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Abstract 

Clustering is of central importance in a number of disciplines 
including Machine Learning, Statistics, and Data Mining. 
This paper has two loci: (I) It describes how existing 
algorithms for clustering can benefit from simple sampling 
techniques arising from work in statistics [Po184]. (2) 
It motivates and introduces a new model of clustering 
that is in the spirit of the "PAC (probably approximately 

correct)" learning model, and gives examples of efficient 
PAC-clustering algorithms. 

1 In t roduc t ion  

The problem of clustering data into subsets that are 
"similar" has recently become an almost necessary tool 
for data mining applications that deal with very large 
datasets such as web pages, click streams, multime- 
dia data, business transactions, or telecommunications 
phone records. 

In this paper we give general techniques for trans- 
forming existing approximate clustering algorithms into 
ones which access much less of the input dataset, yet 
yield comparable approximation guarantees. Using 
sampling techniques from statistics and computational 
learning theory [Po184, Hau92], we show that the num- 
ber of records needed is at most logarithmic and in 
some cases independent of the cardinality of the in- 
put dataset. The sampling results also motivate a new 
model of clustering that is in the spirit of the "PAC 
(probably approximately correct)" learning model. We 
show how the standard k-median problem fits into this 
new setting, and also give an efficient algorithm for clus- 
tering k-term DNF expressions. 

k -med ian  cluster ing Let (X, d) be a metric space. 
The k-median problem is as follows. Given a finite 
subset R C X of points, find a set c l , . . . ,Ck  that 
minimizes ~xeRmini  d(x, ci). That is, find k cluster 
centers so that the total distance from each point in 
S to its nearest center is minimized. When it is 
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required that each ci be chosen from R, we call this 
the discrete k-median problem. If we allow also that 
ci E X - R, we call this the continuous version of 
the k-median problem. The problems are NP-hard, 
and numerous approximation algorithms have been 
considered (e.g., [CG99, CGTS99, JV99]) with running 
times that are typically ()(n 2) where n = [R[. (Note 
that for an arbitrary metric space, to query for all 
pairwise distances alone requires O(n 2) time.) 

In many of the data mining applications mentioned 
above, the number of data items n is so large that it 
tends to dominate other parameters, hence the desire for 
algorithms that are not only polynomial, but in fact are 
sublinear in n. Indyk lind99] gives a O(nk) algorithm 
that outputs 2k centers that are a O(1)-approximation 
to the optimum k centers with constant probability. 
The sample sizes needed for his algorithm are (9(vf~). 
Similar sampling techniques are used to approximate 
nearest neighbor computations. That these approaches 
work is often shown by arguing that sampled data is in 
some sense representative of the entire dataset. 

Previous work in statistics on uniform convergence 
characterizes conditions under which a single sample S 
is sufficiently large so that for any function f chosen 
from a class F, the empirical mean of f computed on 
the sample is close ("within epsilon") of the true mean 
of f on the entire distribution. Similarly, work in com- 
putational learning theory has addressed sample bounds 
necessary and sufficient for computing the average error 
of a hypothesis f with respect to an unknown function 
to be learned, when f is chosen from some class F of 
possible hypotheses. 

A key property in both of these approaches is that 
the sample bounds do not depend on the domain of 
f (which may be infinite), but rely instead on any of 
a variety of combinatorial or structural characteristics 
of the class F itself. (For example, the VC-dimension 
of F, the pseudo-dimension or metric dimension, In F 
when F is finite.) These results say, in essence, that 
one does not need a sample S that is representative of 
the entire dataset R, but rather it is sufficient to obtain 
a sample S that adequately represents the behavior of 
every function of F on the entire dataset. 

We recast clustering as the problem of choosing 
from a class of possible clustering functions C a clns- 
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tering function that has the smallest mean value over 
the dataset. Applying sampling results we will show 
that it is sufficient to simply find a clustering function 
that has the smallest mean value on the sample. Now 
if a standard k-median algorithm for finding approxi- 
mately optimal k-clusterings is applied to the sample, 
we obtain an approximation algorithm that requires a 
sample whose size depends only on the desired accuracy 
and on other necessary parameters (which in some cases 
involve the diameter of the space) but is independent of 
the cardinality of the set R to be clustered. 

More specifically, suppose that (X, d) is a metric 
space, with d : X x X --~ [0, M]. Further suppose that 
there exists an approximation algorithm for k-median 
clustering on (X, d) such that for any finite R C_ X to 
be clustered, the clustering algorithm runs in time T(n) 
and guarantees that A(R) < aOpt(R), where n = IRI, 
A(R) is the sum of distances from each point to its near- 
est center as found by the clustering algorithm, Opt(R) 
is the sum of distances from each point to its nearest 
center in an optimum k-median clustering, and a is 
some fixed constant. Then we can apply the above tech- 
nique to obtain a new k-median clustering algorithm 
that runs in time T(O((--~)2(kln ~))) and that with 
probability at least 1 - ~f, finds a k-median clustering 
such that for any subset R C X A(R) < 2aOpt(R) + e. 
Various concrete results are now obtained by consider- 
ing values of a and T from extant clustering approxi- 
mation algorithms. Thus, our results can replace exist- 
ing O(n 2) approximate clustering algorithms with algo- 
rithms whose dependence on n is O(ln 2 n). The price 
paid is the ratio of the diameter M of the space to the 
desired accuracy e. 

