5. Divide-and-Conquer

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

Algorithm Design by Eva Tardos and Jon Kleinberg - Slides by Kevin Wayne + Copyright © 2004 Addison Wesley

5.1 Mergesort

Algorithm Design by Eva Tardos and Jon Kleinberg -« Slides by Kevin Wayne + Copyright © 2004 Addison Wesley

Divide-and-Conquer

Divide-and-conquer.

« Break up problem into several parts.

« Solve each part recursively.

» Combine solutions to sub-problems into overall solution.

Most common usage.

« Break up problem of size n into two equal parts of size 4n.

« Solve two parts recursively.

. Combine two solutions into overall solution in linear time.

Consequence.
« Brute force: n?.
« Divide-and-conquer: n log n.

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.
« List files in a directory.
= Organize an MP3 library.
« List names in a phone book.
= Display Google PageRank results.

Problems become easier once sorted.

« Find the median.

« Find the closest pair.

« Binary search in a database.

« Identify statistical outliers.

« Find duplicates in a mailing list.

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of particles.

Book recommendations on Amazon.
Load balancing on a parallel computer.

Mergesort

Mergesort.
.« Divide array into two halves.
« Recursively sort each half.
« Merge two halves to make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide 0O(1)
A G L O R H I M S T sort 2T(n/2)
A G H I L M O R S T merge O(n)

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T =4 T([n2]) + T(|n/2]) + o il
solve left half solve right half ~ ™Mersing

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Merging
Merging. Combine two pre-sorted lists into a sorted whole.
How to merge efficiently? >]

« Linear number of comparisons.
« Use temporary array.

gEeEs - EE e
A G H aC -

Challenge for the bored. In-place merge. [Kronrud, 1969]
f

using only a constant amount of extra storage

Proof by Recursion Tree

0 if n=1
T(n) = 2T(n/2) + n otherwise

— ==
sorting both halves ~merging

‘/T(n)\’ n
T(n/2) T(n/2) 2(n/2)
G T(n/4) T4 T4 4(n/4)
log,n
2k(n / 2K
T2 T@ TR TR TR TER) T T /2 (2)

nlogyn

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
?

assumes n is a power of 2
0 if n=1
T(n) = 2T(n/2) + n otherwise

==
sorting both halves ~merging

Pf. Forn>1: T(n) 2T(n/2)
n n
T(n/2)
nl/2
T(nl4)

= +1+1
nl4

= Tn/m) +1+-+1
nin —

log, n
= log,n

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <n[Ign].
t
0 if n=1 logen
T(n) = T([n/Z]) + T(|_n/2J) + n otherwise

solve left half solve right half ~ Merging

Pf. (by induction on n)

« Base case: n=1

« Definen;=|n/2], n,=[n/2].

« Induction step: assume true forl,2,.., n-1.

T(n)

IA

T(n) + T(ny) + n 1,
n,[lgn,] + m[lgn,| + n
= nflgny] + ny[lgn] + n
= n[lgn]| + n

= n([lgn]-1) + n

= n[lgn]

[n/2]
< [2“5”/2]
- 2l
= lgn, = [lgn] -1

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
f

assumes n is a power of 2
0 if n=1
T(n) = 2T(n/2) + n otherwise

—— ==
sorting both halves ~ merging

Pf. (by induction on n)

« Basecase: n=1.

« Inductive hypothesis: T(n) = nlog, n.
« Goal: show that T(2n) = 2n log, (2n).

TQn) = 2T(n) + 2n
= 2nlogyn + 2n
= 2n(log,(2n)-1) + 2n
= 2nlog,(2n)

5.3 Counting Inversions

Algorithm Design by Eva Tardos and Jon Kleinberg + Slides by Kevin Wayne - Copyright © 2004 Addison Wesley

Counting Inversions Applications

Music site tries to match your song preferences with others. Applications.
« You rank n songs. « Voting theory.
« Music site consults database to find people with similar tastes. « Collaborative filtering.
» Measuring the "sortedness" of an array.
Similarity metric: number of inversions between two rankings. « Sensitivity analysis of Google's ranking function.
« Myrank: 1,2, .., n. « Rank aggregation for meta-searching on the Web.
« Your rank: ay, ay, ..., @ = Nonparametric statistics (e.g., Kendall's Tau distance).

» Songsiand jinverted if i<j, but a;>a;.

Songs
. 2 = Inversions
1 2 3 4 5 ~fersions
™ 1 3 4 2 5 3-2.4-2
[
Brute force: check all ©(n?) pairs i and j.
13 14
Counting Inversions: Divide-and-Conquer Counting Inversions: Divide-and-Conquer
Divide-and-conquer. Divide-and-conquer.
« Divide: separate list into two pieces.
1 5 4 810 2 6 9 1211 3 7 1 5 4 8 10 2 6 9 12 11 3 7 Divide: O1).

HEERNE BRRERE

Counting Inversions: Divide-and-Conquer

Counting Inversions: Divide-and-Conquer
Divide-and-conquer.

