falls apart, and what would be needed
to fix it. It is better to acknowledge that you are stuck than to pretend that a bogus solution
is correct.

• Once you have discovered a solution to the problem, try to simplify it, and make your solution
as elegant and clean as possible. This will not only help the grader understand your solution,
but it will give you an opportunity to clarify your thoughts, and gain insight into the problem.
At this point, you may even be in a position to improve your algorithm and analysis. Along
these lines, we will award bonus points for especially elegant or efficient solutions.

Sample problem. 1 Rita, a columnist for the Daily Princetonian, is covering a party. Rita’s job is
to identify a celebrity, if one exists. A celebrity is person that is known by every other person, but
doesn’t know any of them. Rita asks questions to the guests of the following form: “Excuse me pal.
Do you know the person over there?” Assume that all of the guests at the party are polite (even
the celebrity) and answer any question with the correct answer. Explain how Rita can identify
the celebrity using as few questions as possible. Before looking at the solution, think about the
problem on your own.

1Reference: Introduction to Algorithms: A Creative Approach by Udi Manber.

1



Mathematical formulation. Let G = (V,E) be a directed graph. There is a vertex for each
of the n guests, and an edge from u to v if guest u knows guest v. We define a sink of a directed
graph to be a vertex with indegree n − 1 and outdegree 0. A celebrity corresponds to a sink of the
graph. We note that a graph can have at most one sink.

Brute force solution (not much partial credit). The graph has at most n(n − 1) edges,
and we can compute it by asking a question for each potential edge. At this point, we can check
whether a vertex is a sink by computing its indegree and its outdegree. This brute-force solution
asks n(n − 1) questions and does Θ(n2) bookkeeping work building the graph. It yields little, if
any, new insight into the problem. Below, we show how to do it with at most 3(n − 1) questions
and Θ(n) bookkeeping work.

An elegant solution. Our algorithm consists of two phases: in the elimination phase, we elimi-
nate all but one guest from being the celebrity; in the verification phase we check whether this one
remaining guest is indeed a celebrity.

The elimination phase maintains a list of possible celebrities. Initially it contains all n guests.
In each iteration, we delete one guest from the list. We exploit the following key observation: if
Alice knows Bob, then Alice is not a celebrity; if Alice doesn’t know Bob, then Bob is not a celebrity.
Thus, by asking Alice if she knows Bob, we can eliminate either Alice or Bob from the list of possible
celebrities. We use this idea repeatedly to eliminate all guests but one, say Zeus.

We now verify by brute force whether Zeus is a celebrity: for every other guest u, we ask Zeus
whether he knows u, and we ask u whether they know Zeus. If Zeus always answers no, and the
other guests always answer yes, then we declare Zeus as the celebrity. Otherwise, we conclude there
is no celebrity at the party.

Correctness. During the elimination phase, we maintain the invariant that if there exists a
celebrity, then the celebrity is on the list. We can prove this by induction on the number of
iterations. Thus, when the elimination phase ends, either Zeus is a celebrity or there is no celebrity.

Analysis. The elimination phase requires exactly n − 1 questions, since each question reduces
the size of the list by 1. In the verification phase, we ask Zeus n − 1 questions, and we ask the
other n − 1 guests one question. This phase requires at most 2(n − 1) questions, possibly fewer if
Zeus is not a celebrity.

To efficiently implement the elimination phase, we maintain a queue that contains the remaining
celebrities. Initially, we insert all n guests on the queue. At each iteration we remove the top two
elements off the queue, say v and w, and ask v whether she knows w. Depending on the outcome,
we either insert v or w at the end of the queue. Each queue operation takes Θ(1) time, so the
whole process takes Θ(n) time.

An even better solution (bonus points). We note that it is possible to save an additional
blog2 nc questions in the verification phase by not repeating any questions we already asked during
the elimination phase. By maintaining the elements in a queue, the celebrity is involved in (i.e.,
either asked or asked about) at least blog2 nc questions during the elimination phase. This explains
why we chose a queue instead of a stack.

Also, it is not hard to see that any algorithm must ask at least 2(n− 1) questions if there exists
a celebrity, since we must verify that the celebrity doesn’t know anyone, and that everyone knows
the celebrity.

2


