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Abstract

We introduce the smoothed analysis of algorithms, which continuously in-
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of Gaussian perturbations.
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1 Introduction

The Analysis of Algorithms community has been challenged by the existence of remarkable
algorithms that are known by scientists and engineers to work well in practice, but whose
theoretical analyses are negative or inconclusive. The root of this problem is that algorithms
are usually analyzed in one of two ways: by worst-case or average-case analysis. Worst-
case analysis can improperly suggest that an algorithm will perform poorly by examining its
performance under the most contrived circumstances. Average-case analysis was introduced
to provide a less pessimistic measure of the performance of algorithms, and many practical
algorithms perform well on the random inputs considered in average-case analysis. However,
average-case analysis may be unconvincing as the inputs encountered in many application
domains may bear little resemblance to the random inputs that dominate the analysis.

We propose an analysis that we call smoothed analysis which can help explain the success
of algorithms that have poor worst-case complexity and whose inputs look sufficiently dif-
ferent from random that average-case analysis cannot be convincingly applied. In smoothed
analysis, we measure the performance of an algorithm under slight random perturbations of
arbitrary inputs. In particular, we consider Gaussian perturbations of inputs to algorithms
that take real inputs, and we measure the running times of algorithms in terms of their
input size and the standard deviation of the Gaussian perturbations.

We show that the simplex method has polynomial smoothed complexity. The simplex
method is the classic example of an algorithm that is known to perform well in practice but
which takes exponential time in the worst case [KM72, Mur80, GS79, Gol83, AC78, Jer73,
AZ99]. In the late 1970’s and early 1980’s the simplex method was shown to converge in
expected polynomial time on various distributions of random inputs by researchers including
Borgwardt, Smale, Haimovich, Adler, Karp, Shamir, Megiddo, and Todd [Bor80, Bor77,
Sma83, Hai83, AKS87, AM85, Tod86]. These works introduced novel probabilistic tools
to the analysis of algorithms, and provided some intuition as to why the simplex method
runs so quickly. However, these analyses are dominated by “random looking” inputs: even
if one were to prove very strong bounds on the higher moments of the distributions of
running times on random inputs, one could not prove that an algorithm performs well in
any particular small neighborhood of inputs.

To bound expected running times on small neighborhoods of inputs, we consider linear
programming problems in the form

maximize z Tx

subject to Ax ≤ y , (1)

and prove that for every vector z and every matrix Ā and vector ȳ , the expectation over
standard deviation σ (maxi ‖(ȳi, ā i)‖) Gaussian perturbations A and y of Ā and ȳ of the
time taken by a two-phase shadow-vertex simplex method to solve such a linear program is
polynomial in 1/σ and the dimensions of A.

1.1 Linear Programming and the Simplex Method

It is difficult to overstate the importance of linear programming to optimization. Linear
programming problems arise in innumerable industrial contexts. Moreover, linear program-
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ming is often used as a fundamental step in other optimization algorithms. In a linear
programming problem, one is asked to maximize or minimize a linear function over a poly-
hedral region.

Perhaps one reason we see so many linear programs is that we can solve them efficiently.
In 1947, Dantzig [Dan51] introduced the simplex method, which was the first practical ap-
proach to solving linear programs and which remains widely used today. To state it roughly,
the simplex method proceeds by walking from one vertex to another of the polyhedron de-
fined by the inequalities in (1). At each step, it walks to a vertex that is better with respect
to the objective function. The algorithm will either determine that the constraints are
unsatisfiable, determine that the objective function is unbounded, or reach a vertex from
which it cannot make progress, which necessarily optimizes the objective function.

Because of its great importance, other algorithms for linear programming have been
invented. In 1979, Khachiyan [Kha79] applied the ellipsoid algorithm to linear programming
and proved that it always converged in time polynomial in d, n, and L—the number of bits
needed to represent the linear program. However, the ellipsoid algorithm has not been
competitive with the simplex method in practice. In contrast, the interior-point method
introduced in 1984 by Karmarkar [Kar84], which also runs in time polynomial in d, n, and
L, has performed very well: variations of the interior point method are competitive with
and occasionally superior to the simplex method in practice.

In spite of half a century of attempts to unseat it, the simplex method remains the most
popular method for solving linear programs. However, there has been no satisfactory the-
oretical explanation of its excellent performance. A fascinating approach to understanding
the performance of the simplex method has been the attempt to prove that there always
exists a short walk from each vertex to the optimal vertex. The Hirsch conjecture states
that there should always be a walk of length at most n − d. Significant progress on this
conjecture was made by Kalai and Kleitman [KK92], who proved that there always exists
a walk of length at most nlog2 d+2. However, the existence of such a short walk does not
imply that the simplex method will find it.

A simplex method is not completely defined until one specifies its pivot rule—the method
by which it decides which vertex to walk to when it has many to choose from. There
is no deterministic pivot rule under which the simplex method is known to take a sub-
exponential number of steps. In fact, for almost every deterministic pivot rule there is a
family of polytopes on which it is known to take an exponential number of steps [KM72,
Mur80, GS79, Gol83, AC78, Jer73]. (See [AZ99] for a survey and a unified construction of
these polytopes). The best present analysis of randomized pivot rules shows that they take

expected time nO(
√

d)[Kal92, MSW96], which is quite far from the polynomial complexity
observed in practice. This inconsistency between the exponential worst-case behavior of the
simplex method and its everyday practicality leave us wanting a more reasonable theoretical
analysis.

Various average-case analyses of the simplex method have been performed. Most rele-
vant to this paper is the analysis of Borgwardt [Bor77, Bor80], who proved that the simplex
method with the shadow vertex pivot rule runs in expected polynomial time for polytopes
whose constraints are drawn independently from spherically symmetric distributions (e.g.
Gaussian distributions centered at the origin). Independently, Smale [Sma83, Sma82] proved
bounds on the expected running time of Lemke’s self-dual parametric simplex algorithm on
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linear programming problems chosen from a spherically-symmetric distribution. Smale’s
analysis was substantially improved by Megiddo [Meg86].

While these average-case analyses are significant accomplishments, it is not clear whether
they actually provide intuition for what happens on typical inputs. Edelman [Ede92] writes
on this point:

What is a mistake is to psychologically link a random matrix with the intu-
itive notion of a “typical” matrix or the vague concept of “any old matrix.”

Another model of random linear programs was studied in a line of research initiated
independently by Haimovich [Hai83] and Adler [Adl83]. Their works considered the maxi-
mum over matrices, A, of the expected time taken by parametric simplex methods to solve
linear programs over these matrices in which the directions of the inequalities are chosen at
random. As this framework considers the maximum of an average, it may be viewed as a
precursor to smoothed analysis—the distinction being that the random choice of inequali-
ties cannot be viewed as a perturbation, as different choices yield radically different linear
programs. Haimovich and Adler both proved that parametric simplex methods would take
an expected linear number of steps to go from the vertex minimizing the objective function
to the vertex maximizing the objective function, even conditioned on the program being
feasible. While their theorems confirmed the intuitions of many practitioners, they were
geometric rather than algorithmic1 as it was not clear how an algorithm would locate either
vertex. Building on these analyses, Todd [Tod86], Adler and Megiddo [AM85], and Adler,
Karp and Shamir [AKS87] analyzed parametric algorithms for linear programming under
this model and proved quadratic bounds on their expected running time. While the random
inputs considered in these analyses are not as special as the random inputs obtained from
spherically symmetric distributions, the model of randomly flipped inequalities provokes
some similar objections.