Divide-and-conquer.
« Divide: separate list into two pieces. « Divide: separate list into two pieces.
« Conguer: recursively count inversions in each half. = Conquer: recursively count inversions in each half.

. Combine: count inversions where q; and a;are in different halves,
and return sum of three quantities.

1 5 4 810 2 6 9 12 11 3 7 Divide: O(1).

HEEENE BBREBRE oo HEERENE BRRERE
5 blue-blue inversions 8 green-green inversions

5 blue-blue inversions
5-4,5-2,4-2, 8-2,10-2

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

Conquer: 2T(n/ 2)

8 green-green inversions
6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7

9 blue-green inversions Combine: ???
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total =5+ 8 +9 =22,

Counting Inversions: Combine

Counting Inversions: Implementation
Combine: count blue-green inversions

Pre-condition. [Merge-and-Count] A and B are sorted.
. Assume each half is sorted. E

Post-condition. [Sort-and-Count] L is sorted.
» Count inversions where g; and a; are in different halves.

« Merge two sorted halves into sorted whole.

to maintain sorted invariant

Sort-and-Count (L) {
if list L has one element
return 0 and the list L
BEEDDDE BODEES
6 3 2 2 0 0

Divide the list into two halves A and B
(rp, A) < Sort-and-Count(A)
Count: O(n) (ry, B) < Sort-and-Count (B)
(r , L) < Merge-and-Count(A, B)

13 blue-green inversions: 6 +3+2+2+0+0

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n) return r = r, + r; + r and the sorted list L

T(n) = T(|n/2])+T([n/2])+O(n) = T(n)=O(nlogn)

20

5.4 Closest Pair of Points

Algorithm Design by Eva Tardos and Jon Kleinberg - Slides by Kevin Wayne + Copyright © 2004 Addison Wesley

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

o L ° ° L]
L] L])
° °
[° .. °
) .] ° ° .
°
° L] L] ° L]) °
[o ® °
O °

23

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
=« Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ©(n?) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

f

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

° o O
L
N
:o o % °
e o o
° ° © oo
°
° o0 ° o
o.. O .: °
°
© o, ° ° o.
O °

22

24

Closest Pair of Points Closest Pair of Points

Algorithm. Algorithm.
« Divide: draw vertical line L so that roughly 2n points on each side. « Divide: draw vertical line L so that roughly n points on each side.
« Conquer: find closest pair in each side recursively.

25 26

Closest Pair of Points Closest Pair of Points

Algorithm. Find closest pair with one point in each side, assuming that distance < 3.
« Divide: draw vertical line L so that roughly n points on each side.
. Conquer: find closest pair in each side recursively.
« Combine: find closest pair with one point in each side. « seems like o(n?)
« Return best of 3 solutions.

6 = min(12, 21)

27 28

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.
« Observation: only need to consider points within 3 of line L.

29

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.
« Observation: only need to consider points within 3 of line L.
= Sort points in 23-strip by their y coordinate.
= Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.
« Observation: only need to consider points within & of line L.

= Sort points in 28-strip by their y coordinate.

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with
the ith smallest y-coordinate.

Claim. If |i- j| =12, then the distance between
s; and s; is at least 5.
Pf.
«» No two points lie in same $3-by-33 box.
= Two points at least 2 rows apart T

have distance = 2(39). = 2 rows

Fact. Still true if we replace 12 with 7.

[X X]
© |
(1]
o (0]
(2:)
(2]
e
[X X J
5 5

30

(N (N0
> >

(S
>

32

Closest Pair Algorithm Closest Pair of Points: Analysis

Running time.

Closest-Pair(p,, .., P,) {
Compute separation line L such that half the points

are on one side and half on the other side. Oln log n) T(n) = 2T(n/2) + O(nlogn) = T(n) = O(n logzn)
d, = Closest-Pair(left half)

d, = Closest-Pair(right half) 2T(n/ 2)

d = min(3,, J,)

Q. Can we achieve O(n log n)?
Delete all points further than 8 from separation line L 0o(n)

Sort remaining points by y-coordinate. O(n log n) A. Yes. Don't sort points in strip from scratch each time.

« Each recursive returns two lists: all points sorted by y coordinate,
Scan po:!.nts in y-order ant:'l compare distance between and all poin‘rs sorted by x coordinate.
each point and next 11 neighbors. If any of these O(n)

distances is less than §, update §. « Sort by merging two pre-sorted lists.

return §.
} T(n) = 2T(n/2) + O(n) = T(n) = O(n logn)
Integer Arithmetic
5 5 In’reger‘ MUH’IPIICGTIOH Add. Given two n-digit integers a and b, compute a + b.

= O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a x b.
« Brute force solution: ©(n?) bit operations.