For the particular case of clustering in d- 
dimensional Euclidean space, we obtain time and sam- 
ple bounds completely independent of the input dataset. 
By running any a factor approximation algorithm on 
a sample of size ()((--~A)2k), we obtain a k-clustering 
with value A, and for which the same guarantee holds: 
For any finite set X C R d to be clustered A(X) < 
aOpt(X) + e. 

The dependence on M in the sample size and 
running time cannot be removed by isometric scaling of 
the problem. In particular, by normalizing a problem 
with large diameter M down to 1 (thus reducing the 
required sample size by a factor of 1/M2), clustering, 
and then rescaling back to M, the resulting clustering 
guarantee will blow up to c~Opt(X) + eM. 

Unless otherwise stated, all of our results apply to 
both the continuous k-median problem, and the discrete 
k-median problem. 

PAC cluster ing 
A common view of clustering is that of partitioning 

a collection of points into similar sets. A more general 
view takes into consideration two other aspects of the 
problem: First, the points may come from an external 
environment and represent only a sampling of points 
whose classification or partitioning is of interest despite 
their absence from the dataset. Second, we may 
be interested in an objective function that measures 
the quality of a clustering based not only on the 
finite sample, but rather on the entire distribution- 
weighted space. (For example, objective functions that 
incorporate notions of average distribution-weighted 
distance). In the case of k-median, the clustering 
output is automatically a partition of the entire space 
via the induced Voronoi diagram, so this first issue, 
though not the second, is addressed. Other types of 
clustering may address neither of these points. 

To properly deal with these two aspects of clus- 
tering, we introduce "probably approximately correct 
(PAC)" clustering of arbitrary probability distributions 
on a potentially infinite space, as well as the use of 
"conceptual" clustering, where each cluster is chosen 
from some concept class of cluster descriptions. Our 
definitions and results are similar to investigations on 
PAC learning [Val84] from learning theory and machine 
learning. We show how k-median clustering fits into the 
new framework, and then finish with a new application 
to DNF clustering. 

Re la t ed  Work  Besides k-median, numerous other 
measures exist for evaluating the cost of a clustering. 
One common measure, known as k-center, is the max- 
imum radius of any cluster. Minimizing the maximum 
radius is NP-hard, although constant factor approxima- 
tion algorithms do exist [HS86, Gon85, FG88]. Other 
cost measures have been proposed and studied that 
we do not describe here. New clustering measures are 
still being defined, e.g., Kannan, Vempala and Vetta 
[KVV00] use the notion of conductance to evaluate a 
clustering. 

Algorithms for solving these clustering problems 
tend to share a common behavior: they make multiple 
passes through the data. Thus applying such algorithms 
to very large datasets may be difficult. 

Techniques for coping with large datasets typi- 
cally involve computing some compressed representa- 
tion (usually a smaller set of points). For example, for 
the k-center problem, k points are shown to be a suffi- 
cient representation for a constant-factor approximation 
algorithm in the incremental model [CCFM97]. More 
recently, Alon, Dar, Parnas, and Ron [ADPR00] com- 
pute a compressed representation using sampling. Their 
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algorithms find clusterings where all but a small fraction 
of the points have approximately optimum cost. 

For the k-median problem, we have already noted 
that  sampling can be used to obtain a good represen- 
tation [Ind99]. The results given here also support the 
viability of sampling. Another technique [GMMO00], 
based on divide and conquer, partitions the data into 
pieces and uses clustering itself as a method of com- 
puting a compressed set of points. Divide and conquer 
techniques do not compete with sampling and in fact 
can be used in tandem to obtain more efficient algo- 
rithms [GMMO00]. 

2 P r e l i m i n a r i e s  

As discussed in the introduction, we express clusterings 
as functions whose mean values are to be estimated. 
Let iX, d) be a metric space, and let c l , c2 , . . .  ,ca • X .  
(These are the cluster "centers".) 

The choice of c l , . . . , c k  determine a natural clus- 
tering which we denote fc~ ..... ok: each point of X is 
assigned to the closest center ci, i.e., f~l ..... ck(x) = 
mini{d(x, c~)}. The cost of a clustering with respect 
to X is just ~ x e x  f~l ..... ck (x). The k-median cluster- 
ing problem is the following: Given finite X find centers 
c l , . . . ,Ck  that  minimize cost ~ x e X  fc~ ..... c~(x). Clearly, 
this is equivalent to finding centers that  minimize the 
expected value Exile1 ..... ~) .  The class of "clustering 
cost functions" that  we may choose from are exactly 
these: Fx  = {fc~ ..... ~ : c l , c 2 , . . . , c k  • X } .  