1.2 Smoothed Analysis of Algorithms and Related Work

We introduce the smoothed analysis of algorithms in the hope that it will help explain the
good practical performance of many algorithms that worst-case does not and for which
average-case analysis is unconvincing. Our first application of the smoothed analysis of
algorithms will be to the simplex method. We will consider the maximum over Ā and ȳ of
the expected running time of the simplex method on inputs of the form

maximize z Tx

subject to (Ā + G)x ≤ (ȳ + h), (2)

where we let Ā and ȳ be arbitrary and G and h be a matrix and a vector of independently
chosen Gaussian random variables of mean 0 and standard deviation σ (maxi ‖(ȳi, ā i)‖). If
we let σ go to 0, then we obtain the worst-case complexity of the simplex method; whereas,
if we let σ be so large that G swamps out A, we obtain the average-case analyzed by
Borgwardt. By choosing polynomially small σ, this analysis combines advantages of worst-
case and average-case analysis, and roughly corresponds to the notion of imprecision in
low-order digits.

1Our results in Section 4 are analogous to these results.
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In a smoothed analysis of an algorithm, we assume that the inputs to the algorithm are
subject to slight random perturbations, and we measure the complexity of the algorithm in
terms of the input size and the standard deviation of the perturbations. If an algorithm has
low smoothed complexity, then one should expect it to work well in practice since most real-
world problems are generated from data that is inherently noisy. Another way of thinking
about smoothed complexity is to observe that if an algorithm has low smoothed complexity,
then one must be unlucky to choose an input instance on which it performs poorly.

We now provide some definitions for the smoothed analysis of algorithms that take real
or complex inputs. For an algorithm A and input x , let

CA(x )

be a complexity measure of A on input x . Let X be the domain of inputs to A, and let
Xn be the set of inputs of size n. The size of an input can be measured in various ways.
Standard measures are the number of real variables contained in the input and the sums
of the bit-lengths of the variables. Using this notation, one can say that A has worst-case
C-complexity f(n) if

max
x∈Xn

(CA(x )) = f(n).

Given a family of distributions µn on Xn, we say that A has average-case C-complexity f(n)
under µ if

E
x

µn←Xn

[CA(x )] = f(n).

Similarly, we say that A has smoothed C-complexity f(n, σ) if

max
x∈Xn

E
g

[CA(x + (σ ‖x‖?) g)] = f(n, σ), (3)

where (σ ‖x‖?) g is a vector of Gaussian random variables of mean 0 and standard deviation
σ ‖x‖? and ‖x‖? is a measure of the magnitude of x , such as the largest element or the norm.
We say that an algorithm has polynomial smoothed complexity if its smoothed complexity is
polynomial in n and 1/σ. In Section 6, we present some generalizations of the definition of
smoothed complexity that might prove useful. To further contrast smoothed analysis with
average-case analysis, we note that the probability mass in (3) is concentrated in a region of
radius O(σ

√
n) and volume at most O(σ

√
n)n, and so, when σ is small, this region contains

an exponentially small fraction of the probability mass in an average-case analysis. Thus,
even an extension of average-case analysis to higher moments will not imply meaningful
bounds on smoothed complexity.

A discrete analog of smoothed analysis has been studied in a collection of works inspired
by Santha and Vazirani’s semi-random source model [SV86]. In this model, an adversary
generates an input, and each bit of this input has some probability of being flipped. Blum
and Spencer [BS95] design a polynomial-time algorithm that k-colors k-colorable graphs
generated by this model. Feige and Krauthgamer [FK] analyze a model in which the adver-
sary is more powerful, and use it to show that Turner’s algorithm [Tur86] for approximating
the bandwidth performs well on semi-random inputs. They also improve Turner’s analysis.
Feige and Kilian [FK98] present polynomial-time algorithms that recover large independent
sets, k-colorings, and optimal bisections in semi-random graphs. They also demonstrate
that significantly better results would lead to surprising collapses of complexity classes.
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1.3 Our Results

We consider the maximum over z , ȳ , and ā1, . . . , ān of the expected time taken by a two-
phase shadow vertex simplex method to solve linear programming problems of the form

maximize z Tx

subject to 〈aaa i|x 〉 ≤ yi, for 1 ≤ i ≤ n, (4)

where each aaai is a Gaussian random vector of standard deviation σ maxi ‖(ȳi, ā i)‖ centered
at ā i, and each yi is a Gaussian random variable of standard deviation σ maxi ‖(ȳi, ā i)‖
centered at ȳi.

We begin by considering the case in which y = 1, ‖ā i‖ ≤ 1, and σ < 1/3
√

d ln n. In
this case, our first result, Theorem 4.0.1, says that for every vector t the expected size of
the shadow of the polytope—the projection of the polytope defined by the equations (4)
onto the plane spanned by t and z—is polynomial in n, the dimension, and 1/σ. This
result is the geometric foundation of our work, but it does not directly bound the running
time of an algorithm, as the shadow relevant to the analysis of an algorithm depends on
the perturbed program and cannot be specified beforehand as the vector t must be. In
Section 3.3, we describe a two-phase shadow-vertex simplex algorithm, and in Section 5 we
use Theorem 4.0.1 as a black box to show that it takes expected time polynomial in n, d,
and 1/σ in the case described above.

Efforts have been made to analyze how much the solution of a linear program can
change as its data is perturbed. For an introduction to such analyses, and an analysis of
the complexity of interior point methods in terms of the resulting condition number, we
refer the reader to the work of Renegar [Ren95b, Ren95a, Ren94].

1.4 Intuition Through Condition Numbers

For those already familiar with the simplex method and condition numbers, we include this
section to provide some intuition for why our results should be true.

Our analysis will exploit geometric properties of the condition number of a matrix, rather
than of a linear program. We start with the observation that if a corner of a polytope is
specified by the equation AIx = y I , where I is a d-set, then the condition number of the
matrix AI provides a good measure of how far the corner is from being flat. Moreover, it is
relatively easy to show that if A is subject to perturbation, then it is unlikely that AI has
poor condition number. So, it seems intuitive that if A is perturbed, then most corners of
the polytope should have angles bounded away from being flat. This already provides some
intuition as to why the simplex method should run quickly: one should make reasonable
progress as one rounds a corner if it is not too flat.

There are two difficulties in making the above intuition rigorous: the first is that even
if AI is well-conditioned for most sets I, it is not clear that AI will be well-conditioned for
most sets I that are bases of corners of the polytope. The second difficulty is that even
if most corners of the polytope have reasonable condition number, it is not clear that a
simplex method will actually encounter many of these corners. By analyzing the shadow
vertex pivot rule, it is possible to resolve both of these difficulties.

