7. Network Flow Applications

7.6 Disjoint Paths
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Edge Disjoint Paths

Disjoint path problem. Given a digraph 6 = (V, E) and two nodes s and
t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
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Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. <

« Suppose there are k edge-disjoint paths P;, ..., P,.

. Set f(e) = 1if e participates in some path P;; else set f(e) = 0.

=« Since paths are edge-disjoint, f is a flow of value k. =

Network Connectivity

Network connectivity. Given a digraph 6 = (V, E) and two nhodes s and
t, find min number of edges whose removal disconnects t from s.

Def. A set of edges F C E disconnects t from s if all s-+ paths uses at
least on edge in F.

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

e
\lbf

Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. =
« Suppose max flow value is k.
« Integrality theorem = there exists 0-1 flow f of value k.
« Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) =1
- continue until reach t, always choosing a new edge
« Produces k (not necessarily simple) edge-disjoint paths. =

Edge Disjoint Paths and Network Connectivity

Menger's Theorem (1927). The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. =<
» Suppose the removal of F C E disconnects t from s, and |F| =
« All s-t paths use at least one edge of F. Hence, the number of edge-
disjoint paths is at most k. =




Disjoint Paths and Network Connectivity

Menger's Theorem (1927). The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. =
= Suppose max number of edge-disjoint paths is k.
« Then max flow value is k.
« Max-flow min-cut = cut (A, B) of capacity k.
. Let F be set of edges going from A to B.
« |F| = k and disconnects t froms. =

Matching

Matching.
« Input: undirected graph G = (V, E).
« M CE is amatching if each node appears in at most edge in M.
» Max matching: find a max cardinality matching.

7.5 Bipartite Matching
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Bipartite Matching

Bipartite matching.
« Input: undirected, bipartite graph 6 = (L U R, E).
« M CE is amatching if each node appears in at most edge in M.
« Max matching: find a max cardinality matching.

matching

1-2', 3-1', 4-5'



Bipartite Matching

Bipartite matching.

« Input: undirected, bipartite graph 6 = (L U R, E).

« M CE is amatching if each node appears in at most edge in M.
» Max matching: find a max cardinality matching.

@ ®

@ @ max matching
1-1',2-2', 3-3' 4-4'
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in 6 = value of max flow in G'.
Pf. <

=« Given max matching M of cardinality k.

. Consider flow f that sends 1 unit along each of k paths.

« fisaflow, and has cardinality k. =

®
®

Bipartite Matching

Max flow formulation.
« Create digraph 6' = (LURU {s, 1}, E').
« Direct all edges from L to R, and assign infinite (or unit) capacity.
» Add source s, and unit capacity edges from s to each node in L.
« Add sink t, and unit capacity edges from each node inR to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in 6 = value of max flow in G'.
Pf. =
« Let f be amax flow in G' of value k.
« Integrality theorem = k is integral and can assume f is O-1.
» Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- IM]| = k: consider cut (LUs,RUt) =

®




Perfect Matching

Def. A matching M C E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?
Structure of bipartite graphs with perfect matchings.
« Clearly we must have |L| = |R].

« What other conditions are necessary?
« What conditions are sufficient?

Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let 6= (L UR, E) be a
bipartite graph with |L| = |R|. Then, 6 has a perfect matching iff
IN(S)| = |S| for all subsets S C L.

Pf. = This was the previous observation.

No perfect matching:
S={2,4,5}
N©)={2',5"}.

Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If abipartite graph 6 = (L U R, E), has a perfect
matching, then [N(S)| = |S| for all subsets S C L.
Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:
5={2,4,5}
N(s)={2',5"}.

Proof of Marriage Theorem

Pf. < Suppose G does not have a perfect matching.
« Formulate as a max flow problem and let (A, B) be min cut in G'.
« By max-flow min-cut, cap(A, B) < | L |.
« Definel,=LNA, Lg=LNB, Ry=RNA.
« cap(A,B) = |Lg|+|R4].
« Since min cut can't use » edges: N(L,) C R,.
o INLAI s TR4I = cap(A,B)-Lgl < ILI-1Lgl = ILsI
« Choose S=L,. =

®
L.={2, 4,5}
Lg={1,3}
® R,=(2',5")
® N(LW) = (2, 5')
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k-Regular Bipartite Graphs

Dancing problem.
= Exclusive Ivy league party attended by n men and n women.
« Each man knows exactly k women; each woman knows exactly k men.
« Acquaintances are mutual.
« Is it possible to arrange a dance so that each woman dances
with a different man that she knows?