Because X may be large (we'll see how to deal with 
infinite X in Section 4) we will draw a sample S from X 
and show that  with high probability minimizing Es i f )  
is like minimizing E x ( f ) .  Moreover, approximately 
minimizing Es(ff) is like approximately minimizing 
E x  (.f). Suppose that  f s  has minimum sample cost and 
that  f x  has minimum true cost over X. If we have a 
constant (c~) factor approximation algorithm, we show 
that  a sample of sufficiently large size exists such that  
with probability at least 1 - ~f, E x  i f x )  _< s E x  ( f s )  + e. 

3 Sub l inea r  T i m e  A p p r o x i m a t e  k - m e d i a n  
C l u s t e r i n g  

Given a constant (c~) factor approximation algorithm 
that  runs in time Tin) ,  we show the following (1) In an 
arbitrary metric space (X, d) we can compute in time 
T( (9 ( ( -~ )2k logn ) )  a k clustering such that  for all X,  
(A (X)  - 2aOPT(X) )  < e with high probability. (2) 
Assuming a distance metric on R d, we can compute in 
time TiOi i -~A)2k))  a k clustering such that  for all X 
iAi  X )  - v ~ O P T i X ) )  < ~ with high probability. The 
section concludes with a discussion of how to obtain M 
if it is unknown. 

3.1 C l u s t e r i n g  in M e t r i c  Space  Let (X,d) be 
a metric space and let S be a sample drawn inde- 
pendently and identically from X. Assume we com- 
pute a k-median clustering with approximately min- 
imum sample cost, i.e., approximately minimum av- 
erage distance from a point in S to its closest cen- 
ter. We'll show that  this clustering also has approx- 
imately minimum true cost, i.e., approximately mini- 
mum average distance from a point in X to its clos- 
est center. To make this more formal, consider the 
family of k-median cost functions FD = (.fcl ..... c~ : 
ci • D, .fc~ ..... ck (x) = mini d(x, ci)}. We show that  the 
discrete k-median clustering ds with minimum sample 
cost, i.e., ds =argmin/eFsEsi. f) ,  is an approximately 
good clustering of X,  in other words, E x  (ds) is close to 
minfeFx Ex( . f ) .  

To prove our result, we show that  the sample 
cost converges to the true cost uniformly for each k- 
median cost function quickly. Then combining known 
relationships between optimum discrete and continuous 
clusterings with uniform convergence we obtain our 
result. We begin with a uniform convergence lemma 
due to Haussler [Han92]/Pollard [Po184]. 

LEMMA 3.1. (HAUSSLER/POLLARD) Let F be a .finite 
set of functions on X with 0 < .f(x) _< M .for all .f E F 
and x E X .  Let S -- x l , . . . , x m  be a sequence o f r o  
examples drawn independently and identically from X 
and let e > O. P r ( 2 f  E F : I E x i f )  - E s i f ) l  _> e) _< ~f 

M 2 when m _> ~ ( l n  IFI + In ~). 

The above lemma implies fast uniform convergence 
of the k-median family of cost functions. Note that  
IFI = O(n k) since there are (~) ways to select k centers 
from n points. Thus the probability that  there exists a 
k-median clustering f whose sample cost deviates from 
its true cost by more than e is at most ~ when the sample 
size is (9( ( -~)2k  log n). 

The following folklore lemma describes the relation- 
ship between the optimum discrete and continuous clus- 
terings isee for example [GMMO00]). 

LEMMA 3.2. The sample cost of ds is no more than 
twice the sample cost of cs, where cs is the optimum 
continuous clustering of S, i.e., Cs =argmini~f  x E s ( f ) .  

The previous lemmas can now be combined to 
obtain our metric space result. Let ds  be a constant 
(c~) factor approximation to ds and dx  be the optimum 
k-median clustering of X. 

THEOREM 3.1. In an arbitrary metric space (X, d) as- 
suming a constant a-factor k-median approximation al- 
gorithm that runs in time T(n),  we can draw a sample 
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ds ds cs dx 
'Es (2) <-a. (3) < 2 - ( 4 )  <- (5) 

E x  (1) (6) 

Table 1: Proof of Theorem 3.1. 

S of size at least 8 ( - ~ ) 2 ( k l n n  + ln-~) and obtain a 
k-median clustering ds in time T(ISI) such that with 
probability at least 1 - ~f, E x ( d s )  - 2 a E x ( d x )  <_ e. 