The first advantage of studying the shadow vertex pivot rule is that its analysis comes
down to studying the expected sizes of shadows of the polytope. From the specification of
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the plane onto which the polytope will be projected, one obtains a characterization of all
the corners that will be in the shadow, thereby avoiding the complication of an iterative
characterization. The second advantage is that these corners are specified by the property
that they optimize a particular objective function, and using this property one can actually
bound the probability that they are ill-conditioned. While the results of Section 4 are not
stated in these terms, this is the intuition behind them.

Condition numbers also play a fundamental role in our analysis of the shadow-vertex
algorithm. The analysis of the algorithm differs from the mere analysis of the sizes of
shadows in that, in the study of an algorithm, the plane onto which the polytope is pro-
jected depends upon the polytope itself. This correlation of the plane with the polytope
complicates the analysis, but is also resolved through the help of condition numbers. In
our analysis, we view the perturbation as the composition of two perturbations, where the
second is small relative to the first. We show that our choice of the plane onto which we
project the shadow is well-conditioned with high probability after the first perturbation.
That is, we show that the second perturbation is unlikely to substantially change the plane
onto which we project, and therefore unlikely to substantially change the shadow. Thus, it
suffices to measure the expected size of the shadow obtained after the second perturbation
onto the plane that would have been chosen after just the first perturbation.

The technical lemma that enables this analysis, Lemma 5.1.1, is a concentration result
that proves that it is highly unlikely that almost all of the minors of a random matrix have
poor condition number. This analysis also enables us to show that it is highly unlikely that
we will need a large “big-M” in phase I of our algorithm.

We note that the condition numbers of the AIs have been studied before in the complex-
ity of linear programming algorithms. The condition number χ̄A of Vavasis and Ye [VY96]
measures the condition number of the worst sub-matrix AI , and their algorithm runs in
time proportional to ln(χ̄A). Todd, Tunçel, and Ye [TTY01] have shown that for a Gaus-
sian random matrix the expectation of ln(χ̄A) is O(min(d ln n, n)). That is, they show that
it is unlikely that any AI is exponentially ill-conditioned. It is relatively simple to apply
the techniques of Section 5.1 to obtain a similar result in the smoothed case. We won-
der whether our concentration result that it is exponentially unlikely that many AI are
even polynomially ill-conditioned could be used to obtain a better smoothed analysis of the
Vavasis-Ye algorithm.

1.5 Discussion

One can debate whether the definition of polynomial smoothed complexity should be that
an algorithm have complexity polynomial in 1/σ or log(1/σ). We believe that the choice
of being polynomial in 1/σ will prove more useful as the other definition is too strong and
quite similar to the notion of being polynomial in the worst case. In particular, one can
convert any algorithm for linear programming whose smoothed complexity is polynomial in
d, n and log(1/σ) into an algorithm whose worst-case complexity is polynomial in d, n, and
L. That said, one should certainly prefer complexity bounds that are lower as a function of
1/σ, d and n.

We also remark that a simple examination of the constructions that provide exponential
lower bounds for various pivot rules [KM72, Mur80, GS79, Gol83, AC78, Jer73] reveals that
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none of these pivot rules have smoothed complexity polynomial in n and sub-polynomial in
1/σ. That is, these constructions are unaffected by exponentially small perturbations.
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2 Notation and Mathematical Preliminaries

In this section, we define the notation that will be used in the paper. We will also review
some background from mathematics and derive a few simple statements that we will need.
The reader should probably skim this section now, and save a more detailed examination
for when the relevant material is referenced.

• [n] denotes the set of integers between 1 and n, and
([n]

k

)

denotes the subsets of [n] of
size k.

• Subsets of [n] are denoted by the capital Roman letters I, J, L,K. M will denote a
subset of integers, and K will denote a set of subsets of [n].

• Subsets of IR? are denoted by the capital Roman letters A,B,P,Q,R, S, T, U, V .

• Vectors in IR? are denoted by bold lower-case Roman letters, such as aaa i, ā i, ã i, b i, ci,
di,h , t , q , z ,y .

• Whenever a vector, say aaa ∈ IRd is present, its components will be denoted by lower-
case Roman letters with subscripts, such as a1, . . . , ad.

• Whenever a collection of vectors, such as aaa1, . . . ,aaan, are present, the similar bold
upper-case letter, such as A, will denote the matrix of these vectors. For I ∈

([n]
k

)

,
AI will denote the matrix of those aaai for which i ∈ I.

• Matrices are denoted by bold upper-case Roman letters, such as A, Ā, Ã,B ,M and
Rω.

• Sd−1 denotes the unit sphere in IRd.

• Vectors in S? will be denoted by bold Greek letters, such as ω,ψ, τ .

• Generally speaking, univariate quantities with scale, such as lengths or heights, will
be represented by lower case Roman letters such as c, h, l, r, s, and t. The principal
exceptions are that κ and M will also denote such quantities.

• Quantities without scale, such as the ratios of quantities with scale or affine coor-
dinates, will be represented by lower case Greek letters such as α, β, λ, ξ, ζ. α will
denote a vector of such quantities such as (α1, . . . , αd).

• Density functions are denoted by lower case Greek letters such as µ and ν.

• The standard deviations of Gaussian random variables are denoted by lower-case
Greek letters such as σ, τ and ρ.

• Indicator random variables are denoted by upper case Roman letters, such as A, B,
E, F , V , W , X, Y , and Z

• Functions into the reals or integers will be denoted by calligraphic upper-case letters,
such as F ,G,S+,S ′,T .

13



• Functions into IR? are denoted by upper-case Greek letters, such as Φǫ,Υ,Ψ.

• 〈x |y〉 denotes the inner product of vectors x and y .

• For vectors ω and z , we let angle (ω, z ) denote the angle between these vectors at
the origin.

• The logarithm base 2 is written lg and the natural logarithm is written ln.

• The probability of an event A is written Pr [A], and the expectation of a variable X
is written E [X].

• The indicator random variable for an event A is written [A].

2.1 Geometric Definitions

For the following definitions, we let aaa1, . . . ,aaak denote a set of vectors in IRd.

• Span (aaa1, . . . ,aaak) denotes the subspace spanned by aaa1, . . . ,aaak.

• Aff (aaa1, . . . ,aaak) denotes the hyperplane that is the affine span of aaa1, . . . ,aaak: the set
of points

∑

i αiaaai, where
∑

i αi = 1, for all i.

• ConvHull (aaa1, . . . ,aaak) denotes the convex hull of aaa1, . . . ,aaak.

• Cone (aaa1, . . . ,aaak) denotes the positive cone through aaa1, . . . ,aaak: the set of points
∑

i αiaaai, for αi ≥ 0.

• △ (aaa1, . . . ,aaad) denotes the simplex ConvHull (aaa1, . . . ,aaad).

For a linear program specified by aaa1, . . . ,aaan, y and z , we will say that the linear program
is in general position if

• The points aaa1, . . . ,aaan are in general position with respect to y , which means that for
all I ⊂

([n]
d

)

and x = A−1
I yI , and all j 6∈ I, 〈aaaj |x 〉 6= yj.