Q0
Mathematical reformulation. Does every k-regular
bipartite graph have a perfect matching? (O —C|
Ex. Boolean hypercube. ® ®
@ @
® )
women men

Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
= Generic augmenting path: O(m val(f*) ) = O(mn).
. Capacity scaling: O(m? log C) = O(m?).
« Shortest augmenting path: O(m n'/2),

Non-bipartite matching.

« Structure of non-bipartite graphs is more complicated, but well-
understood. [Tutte-Berge, Edmonds-Galai]

« Blossom algorithm: O(n*). [Edmonds 1965]

« Best known: O(m nl/2). [Micali-Vazirani 1980]

k-Regular Bipartite Graphs Have Perfect Matchings

Theorem. [Kanig 1916, Frobenius 1917] Every k-regular bipartite graph
has a perfect matching.
Pf. Size of max matching = value of max flow in G'. Consider flow:
Uk if W, v)EE
flu,v) = {1 if u=s or v=t¢
0 otherwise

« fisaflowanditsvalue = n = perfect matching. =

©) 1 ®
1k w
1 flow f
T @ ® 11
6 ® ® ® ®
@ @
® ®
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7.7 Extensions to Max Flow
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Circulation with Demands

Circulation with demands.
« Directed graph G = (V, E).
« Edge capacities c(e), e € E.
« Node supply and demands d(v),vE V.
t

demand if d(v) > 0; supply if d(v) < O; transshipment if d(v) = O

Def. A circulation is a function that satisfies:

« Foreache€E: 0 = f(e) = c(e) (capacity)
« ForeachveV: Sfle) - Y fle) = d(v) (conservation)
eintov eout of v

Circulation problem: given (V, E, c, d), does there exist a circulation?

Circulation with Demands

Max flow formulation.

-6 +— supply

-8
G:
4 7 7
10 6 4 9
-7
3 4 11

10 0 T
demand

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
Sdiv)y = Y -d(v) = D

v:id(v)>0 vid(v)< 0

Pf. Sum conservation constraints for every demand node v.

8 -6 +— supply
6 1
4 7 7 I 7
10 6 6 42 9
-7 3
3 4 11
10 0 AN
t capacity gemand
flow
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Circulation with Demands

Max flow formulation.
= Add new source s and sink t.
« For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
« For each v with d(v) > 0, add edge (v, 1) with capacity d(v).
« Claim: G has circulation iff G' has max flow of value D.

7 8 6T supply
%7 7 I
6

4

saturates all edges
leaving s and entering t

4

0
° \@/ e demand
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Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and
there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrality theorem for
max flow.

Characterization. Given (V, E, ¢, d), there does not exists a circulation
iff there exists a node partition (A, B) such that =, d, > cap(A, B)

demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B

Pf idea. Look at min cut inG'.

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
= Send {e) units of flow along edge e.
« Update demands of both endpoints.
capacity
L '
@ 25 —@ @—7—®@
d(v) d(w) d(v) + 2 d(w) - 2
G G

lower bound upper bound

Theorem. There exists a circulation in G iff there exists a circulation
in G'. If all demands, capacities, and lower bounds in G are integers,
then there is a circulation in G that is integer-valued.

Pf sketch. f(e)is a circulation in G iff f'(e) = f(e) - {e) is a circulation
inG'.

Circulation with Demands and Lower Bounds

Feasible circulation.
« Directed graph G = (V, E).
» Edge capacities c(e) and lower bounds /(e), e € E.

« Node supply and demands d(v),vE V.

Def. A circulation is a function that satisfies:

. Foreache€E: l(e) = f(e) = c(e) (capacity)
« ForeachveVv: Sfe) - Yf(e) = d(v)  (conservation)
eintov eoutof v

Circulation problem with lower bounds. Given (V, E, ¢, c, d), does there
exists a a circulation?

30

7.8 Survey Design
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Survey Design

Survey design.
« Design survey asking h; consumers about n, products.
« Can only survey consumer i about a product j if they own it.
« Ask consumer i between c; and ¢;' questions.
» Ask between p; and p;" consumers about product j.

Goal. Desigh a survey that meets these specs, if possible.