Proof. The main idea is to prove that  the sample and 
true costs of ds and dx  are all roughly the same. 
The first and last steps of the proof utilize uniform 
convergence (Lemma 3.1). The middle steps of the proof 
use properties of the type of clustering computed. The 
sequence of steps is shown in Table 1. The rows of the 
table correspond to the sample and true cost and the 
columns correspond to the different clusterings. 

By uniform convergence and by the sample size 
given in the statement of this theorem, the sample 
and true costs for each f E Fx  are within 4~ with 
high probability, i.e., [ E s ( f ) -  E x ( f ) [  <- 4~ with 
probability at least 1 -  ~. We apply uniform convergence 

(Lemma 3.1) to the two clusterings ds and dx  to obtain 
tha t  the values (1) and (2) as well as the values (5) and 
(6) in Table 1 are close. 

Observe that  the sample cost of ds is within a factor 
of a of d~ since we ran an a-approximation algorithm 
on the sample S, hence the inequality between (2) and 
(3) in Table 1. The relationship between between (3) 
and (4) follows since the sample cost of ds is within a 
factor of 2 of the sample cost of cs (Lemma 3.2). By 
the optimality of cs, the sample cost of cs is less than 
the sample cost of dx ,  hence the inequality between (4) 
and (5). 

The theorem follows by combining the above steps 
appropriately. [] 

3.2  C l u s t e r i n g  in E u c l i d e a n  Space  In this sub- 
section we assume a distance metric on R d. There are 
two problems we can consider. The first is given a collec- 
tion X o f n  points in R d, how large of a sample must we 
draw from X before clustering the sample well implies 
tha t  we clustered X well. This problem was solved in 
the previous section since it is a restricted version of the 
metric space clustering problem. The second problem 
we can define is suppose X is really R d, or perhaps some 
subspace of R d, how large of a sample must we draw 
from X before clustering the sample well implies that  we 
approximately minimized the expected true clustering 

cost 1. We now consider this second problem (although 
the results will also still apply to the first problem). 

The proof techniques are similar to the metric space 
result in that  we rely on both uniform convergence and 
the sample clustering's approximate optimality. Note 
that  since X C R d, IX[ is now uncountably infinite 
and thus the number of different k-median clusterings 
(i.e., IF x[ is also uncountably infinite). Following Pol- 
lard [Po184], in the sample bounds we derive, the num- 
ber of different k-median clusterings which was previ- 
ously O(n k) is replaced with an e-net of size O((--Med)dk). 
Thus the sample size we obtain is independent of n, 
namely O((-~A)2k).  

An e-net, F~, for F is a family of functions such 
tha t  for each f E F and for any set X of points there 
exists an fe E F~ such that  [ E x ( f - f ~ ) l  <_ e. Intuitively 
an e-net [Po184] is a rich, representative set of functions 
tha t  ensures any element of F is close to some element 
of the e-net. To obtain an e-net for F,  we consider 
the subset of k-median cost functions tha t  correspond 
to centers at evenly spaced "gridpoints". We say tha t  
(Xl,... ,Xd) is a d-dimensional 7-gridpoint if for each 
x~, xi is a multiple of 7. In the following lemma we'll 
show that  if these gridpoints are spaced close enough 
together then we have an e-net for F.  (The proof applies 
to any distance metric d on R d, although for purposes 
of presentation, we assume the L2 distance metric.) 

LEMMA 3 . 3 .  ( k - M E D I A N  HAS A SMALL e-NET)  Let  P 
be a set of n points in R d of bounded diameter M.  
Let F = {fc, ..... ck : fcl ..... ok(x) = minid(x ,  ca)}. Let 
F~ = {fcl ..... ck : fc, ..... ~h(x) = minid(x,  ca) whereca is 
a d-dimensional ~-gridpoint in the bounded diameter 
space}. For each f in F,  there exists fc E Fe such that 
IEp( I  - A)l <- e. 

Proof. For f = fc, ..... c k e  F define .~ = f e l , . . . , f e k  
to be the function in Fe with the property that  6i is 
the nearest "grid point" to ca, so tha t  d(ca,~) <- e. 
Such a ci exists since by assumption Fe is of suffi- 
cient granularity for the Euclidean distance measure: 

We now show that  for all x e X,  If(x) - f~(x)l <- e. 
That  EEpIf-AI will immediately follow (since if for each 
x the difference is at most e the expected difference can't  
be greater). Let x be a point that  is closest to center 
ca. Since we want to bound the difference between f ( x )  
and f~(x), it is sufficient to show tha t  d(x, ca) is close to 
d(x, ~)  since re(x) <- d(x, 61). By the triangle inequality, 
we have d(x, ci) <- d(x, ca) + d(ca, ci) <_ d(x, ca) + e. A 

~In the  next section we will consider the  more general problem 
of assuming a probabili ty distr ibution on R d. 
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similar argument can be used to show tha t  d(x, ci) _< 
d(x, di) + e. [] 

Note that  the number of gridpoint functions [Fe[ is 
O( dM )dk of finite size, namely ,-'7" . Thus the sample cost for 

each function in F~ approaches the true cost provided 
the sample is of size D((-~--)2k) by Lemma 3.1. 