• For all I ⊂
( [n]
d−1

)

, z 6∈ Cone (AI).

Furthermore, we will say that the linear program is in general position with respect to a
vector t if the set of λ for which there exists an I ∈

( [n]
d−1

)

such that

(1 − λ)t + λz ∈ Cone (AI)

is finite and does not contain 0.

14



2.2 Vector and Matrix Norms

The material of this section is principally used in Sections 3.3 and 5.1. The following
definitions and propositions are standard, and may be found in standard texts on Numerical
Linear Algebra.

Definition 2.2.1 (Vector Norms) For a vector x , we define

• ‖x‖ =
√

∑

i x
2
i .

• ‖x‖1 =
∑

i |xi|.

• ‖x‖∞ = maxi |xi|.

Proposition 2.2.2 (Vectors norms) For a vector x ∈ IRd,

‖x‖ ≤ ‖x‖1 ≤
√

d ‖x‖ .

Definition 2.2.3 (Matrix norm) For a matrix A, we define

‖A‖ def
= max

x
‖Ax‖ / ‖x‖ .

Proposition 2.2.4 (Properties of matrix norm) For d-by-d matrices A and B , and a
d-vector x ,

(a) ‖Ax‖ ≤ ‖A‖ ‖x‖.

(b) ‖AB‖ ≤ ‖A‖ ‖B‖.

(c) ‖A‖ =
∥

∥AT
∥

∥.

(d) ‖A‖ ≤
√

dmaxi ‖aaa i‖, where A = (aaa1, . . . ,aaad).

(e) det (A) ≤ ‖A‖d.

Definition 2.2.5 (smin ()) For a matrix A, we define

smin (A)
def
=
∥

∥A−1
∥

∥

−1
.

We recall that smin (A) is the smallest singular value of the matrix A, and that it is not a
norm.

Proposition 2.2.6 (Properties of smin ()) For d-by-d matrices A and B ,

(a) smin (A) = minx ‖Ax‖ / ‖x‖.

(b) smin (B) ≥ smin (A) − ‖A−B‖ .
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2.3 Probability

For an event, A, we let [A] denote the indicator random variable for the event. We generally
describe random variables by their density functions. If x has density µ, then

Pr [A(x )]
def
=

∫

[A(x )] µ(x ) dx .

If B is another event, then

Pr
B

[A(x )]
def
= Pr

[

A(x )
∣

∣B(x )
] def

=

∫

[B(x )] [A(x )]µ(x ) dx
∫

[B(x )] µ(x ) dx
.

In a context where multiple densities are present, we will use use the notation Prµ [A(x )]
to indicate the probability of A when x is distributed according to µ.

In many situations, we will not know the density µ of a random variable x , but rather
a function ν such that ν(x ) = cµ(x ) for some constant c. In this case, we will say that x

has density proportional to ν.
The following Propositions and Lemmas will play a prominent role in the proofs in this

paper. The only one of these which might not be intuitively obvious is Lemma 2.3.5.

Proposition 2.3.1 (Average ≤ maximum) Let µ(x, y) be a density function, and let
x and y be distributed according to µ(x, y). If A(x, y) is an event and X(x, y) is random
variable, then

Pr
x,y

[A(x, y)] ≤ max
x

Pr
y

[A(x, y)] , and

E
x,y

[X(x, y)] ≤ max
x

E
y

[X(x, y)] ,

where in the right-hand terms, y is distributed according to the induced distribution µ(x, y).

Proposition 2.3.2 (Expectation on sub-domain) Let x be a random variable and A(x )
an event. Let P be a measurable subset of the domain of x . Then,

Pr
x∈P

[A(x )] ≤ Pr [A(x )] /Pr [x ∈ P ] .

Proof By the definition of conditional probability,

Pr
x∈P

[A(x )] = Pr [A(x )|x ∈ P ]

= Pr [A(x ) and x ∈ P ] /Pr [x ∈ P ] , by Bayes’ rule,

≤ Pr [A(x )] /Pr [x ∈ P ] .

Lemma 2.3.3 (Comparing expectations) Let X and Y be non-negative random vari-
ables and A an event satisfying (1) X ≤ k, (2) Pr [A] ≥ 1 − ǫ, and (3) there exists a
constant c such that E [X|A] ≤ cE [Y |A]. Then,

E [X] ≤ cE [Y ] + ǫk.
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Proof

E [X] = E [X|A]Pr [A] + E [X|not(A)]Pr [not(A)]

≤ cE [Y |A]Pr [A] + ǫk

≤ cE [Y ] + ǫk,

by Proposition 2.3.2.

Lemma 2.3.4 (Similar distributions) Let X be a non-negative random variable such
that X ≤ k. Let ν and µ be density functions for which there exists a set S such that (1)
Prν [S] > 1 − ǫ and (2) there exists a constant c ≥ 1 such that for all a ∈ S, ν(a) ≤ cµ(a).
Then,

E
ν

[X(a)] ≤ cE
µ

[X(a)] + kǫ.

Proof We write

E
ν

[X] =

∫

a∈S
X(a)ν(a) da +

∫

a6∈S
X(a)ν(a) da

≤ c

∫

a∈S
X(a)µ(a) da + kǫ

≤ c

∫

a
X(a)µ(a) da + kǫ

= cE
µ

[X] + kǫ.

Lemma 2.3.5 (Combination lemma) Let x and y be random variables distributed ac-
cording to µ(x, y). Let F(x) and G(x, y) be non-negative functions and α and β be constants
such that

• ∀ǫ ≥ 0, Prx,y [F(x) ≤ ǫ] ≤ αǫ, and

• ∀ǫ ≥ 0, maxx Pry [G(x, y) ≤ ǫ] ≤ (βǫ)2,

where in the second line y is distributed according to the induced density µ(x, y). Then

Pr
x,y

[F(x)G(x, y) ≤ ǫ] ≤ 4αβǫ.

Proof Consider any x and y for which F(x)G(x, y) ≤ ǫ. If i is the integer for which

2iβǫ < F(x) ≤ 2i+1βǫ,

then G(x, y) ≤ 2−i/β. Thus, F(x)G(x, y) ≤ ǫ, implies that either F(x) ≤ 2βǫ, or there
exists an integer i ≥ 1 for which

F(x) ≤ 2i+1βǫ and G(x, y) ≤ 2−i/β.
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So, we obtain the bound

Pr
x,y

[F(x)G(x, y) ≤ ǫ] ≤ Pr
x,y

[F(x) ≤ 2βǫ] +
∑

i≥1

Pr
x,y

[

F(x) ≤ 2i+1βǫ and G(x, y) ≤ 2−i/β
]

≤ 2αβǫ +
∑

i≥1

Pr
x,y

[

F(x) ≤ 2i+1βǫ
]

Pr
x,y

[

G(x, y) ≤ 2−i/β
∣

∣F(x) ≤ 2i+1βǫ
]

≤ 2αβǫ +
∑

i≥1

Pr
x,y

[

F(x) ≤ 2i+1βǫ
]

max
x

Pr
y

[

G(x, y) ≤ 2−i/β
]

≤ 2αβǫ +
∑

i≥1

(

2i+1αβǫ
) (

2−i
)2

, by Proposition 2.3.1,

= 2αβǫ + αβǫ
∑

i≥1

21−i

= 4αβǫ.