11010101
*01111101
110101010
Multiply 000000000
110101010
110101010
11 1 1 1 1 0 1 110101010
1 1 0 1 0 1 O 1 110101010
+ 0 1 1 1 1 1 0 1 110101010
$1 o 1 o0 1 0 O 1 O 000000O0O0O
Add 01101000000000010

Algorithm Design by Eva Tardos and Jon Kleinberg -« Slides by Kevin Wayne + Copyright © 2004 Addison Wesley 36

Divide-and-Conquer Multiplication: Warmup

To multiply fwo n-digit integers:
« Multiply four 2n-digit integers.
. Add two $n-digit integers, and shift to obtain result.

ni2
= 2"%x + x,

otV
Xy = (2nl2'x1+xo) (znlz‘% +J’0) =2"xy + znlz'(xl}ﬁ)'*xo}’l) + Xo)o

_ on2

T(n) = 4T(n/2) + Om) = T(n)=0(?)

—— =
recursive calls add, shift

f

assumes n is a power of 2

37

Karatsuba: Recursion Tree

TW:{ 3T((:1/2) +n fm’;:wlise T3 @ - (%)];Q = -2
i 3-1
T(n) n
T
T(n/2) T(n/2) T(n/2) 3(n/2)
SN N N

T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 9(n/4)
T(n/ 2% 3k(n / 2%)

T2) T TR TE) T@) T@ TR T@) 31n(2)

39

Karatsuba Multiplication

To multiply two n-digit integers:
. Add two 3n digit integers.
« Multiply three 2n-digit integers.
« Add, subtract, and shift $n-digit integers to obtain result.

= 2"x + x,
y o= 2%+
xy = 2"-xp + znlz'(x1YO+XOY1) + XoVo
= 2"xy + 2"/2~((x1+x0)(y1+y0) ‘xl)’l‘xo)’o) + %Yo
A B A C ©

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers
in O(n!385) bit operations.

T = T([n/2]) + T([n/2]) + T(1+[2/2]) + = ©(m)

-
recursive calls add, subtract, shift

= T(n) = 0(n10g23) _ O(nl.sss)

Matrix Multiplication

38

Algorithm Design by Eva Tardos and Jon Kleinberg + Slides by Kevin Wayne - Copyright © 2004 Addison Wesley

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Cll 12 cln 11 12 aln bll 1. . blﬂ

n
- @ @ c a, a a b, b b
CU = ank bk, .21 .zz _ .Zl .zz 2 x .21 .zz ?n
k=1 8 S 3 g 8 S 8
Cu i ¢ a, a, a b, b, - b,

Brute force. ©(n%) arithmetic operations.

Fundamental question. Can we improve upon brute force?

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

C, C A A B B,
o al-ln el e - e
B = (4,+4,)x B,
Py = (4 +4y)x By
G, = B+E-B+EK B, = A4y x(By-B)
G, = R+h F; (dyy + 4yy) x (B + Byy)
G = B+E F (Ayy = Ay) X (Byy + By,)
G, = B+R-B-P B (4= 4y)) x (B + Byy)

« 7 multiplications.
. 18 =10 + 8 additions (or subtractions).

43

Matrix Multiplication: Warmup

Divide-and-conquer.

. Divide: partition A and B into $n-by-3n blocks.

. Conquer: multiply 8 $n-by-3n recursively.

« Combine: add appropriate products using 4 matrix additions.

[Cn CIZ:I _ [All AIZ] ~ [Bn Blz} G = (A“xB”) + (A]2XBZI)
Cn G - Ay Ay B, B, C, = (AuXBlz) + (A12XB22)
G = (AZIXBII) + (A22X321)
Cy = (A21 XB12) + (AZZXBZZ)

T(n)= 8T(n/2) + o(n’) = T(n)=0(n">)

A 3
recursive calls add, form submatrices

42

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)
. Divide: partition A and B into $n-by-3n blocks.
. Compute: 14 $n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 $n-by-4n matrices recursively.
« Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

« Assume n is a power of 2.
« T(n) = # arithmetic operations.

T()= 7T(n/2)+ ©®*) = T(n)=0@n"2")=0m"*")

N S
recursive calls add, subtract

44

Fast Matrix Multiplication in Practice

Implementation issues.
« Sparsity.
» Caching effects.
« Numerical stability.
« Odd matrix dimensions.
« Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."
» Advanced Computation Group at Apple Computer reports 8x

speedup on G4 Velocity Engine when n ~ 2,500.
« Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other
matrix ops.

45

Fast Matrix Multiplication in Theory

Best known. O(n2-376) [Coppersmith-Winograd, 1987.]
Conjecture. O(n?*) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively less
practical.

47

Fast Matrix Multiplication in Theory

. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
Yes! [Strassen, 1969] ="y = 0(n ")

>0

. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
Impossible. [Hopcroft and Kerr, 1971]

>0

O 2% = 0(n %)

. Two 3-by-3 matrices with only 21 scalar multiplications?
. Also impossible. 0@) = O(n ™)

>0

. Two 70-by-70 matrices with only 143,640 scalar multiplications?
. Yes! [Pan, 1980]

>0

@(nlugm I43641)) -0 280)

Decimal wars.
« December, 1979: O(n2521813),
. January, 1980: O(n?:521801),

46