We use the e-net for the purposes of analysis only. 
The algorithm "run an approximation algorithm on a 
sample" remains the same. The e-net only affects the 
sample size. Following Pollard [Po184], we use this e- 
net to prove that  clustering a sample well implies that  
we clustered X well. Let cs be a constant (a) factor 
approximation to the optimum clustering cs of S (i.e., 
cs = argmin l~ Fx Es ( f  )) and let cx  be the optimum 
clustering of X, (i.e., cx  =argminleFx E x  ( f ) ) .  

THEOREM 3.2. For X _C R d, assuming a constant 
a-factor k-median approximation algorithm that runs 
in time T(n) ,  we can draw a sample S of size at 
least M 2 12dM 18(-7- ) (dkln --7"- ÷ In 3) and obtain a k-median 
clustering ds in time T(ISI) such that with probability 
at least 1 - ~, Ex (~s )  - a E x ( c x )  < e. 

Proof. We show that  the difference between the true 
cost of cs and the true cost of cx  is no more than 
e with high probability, i.e., E x ( c s )  - E x ( e x )  _< e 
with probability at least 1 - 6. The theorem can be 
easily extended to the case where we compute a constant 
factor approximation ~s of cs. 

Let cs, c and cx,c refer to the closest gridpoint 
functions of cs and cx ,  respectively. We now explain 
the chain of inequalities as shown in Table 2 needed for 
the proof. Note that  by the sample size given in the 
statement of the theorem we have uniform convergence 
for each f E F_~. Thus the sample and true costs for 
each gridpoint or e-net clustering are close. This implies 
that  the values (2) and (3) as well as the values (5) and 
(6) in Table 2 are close. 

Further, the (sample or true) cost of any clustering 
and its nearest gridpoint clustering is no more than ~ g, 
hence the values (1) and (2) as well as the values (3) 
and (4), as well as the values (6) and (7) are close. 
Finally, since cs is the optimum clustering of S, it 's 
sample cost is better than the sample cost of cx,~. Hence 
the inequality between (4) and (5). The theorem can 
be obtained by appropriately chaining these inequalities 
together. [] 

3.3 C l u s t e r i n g  D a t a s e t s  o f  B o u n d e d  b u t  Un-  
k n o w n  R a n g e  While any finite X fall in a bounded 
range, we may not know a priori what that  bound is. 
Further, determining the bound may be expensive if, 

CS CS,e CS CX,e CX 
E s  ] (3) ,~ (4) < (5) 

s x l ( 1 )  (2) (6) (7) 

Table 2: Proof of Theorem 3.2. 

for example, it requires scanning through a very large 
dataset. In the case that  X is infinite, determining the 
bound by scanning X is clearly impossible. 

We give a way to estimate M with M ' assuming 
X C R d and show that  an approximately good cluster- 
ing can still be obtained with M ~, although not as good 
as if we knew M. 

The algorithm is as follows. First we draw a sample 
of size given in Lemma 3.4 and compute M ~, the largest 
distance between any pair of points in the sample. Then 
we draw a sample of size proportional to O ( ( ~ ) 2 k )  
as in Theorem 3.2 and cluster that  sample. 

For purposes of presentation we assume the points 
fall in [0, B] d and we wish to estimate B. 

LEMMA 3.4. Let H = [0, B] d and G = Ix, B - y]d with 
the property that the fraction of points on any strip 
between G and H is at most ~d" The probability that 
no point is drawn from any one of these strips is at 
most 6 when a sample of size m > ~ log -~ is drawn. 

Proof. The probability we fail to draw a point in a 
particular strip between G and H in m trials is at 

e m most (1 - ~j) . This probability is at most ~ when 
rn _> -~ log -~-. The probability we fail to draw a point 
in all 2d strips between G and H in m trials is thus at 
most ~ by the sample size given in the statement of the 
lemma. [] 

The lemma implies that  the cost for the points in 
the cube G is at most e and the cost for the points 
between G and H is at most eM. Thus we can claim 
the following theorem. 

THEOREM 3.3. I f  a bound M on the space is unknown 
then estimating M with M '  on a sample of  size given 
in Lemma 3.J and running a constant (a) factor ap- 
proximation algorithm on a sample of size O ( ( - ~ 4 ) 2 k )  
yields a clustering f such that E x ( f )  - c~Ex( f x )  _< 
e(1 + M) 

4 PAC clustering concepts 

In this section we extend our results in two directions: 
incorporating a notion of "probably approximately cor- 
rect (PAC)" clustering of an infinite data set, and ad- 
dressing the issue of "conceptual" clustering, involv- 
ing clusters that are more than merely a collection of 
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data  points. Our definitions and results are motivated 
by similar investigations on PAC learning [Val84] from 
learning theory and machine learning. In what fol- 
lows, we show how k-median clustering fits into the new 
framework, and then finish with a new application to 
DNF clustering. 