As we have found this lemma very useful in our work, and we suspect others may as
well, we state a more broadly applicable generalization. It’s proof is similar.

Lemma 2.3.6 (Generalized combination lemma) Let x and y be random variables
distributed according to µ(x, y). There exists a function c(a, b) such that if F(x) and G(x, y)
are non-negative functions and α, β, a and b are constants such that

• Prx,y [F(x) ≤ ǫ] ≤ (αǫ)a, and

• maxx Pry [G(x, y) ≤ ǫ] ≤ (βǫ)b,

where in the second line y is distributed according to the induced density µ(x, y), then

Pr
x,y

[F(x)G(x, y) ≤ ǫ] ≤ c(a, b)αβǫmin(a,b) lg(1/ǫ)[a=b],

where [a = b] is 1 if a = b and 0 otherwise.

Lemma 2.3.7 (Almost polynomial densities) Let k > 0 and let t be a non-negative
random variable with density proportional to µ(t)tk such that, for some t0 > 0,

max0≤t≤t0 µ(t)

min0≤t≤t0 µ(t)
≤ c.

Then,
Pr [t < ǫ] < c(ǫ/t0)

k+1.
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Proof For ǫ ≥ t0, the lemma is vacuously true. Assuming ǫ < t0,

Pr [t < ǫ] ≤ Pr [t < ǫ]

Pr [t < t0]

=

∫ ǫ
t=0 µ(t)tk dt
∫ t0
t=0 µ(t)tk dt

≤ max0≤t≤t0 µ(t)
∫ ǫ
t=0 tk dt

min0≤t≤t0 µ(t)
∫ t0
t=0 tk dt

≤ c
ǫk+1/(k + 1)

tk+1
0 /(k + 1)

= c(ǫ/t0)
k+1.

2.4 Gaussian Random Vectors

For the convenience of the reader, we recall some standard facts about Gaussian random
variables and vectors. These may be found in [Fel68, VII.1] and [Fel71, III.6]. We then
draw some corollaries of these facts and derive some lemmas that we will need later in the
paper.

We first recall that a univariate Gaussian distribution with mean 0 and standard devi-
ation σ has density

1√
2πσ

e−a2/2σ2
,

and that a Gaussian random vector in IRd centered at a point ā with covariance matrix M

has density
1

(√
2π
)d

det(M )
e−(aaa−ā)T M−1(aaa−ā)/2.

For positive-definite M , there exists a basis in which the density can be written

d
∏

i=1

1√
2πσi

e−a2
i /2σ2

i ,

where σ2
1 ≤ · · · ≤ σ2

d are the eigenvalues of M . When all the eigenvalues of M are the
same and equal to σ, then we will refer to the density as a Gaussian distribution of standard
deviation σ.

Proposition 2.4.1 (Additivity of Gaussians) If aaa1 is a Gaussian random vector with
covariance matrix M 1 centered at a point ā1 and aaa2 is a Gaussian random vector with
covariance matrix M 2 centered at a point ā2, then aaa1 + aaa2 is the Gaussian random vector
with covariance matrix M 1 + M 2 centered at ā1 + ā2.
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Lemma 2.4.2 (Smoothness of Gaussians) Let µ(x ) be a Gaussian distribution of stan-
dard deviation σ centered at a point āaa. Let k ≥ 1, let dist (x , āaa) ≤ k and let dist (x ,y) <
ǫ ≤ k. Then,

µ(y)

µ(x )
≥ e−3kǫ/2σ2

.

Proof By translating āaa, x and y , we may assume āaa = 0 and ‖x‖ ≤ k. We then have

µ(y)

µ(x )
= e−(‖y‖2−‖x‖2)/2σ2

≥ e−(2ǫ‖x‖+ǫ2)/2σ2
, as ‖y‖ ≤ ‖x‖ + ǫ

≥ e−(2ǫk+ǫ2)/2σ2
, as ‖x‖ ≤ k

≥ e−3ǫk/2σ2
as ǫ ≤ k.

Proposition 2.4.3 (Restrictions of Gaussians) Let µ be a Gaussian distribution of stan-
dard deviation σ centered at a point āaa. Let v be any vector and r any real. Then, the induced
distribution

µ(x |vTx = r)

is a Gaussian distribution of standard deviation σ centered at the projection of āaa onto the
plane

{

x : vTx = r
}

.

Proposition 2.4.4 (Gaussian measure of halfspaces) Let ω be any unit vector in IRd

and r any real. Then,

(

1√
2πσ

)d ∫

g

[〈ω|g〉 ≤ r] e−‖g‖
2/2σ2

dg =
1√
2πσ

∫ t=r

t=−∞
e−t2/2σ2

dt

Proof Immediate if one expresses the Gaussian density in a basis containing ω.

The distribution of the square of the norm of a Gaussian random vector is the Chi-
Square distribution. We use the following weak bound on the Chi-Square distribution,
which follows from Equality (26.4.8) of [AS70].

Proposition 2.4.5 (Chi-Square bound) Let x be a Gaussian random vector in IRd of
standard deviation σ centered at the origin. Then,

Pr [‖x‖ ≥ kσ] ≤
(

k2
)d/2−1

e−k2/2

2d/2−1Γ(d
2)

. (5)

From this, we derive
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Corollary 2.4.6 (A chi-square bound) Let x be a Gaussian random vector in IRd of
standard deviation σ centered at the origin. Then, for n ≥ 3

Pr
[

‖x‖ ≥ 3
√

d ln nσ
]

≤ n−2.9d.

Moreover, if n > d ≥ 3, and x 1, . . . ,xn are such vectors, then

Pr

[

max
i

‖x i‖ ≥ 3
√

d ln nσ

]

≤ n−2.9d+1 ≤ 0.0015

(

n

d

)−1

.

Proof For α = 3
√

ln nσ we can apply Stirling’s formula [AS70] to (5) to find

Pr
[

‖x‖ ≥ α
√

d
]

≤ (α2d)d/2−1e−α2d/2ed/2
√

d/2

2d/2−1(d/2)d/2
√

2π

=
(

α2
)d/2−1

e−(α2−1)d/2 dd/2−1
√

d

2d/2−1(d/2)d/22
√

π

=
(

α2
)d/2−1

e−(α2−1)d/2 1√
dπ

≤
(

α2
)d/2

e−(α2−1)d/2

= e−(α2−ln(α2)−1)d/2

≤ e−2.9d ln n

= n−2.9d,

as
(α2 − ln(α2) − 1) = 9 ln(n) − ln(9 ln n) − 1 ≥ ln(n)(9 − ln 9 − 1) ≥ 5.8 ln(n).

We also prove it is unlikely that a Gaussian random variable has small norm.