Bipartite perfect matching. Special case whenc¢;=¢;' =p,=p,' = 1.

7.10 Image Segmentation
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Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
« Include an edge (i, j) if customer own product i.
« Integer circulation < feasible survey design.

consumers ; products
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Image Segmentation

Image segmentation.
« Central problem in image processing.
« Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.

36



Image Segmentation

Foreground / background segmentation.
« Label each pixel in picture as belonging to
foreground or background. ?
« V= set of pixels, E = pairs of neighboring pixels. bl
« a;= 0 is likelihood pixel i in foreground. °

« b;= 0 is likelihood pixel i in background.
= p;j= O is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
« Accuracy: if a; > b; inisolation, prefer to label i in foreground.
« Smoothness: if many neighbors of i are labeled foreground, we
should be inclined to label i as foreground.
« Find partition (/A, B\)'rha*r maximizes:  Sa,+ ¥b; - I p;

i€4 JEB .)EE
foreground  background [ AN} =1

Image Segmentation

Formulate as min cut problem. ' = (V', E"). O« p; —0
= Add source to correspond to foreground;
add sink to correspond to background g Pij :(
« Use two anti-parallel edges instead of P

undirected edge.

Image Segmentation

Formulate as min cut problem.
= Maximization.
« No source or sink.
« Undirected graph.

Turn into minimization problem.

- Maximizing ~ 2¢:+ 20, ", V)EEFpij
! J L 3
[ AN} =1

is equivalent to minimizing (3, a, +3,cyb;) - Sa, - b, + I p;
Wiev i ciev )

i€EA JEB (iL)EE
a constant ‘Aﬂ{i,j}‘:l
. or alternatively Ya;+3b + I p;
JEB i€EA (i,)H)EE
[N} =1
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Image Segmentation

Consider min cut (A, B) inG".
« A =foreground.

cap(A,B) = Ya;+3b; + I p;

B =N () eE if i and j on different sides,
i€A, JEB <+«— Pj counted exactly once

« Precisely the quantity we want to minimize.

40



7.11 Project Selection
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Project Selection: Prerequisite Graph

Prerequisite graph.

=« Include an edge from v to w if can't do v without also doing w.
« {v,w, x} is feasible subset of projects.

« {v, x} is infeasible subset of projects.

- -0
~ e
~_
/
/ .
// Ny
/ >
/
/
//
//
/
//
/ »
o QO
feasible

- //
~ //
K
/
/ N
O :
//
/
/
/
/
/
//
/
 §
L3
infeasible
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Project Selection

. . .. can be positive or negative
Projects with prerequisites. I

« Set P of possible projects. Project v has associated revenue p,.
- some projects generate money: create interactive e-commerce
interface, redesign web page
- others cost money: upgrade computers, get site license
« Set of prerequisites E. If (v, w)€E€E, can't do project v and unless
also do project w.
« A subset of projects A C P is feasible if the prerequisite of every
project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.

Project Selection: Min Cut Formulation

Min cut formulation.

« Assign capacity « to all prerequisite edge.

« Add edge (s, v) with capacity p, if p, > 0.

« Add edge (v, 1) with capacity -p, if p, < O.

« For notational convenience, define p,= p; = O.

y . / N
© y N
s ~_ /
pu [o'e] // -
~
Py »(}:)7 ©

P %
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Project Selection: Min Cut Formulation

Claim. (A, B) is min cut iff A - {s} is optimal set of projects.
« Infinite capacity edges ensure A - { s} is feasible.
Max revenue because: cap(A, B) = Sp, +  d(-p,)

vEB:p, >0 vEA:p, <0

= 3P, - 2P,

vip,>0 VEA
——

constant

7.12 Baseball Elimination

Open Pit Mining

Open-pit mining. (studied since early 1960s)
= Blocks of earth are extracted from surface to retrieve ore.
« Each block v has net value p, = value of ore - processing cost.
= Can't remove block v before w or x.

45

Baseball Elimination

TUESOAY, SEFIEBER 10, s

Sar Francisco Cljronicle

"See that thing in the paper last week about Einstein? . . .
Some reporter asked him to figure out the mathematics of
the pennant race. You know, one team wins so many of their
remaining games, the other teams win this number or that
number. What are the myriad possibilities? Who's got the
edge?"