4.1 Conceptual clustering 
In many applications, algorithms that  output  con- 

clusions such as "this listing of 43Mb of data  points 
are in one cluster" are of little utility. In order to be 
useful within the context of an intelligent system or in 
data  analysis and decision-support, clusters should have 
meaning that  transcends their composition. Within ma- 
chine learning, this motivated investigation into "con- 
ceptual clustering" (e.g., [PR88]). Similarly, in learning 
theory, one speaks of the learnability of a class of rep- 
resentations of classifiers, e.g., DNF expressions, poly- 
topes, finite automata,  etc. In these cases, the goal 
is to learn a classifier by finding a representation from 
the specified class tha t  has small classification error on 
unseen examples. Not only does this conceptual view 
offer a meaningful description of data, it also serves as 
a predictor of future data. Unlike k-median algorithms, 
cluster membership for unseen data  is not necessarily a 
byproduct  of sample data  clustering. 

Define a concept class as a pair (X, C) where X 
is the example space and C, the concept space, is a 
collection of representations of subsets of X. Typically 
X and C are families (Xd) ,  (C8) parameterized by some 
complexity measure (e.g., Xd = (0, 1) d, and C8 = DNFs 
expressible in s bits). Define an (X, C) conceptual 
k-clustering to be any choice (Cl,C2,...,Ck) E C k of 
k concepts from C. E x a m p l e :  For the k-median 
problem, we can take X as d-dimensional Euclidean 
space, C as the set of k-tuples of points representing 
the induced Voronoi partition. 

4.2 C l u s t e r i n g  d a t a  f r o m  d i s t r i b u t i o n s  How 
"good" is a conceptual k-clustering? In practical ap- 
plications, the set S of data  to be clustered is typically 
a subcollection of a much larger, possibly infinite set, 
sampled from an unknown probability distribution. We 
describe a model of clustering from a probability dis- 
t r ibution that  we believe to be new and of independent 
interest. The  model is similar in spirit to the PAC model 
of learning, in that  error is distribution-weighted. We 
will require that  a clustering algorithm find a cluster- 
ing (approximately) optimizing some objective function 
while covering most of the distribution. 

Let D be an arbitrary probability distribution on 
X.  Most generally, the quality of a clustering depends 
simultaneously on all clusters in the clustering, and on 

the distribution. Thus, the goal will be to minimize (or 
maximize) some objective function Q((cl ,  c 2 , . . . ,  ck), D) 
over all choices of k-tuples ci. 

E x a m p l e  c o n t i n u e d :  For k-median, if C1, . . . ,  Ck 
are the Voronoi cells with centers c l , . . . , c k ,  in the 
finite case the tightness of a clustering is the sum of 
intracluster distances. For infinite data, this sum may 
well be infinite depending on the distribution. We 
naturally define the tightness of a cluster C~ as the 
expected distance over the entire cell from a point to its 
center ci: T(Ci)  = ~ e c ~  dist(x, c~)D(xIC~). These can 
then be accumulated into a single objective function by 
summing 2 over the individual clusters, weighted by their 
likelihood: Q ( ( e l , c 2 , . . . , C k ) , O )  = ~ i  T(C~)D(Ci). 
Often the most natural  objective function is obtained 
in this way - taking a distribution-weighted average of 
individual cluster tightnesses. 

DEFINITION 4.1. A concept class ( X ,  C) is ( v~, ~) PA C- 
clusterable with objective function Q iff there is an 
algorithm A such that for all probability distributions D 
on X ,  i f  A is given as input an integer k > O, numbers 
.y, 5, and e < 1, and access to examples drawn lid from 
D, then with probability at least 1 - 5, A outputs a 
collection of 

j3k clusters (c l , . . . ,C~k)  such that D(U~ci) >_ 1 - 
~, and JQ((cl . . . .  , c ~ k ) , D ) -  aQ( (c~ , . . . , c~ ) ,D)  < e, 
where (c~, . . . ,c~)  is the k-clustering that covers the 
entire space X and minimizes (or maximizes) Q on D. 

The allowance for neglecting some fraction of da ta  
points as "outliers" has been addressed in other clus- 
tering algorithms [Sch00, ADPR00]. In our context it 
appears necessary in cases when finding clusters tha t  
cover the entire space may prove combinatorially diffi- 
cult (is a given DNF a tautology?).  

When the objective function is a weighted average 
of individual cluster tightness, as we defined for k -  
median, the function can often be rewritten as the 
expected value of a function. As a consequence, uniform 
convergence results as described in the last section can 
be applied to obtain sampling bounds for clustering that  
are independent of the data  set. 