Proposition 2.4.7 (Gaussian near point or plane) Let x be a d-dimensional Gaus-
sian random vector of standard deviation σ centered anywhere. Then,

(a) For any point p, Pr [dist (x ,p) ≤ ǫ] ≤
(

min
(

1,
√

e/d
)

(ǫ/σ)
)d

, and

(b) For a plane H of dimension h, Pr [dist (x ,H) ≤ ǫ] ≤ (ǫ/σ)d−h.

Proof Let x̄ be the center of the Gaussian distribution, and let Bǫ(p) denote the ball of
radius ǫ around p. Recall that the volume of Bǫ(p) is

2πd/2ǫd

dΓ(d/2)
.

To prove part (a), we bound the probability that dist (x ,p) ≤ ǫ by

(

1√
2πσ

)d ∫

x∈Bǫ(p)
e−‖(x−x̄)‖2/2σ2

dx ≤
(

1√
2πσ

)d
(

2πd/2ǫd

dΓ(d/2)

)

=
( ǫ

σ

)d 2

d2d/2Γ(d/2)
.
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By Proposition 2.4.8, we have for d ≥ 3

2

d2d/2Γ(d/2)
≤ (e/d)d/2.

Combining with the fact that 2/(d2d/2Γ(d/2)) ≤ 1 for all d ≥ 1, we establish (a).
To prove part (b), we consider a basis in which d − h vectors are perpendicular to H,

and apply part (a) to the components of x in the span of those basis vectors.

Proposition 2.4.8 (Gamma Inequality) For d ≥ 3

2

d2d/2Γ(d/2)
≤ (e/d)d/2

Proof For d ≥ 3, we apply the inequality Γ(x + 1) ≥
√

2π
√

x(x/e)x to show

2

d2d/2Γ(d/2)
≤ 2

d2d/2
√

2π
√

(d − 2)/2

(

2e

d − 2

)(d−2)/2

=

(

e(d−2)/2

dd/2
√

2π
√

(d − 2)/2

)

(

d

d − 2

)(d−2)/2

≤ (e/d)d/2,

where the last inequality used the inequalities 1+2/(d−2) ≤ e2/(d−2) and
√

2π
√

(d − 1)/2 >
1 when d ≥ 3.

Proposition 2.4.9 (Non-central Gaussian near the origin) For any integer d ≥ 3,
let x be a d-dimensional Gaussian random vector of standard deviation σ centered at x̄ .
Then, for ǫ ≤ 1/(

√
2e)

Pr

[

‖x‖ ≤
(
√

‖x̄‖2 + dσ2

)

ǫ

]

≤
(√

2eǫ
)d

.

Proof Let λ = ‖x̄‖. We divide the analysis into two cases: (1) λ ≤
√

dσ, and (2)
λ ≥

√
dσ.

For λ ≤
√

dσ,

Pr
[

‖x‖ ≤ (
√

λ2 + dσ2)ǫ
]

≤ Pr
[

‖x‖ ≤ (
√

2dσ)ǫ
]

≤ (
√

2eǫ)d,

by Part (a) of Lemma 2.4.7.

22



For λ >
√

dσ, let Br be the ball of radius r around the origin. Applying the assumption
ǫ ≤ 1/(

√
2e) and letting λ = c

√
dσ for c ≥ 1, we have

Pr
[

‖x‖ ≤ (
√

λ2 + dσ2)ǫ
]

≤ Pr
[

‖x‖ ≤ (
√

2λ)ǫ
]

=

(

1√
2πσ

)d ∫

x∈B√
2ǫλ

e−‖(x−x̄ )‖2/2σ2
dx

≤
(

1√
2πσ

)d
(

2πd/2

dΓ(d/2)

)

(
√

2ǫλ)de−(1−1/e)2λ2/2σ2

≤ (
√

2eǫ)d
λd

dd/2σd
e−(1−1/e)2λ2/2σ2

= (
√

2eǫ)ded(ln c−c2(1−1/e)2/2)

≤ (
√

2eǫ)d,

where the second inequality holds because ǫ ≤ 1/(
√

2e) and for any point x ∈ B√2ǫλ,

e−‖(x−x̄ )‖2/2σ2 ≤ e−(1−
√

2ǫ)2λ2/2σ2 ≤ e−(1−1/e)2λ2/2σ2
,

the third inequality follows from Proposition 2.4.8, and the last inequality holds because
one can prove for any c ≥ 1, ln c − c2(1 − 1/e)2/2 < 0.

Bounds such as the following on the tails of Gaussian distributions are standard (see,
for example [Fel68, Section VII.1])

Proposition 2.4.10 (Gaussian tail bound)

(σ

x

) e−x2/2σ2

√
2π

≥ 1√
2πσ

∫ ∞

t=x
e−t2/2σ2

dt ≥
(

σ

x
− σ3

x3

)

e−x2/2σ2

√
2π

.

Using this, we prove:

Lemma 2.4.11 (Comparing Gaussian tails) Let σ ≤ 1 and let

µ(t) =
1√
2πσ

e−t2/2σ2
.

Then, for x ≤ 2 and |x − y| ≤ ǫ,

∫∞
t=y µ(t) dt
∫∞
t=x µ(t) dt

≥ 1 − 8ǫ

3σ2
. (6)

Proof If y < x, the ratio is greater than 1 and the lemma is trivially true. Assuming
y ≥ x, the ratio is minimized when y = x + ǫ. In this case, the lemma will follow from

∫ x+ǫ
t=x µ(t) dt
∫∞
t=x µ(t) dt

≤ 8ǫ

3σ2
. (7)
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It follows from part (b) of Proposition 2.4.12 that the left-hand ratio in (7) is monotonically
increasing in x, and therefore is maximized when x is maximized at 2. For x = 2, we apply
Proposition 2.4.10 to show

1√
2πσ

∫ ∞

t=x
µ(t) dt ≥

(

σ

2
− σ3

8

)

e−2/σ2

√
2π

≥ 3σe−2/σ2

8
√

2π
.

We then combine this bound with

1√
2πσ

∫ x+ǫ

t=x
µ(t) dt ≤ ǫe−2/σ2

√
2πσ

,

to obtain
∫ x+ǫ
t=x µ(t) dt
∫∞
t=x µ(t) dt

≤
(

ǫe−2/σ2

√
2πσ

)(

8
√

2π

3σe−2/σ2

)

=
8ǫ

3σ2
.

Proposition 2.4.12 (Monotonicity of Gaussian density) Let

µ(t) =
1√
2πσ

e−t2/2σ2
.

(a) For all a > 0, µ(x)/µ(x + a) is monotonically increasing in x;

(b) The following ratio is monotonically increasing in x

µ(x)
∫∞
t=x µ(t) dt

Proof Part (a) follows from

µ(x)

µ(x + a)
= e(2ax+a2)/2σ2

,

and that e2ax is monotonically increasing in x.
To prove part (b) note that for all a > 0

∫∞
t=x µ(t) dt

µ(x)
=

∫∞
t=0 µ(x + t) dt

µ(x)
≥
∫∞
t=0 µ(x + a + t) dt

µ(x + a)
=

∫∞
t=x+a µ(t) dt

µ(x + a)
,

where the inequality follows from part (a).
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2.5 Changes of Variables

The main proof technique used in Section 4 is change of variables. For the reader’s conve-
nience, we recall how a change of variables affects probability distributions.