"The hell does he know?" UNDERWORLD
"Apparently not much. He picked the Dodgers \
to eliminate the Giants last Friday."

- Don Delillo, Underworld
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Baseball Elimination

Atlanta 8
Philly 80 79 3 1 - 0
New York 78 78 6 6 0 -

Which teams have a chance of finishing the season with most wins?

Montreal eliminated since it can finish with at most 80 wins, but
Atlanta already has 83.

Wi+ r<w; = feam i eliminated.

Only reason sports writers appear to be aware of.

Sufficient, but not necessary!

Baseball Elimination

Baseball elimination problem.

Set of teams S.

Distinguished team s € S.

Team x has won w, games already.

Teams x and y play each other r, additional times.

Is there any outcome of the remaining games in which team s
finishes with the most (or tied for the most) wins?

o n
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Baseball Elimination

Team Wins Losses To play Agams‘r =ry

Atlanta 8
B 79 3 - o2
New York 78 78 6 6 0 - 0
Montreal 77 82 3 2 0 -

Which teams have a chance of finishing the season with most wins?
« Philly can win 83, but still eliminated . ..
« If Atlanta loses a game, then some other team wins one.

Remark. Answer depends not just on how many games already won and
left to play, but also on whom they're against.

50

Baseball Elimination: Max Flow Formulation

Can team 3 finish with most wins?
« Assume team 3 wins all remaining games = wjs + r3 wins.
« Divvy remaining games so that all teams have < ws + r; wins.

team 4 can still
-4 win this many

games leff /@ more games
0

\

@'—r‘24 =7

® ®

2-5

game nodes @ team nodes
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Baseball Elimination: Max Flow Formulation

Theorem. Team 3 is not eliminated iff max flow saturates all arcs
leaving source.
« Integrality theorem = each remaining game between x and y
added to number of wins for team x or teamy.
« Capacity on (x, t) arcs ensure no team wins oo many games.

team 4 can still
1-4 win this many

games left /@ more games
oo

®
game nodes @ team nodes

Baseball Elimination: Explanation for Sports Writers

‘ Wi | ri | NY | Bal [ Bos | Tor | Det |
NY 75 59 3 8 7 3

28 -
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - -
49 86 27 3 4 0 o0 -

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?
« Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}
« Have already won w(R) = 278 games.
= Must win at least r(R) = 27 more.
« Average team in R wins at least 305/4 > 76 games.

53
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Baseball Elimination: Explanation for Sports Writers

i Wi | ri | NY | Bal [ Bos | Tor | Det |
NY 75 59 3 8 7 3

28 -
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - -
49 86 27 3 4 0 o0 -

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?
» Deftroit could finish season with 49 + 27 = 76 wins.
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Baseball Elimination: Explanation for Sports Writers

Certificate of elimination.

# wins # remaining games
7SS, wl)="3w, &=} Sg,
i€T xyET

LB on avg # games won
——

1 WD+em)

T >w_+g, thenziseliminated (by subset T).

Theorem. [Hoffman-Rivlin, 1967] Team z is eliminated if and only if
there exists a subset T that eliminates z.

Proof idea. Let T = team nodes on source side of min cut.
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Baseball Elimination: Explanation for Sports Writers Baseball Elimination: Explanation for Sports Writers

Pf of theorem. Pf of theorem.
« Use max flow formulation, and consider min cut (A, B). « Use max flow formulation, and consider min cut (A, B).
. Define T* = team nodes on source side of min cut. . Define T* = team nodes on source side of min cut.
» Observe x-y € A iff bothx € T*andy € T*. « Observe x-y € A iff bothx € T*andy € T*.
- infinite capacity edges ensure if x-y € A thenx€ Aandy € A . g(5-{z}) > cap(A, B)
-ifxEAandy € Abut x-y €T, then adding x-y to A decreases capacity of game cdges leaving s capacity of team cdges leaving s
capacity of cut = eS-{H-eT +  Zwrg-wy)
XET*

8 -{zh)-g(T*) - w(T*) + IT*l(w +g.)

FQ) O
/ team x can still win this . Rearranging terms:  w_+g. < w(T*)+g(T*)
18 7%

/
/ many more games

/
/
/
/ - ~
/ - ~

games left

/
> © \\“\\
i =
Z
r‘24:74’®4 % —m—wz+r‘z -w,—(t
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