LEMMA 4.1. Let cl , .  . . ,ck be centers corresponding to 
clusters C 1 , . . . , C k  C X .  Let c be a function that 
given x returns the distance from x to its closest center 
c l , . . . ,  ck. Q((C1, C2 , . . . ,  Ck), D) = ED(c). 

Proof. 

Q ( ( C l , . . . , C k ) , D )  = ~ T ( C ~ ) D ( C i )  
i 

ZIn this abstract we consider only discrete distributions to 
avoid dealing with measurability issues. 
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= ~ ~ d(x,c,)D(x[C~))D(C,) 
i xEC~ 

= Z ~ d (x ,~ lD(x )  
i xECi 

i xECi 

= ED(c)  

[] 

In section 3 we showed that  when c is the k- 
median cost function described above, Es (c) for a finite 
sample S converges uniformly to ED(C), hence the 
approximate clustering method of "sample and apply 
a known approximation algorithm" provides a PAC- 
clustering of comparable quality. 

THEOREM 4.1. I f  the k-median problem has an (a ,~)  
bicriterion clustering approximation, then k-median is 
(a, f~)-PA C clusterable. 

4.3 P A C - c l u s t e r i n g  (dis jo int )  k - t e r m - D N F  
We give a d °(k2) algorithm for (optimally) PAC- 

clustering disjoint conjunctions over d Boolean vari- 
ables. A k-clustering forms a disjoint k-term-DNF ex- 
pression. The algorithm has applications to unsuper- 
vised learning of decision trees, as the leaves of a k- 
leaf decision-tree are describable by k mutually disjoint 
conjunctions. Since even supervised learning of small 
decision trees have been found to be useful in practice 
[AHM95], the extension here is of particular interest. 

Let X = {0, 1} d and let concepts be terms (con- 
junctions of literals), where each literal is one of the 
d Boolean variables {xl, x2 , . . .  Xd} or their negations. 
A k-clustering is a set of k disjoint terms, { t l , . . .  ,tk}, 
(where no two ti 's are satisfied by any one assign- 
ment). Define the quality function Q ( ( Q , . . . , t k ) , D )  

k 
= ~i=1 ]tilD(t~), where D(ti) is the fraction of the dis- 
tribution, D, satisfied by ti. Thus, the objective is to 
maximize the length of the cluster descriptions (longer, 
more specific terms, are more "tight"), weighted by the 
probabilities of the clusters. (See [PR88] for a related 
view of clustering via long conjunctions.) It is easy to 
see that  an optimum k-clustering is always at least as 
good as an optimum k - 1 clustering, since any cluster 
can be split into two by constraining some variable, ob- 
taining two tighter clusters with the same cumulative 
distributional weight. 

To solve the problem, we define the signature of 
a disjoint DNF expression, which is similar to the 
"discriminant" used by Angluin [Ang87], and often used 
in learning restricted forms of DNF with membership 
and equivalence queries (see e.g., [BKK+94]). Define a 

k-signature to be a sequence (£1j)15i<j_<k where each/ i j  
is a literal in {Xl,. . . ,Xd,~ffl , . . .  ,:rd}. Associated with 
each k-signature s is a "skeleton" k-term disjoint DNF 
Sl +. . .  +sk, where term si contains exactly those literals 
£ij for i < j ,  and the complements of literals gki for 
k < i. A k-term DNF tl + . . .  + tk is a specialization of 
a k-skeleton sl + . . .  + Sk iff for each i, the set of literals 
in si is contained in the set of literals in ti. Clearly, 
if s is a k-signature, then the skeleton induced by s is 
a k-term disjoint DNF, as is any k-term DNF that  is 
a specialization of that  skeleton. Furthermore, every k- 
term disjoint DNF expression is a specialization of some 
skeleton induced by a k-signature. 

For a sample S and a term t, let S(t) = 
]{x E S : t(x) = 1}[/IS[, the observed frequency 
in S of points that  satisfy t. 

Algorithm cluster k-term-disjoint-DNF (k, 7, 6, e) 

1. Draw a sample S of cardinality rn from D as 
described in Theorem 4.2 

2. For each choice of signature s and associated skele- 
ton terms sl, s2, • • •, sk, 

(a) Partition S into buckets with x in bucket Bi 
iff x satisfies skeleton term si. If some x E S 
satisfies no term, then start  over at step 2. 
with the next signature. 

(b) For each bucket Bi 

i. Let ti be the most specific term satisfied 
by all examples in Bi. 

ii. Let C8, the clustering induced by signa- 
ture s, be the collection of all such terms 
t i .  

iii. Compute the empirical frequency S(ti) as 
defined above. 

(c) Define Q(Cs,S)  = ~ , l t i l S ( t i )  be the esti- 
mated value of Q(Cs, D). 