Proposition 2.5.1 (Change of variables) Let y be a random variable distributed ac-
cording to density µ. If y = Φ(x ), then x has density

µ(Φ(x ))

∣

∣

∣

∣

det

(

∂Φ(x )

∂x

)∣

∣

∣

∣

.

Recall that
∣

∣

∣
det

(

∂y
∂x

)∣

∣

∣
is the Jacobian of the change of variables.

We now introduce the fundamental change of variables used in this paper. Let aaa1, . . . ,aaad

be linearly independent points in IRd. We will represent these points by specifying the plane
passing through them and their positions on that plane. Many studies of the convex hulls of
random point sets have used this change of variables (for example, see [RS63, RS64, Efr65,
Mil71]). We specify the plane containing aaa1, . . . ,aaad by ω and r, where ‖ω‖ = 1, r ≥ 0
and 〈ω|aaa i〉 = r for all i. We will not concern ourselves with the issue that ω is ill-defined
if the aaa1, . . . ,aaad are affinely dependent, as this is an event of probability zero. To specify
the positions of aaa1, . . . ,aaad on the plane specified by (ω, r), we must choose a coordinate
system for that plane. To choose a canonical set of coordinates for each (d−1)-dimensional
hyperplane specified by (ω, r), we first fix a reference unit vector in IRd, say q , and an
arbitrary coordinatization of the subspace orthogonal to q . For any ω 6= −q , we let

Rω

denote the linear transformation that rotates q to ω in the two-dimensional subspace
through q and ω and that is the identity in the orthogonal subspace. Using Rω, we
can map points specified in the d − 1 dimensional hyperplane specified by r and ω to IRd

by
aaai = Rωb i + rω,

where b i is viewed both as a vector in IRd−1 and as an element of the subspace orthogonal to
q . We will not concern ourselves with the fact that this map is not well defined if q = −ω,
as the set of aaa1, . . . ,aaad that result in this coincidence has measure zero.

The Jacobian of this change of variables is computed by a famous theorem of integral
geometry due to Blaschke [Bla35] (for more modern treatments, see [Mil71] or [San76,
12.24]), and actually depends only marginally on the coordinatizations of the hyperplanes.

Theorem 2.5.2 (Blaschke) For variables b1, . . . , bd taking values in IRd−1, ω ∈ Sd−1

and r ∈ IR, let

(aaa1, . . . ,aaad) = (Rωb1 + rω, . . . ,Rωbd + rω)

The Jacobian of this map is
∣

∣

∣

∣

det

(

∂(aaa1, . . . ,aaad)

∂(ω, r, b1, . . . , bd)

)∣

∣

∣

∣

= (d − 1)!Vol (△ (b1, . . . , bd)) .

That is,
daaa1 . . . daaad = (d − 1)!Vol (△ (b1, . . . , bd)) dω dr db1 . . . dbd
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We will also find it useful to specify the plane by ω and s, where 〈sq |ω〉 = r, so that
sq lies on the plane specified by ω and r. We will also arrange our coordinate system so
that the origin on this plane lies at sq .

Corollary 2.5.3 (Blaschke with s) For variables b1, . . . , bd taking values in IRd−1, ω ∈
Sd−1 and s ∈ IR, let

(aaa1, . . . ,aaad) = (Rωb1 + sq , . . . ,Rωbd + sq)

The Jacobian of this map is

∣

∣

∣

∣

det

(

∂(aaa1, . . . ,aaad)

∂(ω, s, b1, . . . , bd)

)∣

∣

∣

∣

= (d − 1)! 〈ω|q〉Vol (△ (b1, . . . , bd)) .

Proof So that we can apply Theorem 2.5.2, we will decompose the map into three simpler
maps:

(b1, . . . , bd, s,ω) 7→
(

b1 + R−1
ω (sq − rω), . . . , bd + R−1

ω (sq − rω), s,ω
)

7→
(

b1 + R−1
ω (sq − rω), . . . , bd + R−1

ω (sq − rω), r,ω
)

7→
(

Rω
(

b1 + R−1
ω (sq − rω)

)

+ rω, . . . , Rω
(

bd + R−1
ω (sq − rω)

)

+ rω
)

= (Rωb1 + sq , . . . , Rωbd + sq)

As sq − rω is orthogonal to ω, R−1
ω (sq − rω) can be interpreted as a vector in the d − 1

dimensional space in which b1, . . . , bd lie. So, the first map is just a translation, and its
Jacobian is 1. The Jacobian of the second map is

∣

∣

∣

∣

∂r

∂s

∣

∣

∣

∣

= 〈q |ω〉 .

Finally, we note

Vol
(

b1 + R−1
ω (sq − rω), . . . , bd + R−1

ω (sq − rω)
)

= Vol (b1, . . . , bd) ,

and that the third map is one described in Theorem 2.5.2.

In Section 4.2, we will need to represent ω by c = 〈ω|q〉 and ψ ∈ Sd−2, where ψ gives
the location of ω in the cross-section of Sd−1 for which 〈ω|q〉 = c. Formally, the map can
be defined in a coordinate system with first coordinate q by

ω = (c,ψ
√

1 − c2).

For this change of variables, we have:

Proposition 2.5.4 (Latitude and longitude) The Jacobian of the change of variables
from ω to (c,ψ) is

∣

∣

∣

∣

det

(

∂(ω)

∂(c,ψ)

)∣

∣

∣

∣

= (1 − c2)(d−3)/2.
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Proof We begin by changing ω to (θ,ψ), where θ is the angle between ω and q , and
ψ represents the position of ω in the d − 2 dimensional sphere of radius sin(θ) of points
at angle θ to q . To compute the Jacobian of this change of variables, we choose a local
coordinate system on Sd−1 at ω by taking the great circle through ω and q , and then an
arbitrary coordinatization of the great d − 2 dimensional sphere through ω orthogonal to
the great circle. In this coordinate system, θ is the position of ω along the first great circle.
As the d − 2 dimensional sphere of points at angle θ to q is orthogonal to the great circle
at ω, the coordinates in ψ can be mapped orthogonally into the coordinates of the great
d − 2 dimensional sphere–the only difference being the radii of the sub-spheres. Thus,

∣

∣

∣

∣

det

(

∂(ω)

∂(θ,ψ)

)∣

∣

∣

∣

= sin(θ)d−2

If we now let c = cos(θ), then we find

∣

∣

∣

∣

det

(

∂(ω)

∂(c,ψ)

)∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

∂(ω)

∂(θ,ψ)

)∣

∣

∣

∣

∣

∣

∣

∣

det

(

∂(θ)

∂(c)

)∣

∣

∣

∣

=
(
√

1 − c2
)d−2 1√

1 − c2
=
(
√

1 − c2
)d−3

.

27



3 The Shadow Vertex Method

In this section, we will review the shadow vertex method and formally state the two-phase
method analyzed in this paper. We will begin by motivating the method. In Section 3.1,
we will explain how the method works assuming a feasible vertex is known. In Section 3.2,
we present a polar perspective on the method, from which our analysis is most natural. We
then present a complete two-phase method in Section 3.3. For a more complete exposition
of the Shadow Vertex Method, we refer the reader to [Bor80, Chapter 1].