3. Output  the clustering Cs associated with the sig- 
nature s for which the computed estimate Q(Cs, S) 
is maximized. 

THEOREM 4.2. (Algorithm correctness) 
Let D be an arbitrary distribution on {0, 1} n, and let 

C D be an optimal disjoint k-term DNF clustering for 
D. With probability at least 1 - 6, the algorithm above 
outputs a disjoint k-term DNF clustering C such that 
D(C) > 1 - 7 and Q(C D, D) - Q(C, D) < e provided 
that the sample S drawn in Step I of algorithm is of 
size at least min{~(dkln 3 + In ~), 2 d ~ ( d l n  3 + In })}. 
Hence, disjoint k-term DNF expressions are (1,1)-PAC 
clusterable for constant k. 
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Let C be the clustering output  by the algorithm. 
To prove theorem 4.2 we rely on the following three 
lemmas. 

LEMMA 4.2. (i) C has at most k mutually disjoint 
terms, and (ii) C maximizes Q(C,S) over all such 
disjoint k-term DNF expressions. 

LEMMA 4•3. Pr[D(C) < 1 - 7 ]  < 

LEMMA 4.4• Pr[(3 a disjoint k-term DNF clustering 
e 6 T) IQ(T, S ) -  Q(T, D)] > ~] < 5" 

We prove the lemmas below. Here we prove Theo~ 
rem 4.2 assuming tha t  the lemmas are true. Let C ° be 
a clustering that  maximizes quality Q over the distribu- 
tion D. We will show tha t  Pr[Q(C D, D) - Q(C, D) > 
e] < ~. From this and Lemmas 4.3 and 4.2 (i), the 
theorem follows immediately. 

By Lemma 4.2 (ii), C is the best clustering on the 
sample (C maximizes Q(C, S)), hence by Lemma 4•4, 
with high probability the quality of every clustering on 
the sample is close to its quality on the distribution. 
Chaining inequalities in a manner similar to Theorems 
3.1 and 3•2, the result is obtained. [] 

The running time of the algorithm is dominated by 
• 2 . 

the enumeratmn of d °(k ) mgnatures. 

Proof of Lemma 4.2: Part  (i): By construction, for 
some k-signature s, C is a specialization of the skeleton 
DNF associated with s. It  follows by comments above 
that  C contains exactly k mutually disjoint terms. 

Part  (ii): Let Cs be a k-term disjoint DNF expres- 
sion that  maximizes Q(., S). Then by comments above, 
Cs is a specialization of a skeleton DNF expression in- 
duced by some k-signature s. When s is enumerated in 
the main loop, the skeleton DNF is formed. By con- 
struction, the DNF Cs obtained is the most specific 
DNF that  is a specialization of the skeleton and covers 
S, hence is at least as specific as Cs. Since all points 
of S are covered by Cs, the quality Q(Cs, S) cannot be 
increased by making terms more general so as to cover 
more data. The algorithm outputs a clustering C with 
quality at least as good as C8 on sample S, hence at 
least as good as Cs. [3 

Proof of Lemma 4.3 A standard argument (c.f. 
[BEHW87]) shows tha t  the probability that  some k- 
term DNF from class F covers less than 1 - '7 of the 
distribution D, yet covers all sample points S, is at 
most 5 if ISI > ~ In ~ ! .  The number of k-term DNF 

3 d 
expressions over d variables is at most ( k ), since there 
are at most 3 d terms over d variables. Thus, if 

7 5 = ( d k l n 3 + l n  ) 

then the lemma follows• The sample set S is chosen at 
least this large when the algorithm begins. O 

Proof of Lemma 4.4 For any k-term DNF T = 
tt + . . .  + tk, Q(T,D) depends on Itil and D(ti) for 
each i. Thus, the difference between Q(T,D) and 
Q(T, S) for some sample S of D is uniquely determined 
by the difference of the empirical weights S(ti) from 
actual weights D(ti). Applying the uniform convergence 
results described in Lemma 3.1 with e/2dk and 6/2, and 
with F the set of terms (conjunctions) with at most d 
variables, the probability that  any D(ti) differs from 
S(ti) by more than e/2dk is at most 5/2 provided that  

1 2 
[SI >_ 2(e/2dk)2(ln3d + l n ~ )  

- 2d2k2e---~-- (din3 + In ~)2 

Note that  IS(t~)- D(ti)[ < 27~ implies tha t  [ Q ( T , D ) -  
Q(T, S)I < ~ since 

IQ(T,D) - Q ( T , S ) [  = [tl[[D(tl) - S(tl)] + . . .  

+ltkl[D(tk) - S(tk)] 
£ 

_< 2dk ( Iq l+ - " l t k l )  
-< { 

Thus since the algorithm draws a sample at least as 
large as needed to ensure uniform convergence of all 
conjunctions, the lemma follows• D 
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