The shadow-vertex simplex method is motivated by the observation that the simplex
method is very simple in two-dimensions: the set of feasible points form a (possibly open)
polygon, and the simplex method merely walks along the exterior of the polygon. The
shadow-vertex method lifts the simplicity of the simplex method in two dimensions to
higher dimensions. Let z be the objective function of a linear program and let t be an
objective function optimized by x , a vertex of the polytope of feasible points for the linear
program. The shadow-vertex method considers the shadow of the polytope—the projection
of the polytope onto the plane spanned by z and t . One can verify that

(1) this shadow is a (possibly open) polygon,

(2) each vertex of the polygon is the image of a vertex of the polytope,

(3) each edge of the polygon is the image of an edge between two adjacent vertices of the
polytope,

(4) the projection of x onto the plane is a vertex of the polygon, and

(5) the projection of the vertex optimizing z onto the plane is a vertex of the polygon.

Thus, if one walks along the vertices of the polygon starting from the image of x , and keeps
track of the vertices’ pre-images on the polytope, then one will eventually encounter the
vertex of the polytope optimizing z . Given one vertex of the polytope that maps to a vertex
of the polygon, it is easy to find the vertex of the polytope that maps to the next vertex
of the polygon: fact (3) implies that it must be a neighbor of the vertex on the polytope;
moreover, for a linear program that is in general position with respect to t , there will be
d such vertices. Thus, the method will be efficient provided that the shadow polygon does
not have too many vertices. This is the motivation for the shadow vertex method.

3.1 Formal Description

Our description of the shadow vertex simplex method will be facilitated by the following
definition:

Definition 3.1.1 (optVert) Given vectors z , aaa1, . . . ,aaan in IRd and y ∈ IRn, we define
optVertz (aaa1, . . . ,aaan;y) to be the set of x solving

maximize z Tx

subject to 〈aaa i|x 〉 ≤ yi, for 1 ≤ i ≤ n.
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Figure 1: A shadow of a polytope

If there are no such x , either because the program is unbounded or infeasible, we let
optVertz (aaa1, . . . ,aaan;y) be ∅. When aaa1, . . . ,aaan and y are understood, we will use the
notation optVertz .

We note that, for linear programs in general position, optVertz will either be empty or
contain one vertex.

Using this definition, we will give a description of the shadow vertex method assuming
that a vertex x 0 and a vector t are known for which optVertt = x 0. An algorithm that
works without this assumption will be described in Section 3.3. Given t and z , we define
objective functions interpolating between the two by

qλ = (1 − λ)t + λz .

The shadow-vertex method will proceed by varying λ from 0 to 1, and tracking optVertqλ
.

We will denote the vertices encountered by x 0,x 1, . . . ,xk, and we will set λi so that x i ∈
optVertqλ

for λ ∈ [λi, λi+1].
As our main motivation for presenting the primal algorithm is to develop intuition in

the reader, we will not dwell on issues of degeneracy in its description. We will present a
polar version of this algorithm with a proof of correctness in the next section.
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primal shadow-vertex method
Input: aaa1, . . . ,aaan, y , z , and x 0 and t satisfying {x 0} =
optVertt(aaa1, . . . ,aaan;y).

(1) Set λ0 = 0, and i = 0.

(2) Set λ1 to be maximal such that {x 0} = optVertqλ
for λ ∈ [λ0, λ1].

(3) while λi+1 < 1,

(a) Set i = i + 1.

(b) Find an x i for which there exists a λi+1 > λi such that x i ∈
optVertqλ

for λ ∈ [λi, λi+1]. If no such x i exists, return un-
bounded.

(c) Let λi+1 be maximal such that x i ∈ optVertqλ
for λ ∈ [λi, λi+1].

(4) return x i.

Step (b) of this algorithm deserves further explanation. Assuming that the linear pro-
gram is in general position with respect to t , each vertex x i will have exactly d neighbors,
and the vertex x i+1 will be one of these [Bor80, Lemma 1.3]. Thus, the algorithm can be
described as a simplex method. While one could implement the method by examining these
d vertices in turn, more efficient implementations are possible. For an efficient implemen-
tation of this algorithm in tableau form, we point the reader to the exposition in [Bor80,
Section 1.3].

3.2 Polar Description

Following Borgwardt [Bor80], we will analyze the shadow vertex method from a polar per-
spective. This polar perspective is natural provided that all yi > 0. In this section, we will
describe a polar variant of the shadow-vertex method that works under this assumption. In
the next section, we will describe a two-phase shadow vertex method that uses this polar
variant to solve linear programs with arbitrary yis.

While it is not strictly necessary for the results in this paper, we remind the reader
that for a polytope P = {x : 〈x |aaa i〉 ≤ 1,∀i}, the polar of P is {y : 〈x |y〉 ≤ 1,∀x ∈ P}.
An equivalent definition of the polar is ConvHull (0,aaa1, . . . ,aaan). We remark that P is
bounded if and only if 0 is in the interior of ConvHull (aaa1, . . . ,aaan). The polar motivates:

Definition 3.2.1 (optSimp) For z and aaa1, . . . ,aaan in IRd and y ∈ IRn, yi > 0, we let

optSimpz (aaa1, . . . ,aaan;y) denote the set of I ∈
([n]

d

)

such that AI has full rank, △ ((aaa i/yi)i∈I)
is a facet of ConvHull (0,aaa1/y1, . . . ,aaan/yn) and z ∈ Cone ((aaa i)i∈I). When y is under-
stood to be 1, we will use the notation optSimpz (aaa1, . . . ,aaan) When aaa1, . . . ,aaan and y are
understood, we will use the notation optSimpz .

We remark that for y , z and aaa1, . . . ,aaan in general position, optSimpz (aaa1, . . . ,aaan;y)
will be the empty set or contain just one set of indices I.

The following proposition follows from the duality theory of linear programming:
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Figure 2: In example (a), optSimp = {{aaa1,aaa2,aaa3}}. In example (b), optSimp =
{{aaa1,aaa2,aaa3} , {aaa2,aaa3,aaa4}}. In example (c), optSimp = ∅,

Proposition 3.2.2 (Duality) For y1, . . . , yn > 0, I ∈ optSimpz (aaa1/y1, . . . ,aaan/yn) if
and only if there exists an x such that x ∈ optVertz (aaa1, . . . ,aaan;y) and 〈x |aaa i〉 = yi, for
i ∈ I.

We now state the polar shadow vertex method.

polar shadow-vertex method
Input:

• aaa1, . . . ,aaan, z , and y1, . . . , yn > 0,

• I ∈
([n]

d

)

and t satisfying I ∈ optSimpt(aaa1/y1, . . . ,aaan/yn).

(1) Set λ0 = 0 and i = 0.

(2) Set λ1 to be maximal such that for λ ∈ [λ0, λ1],

I ∈ optSimpqλ
(aaa1/y1, . . . ,aaan/yn).

(3) while λi+1 < 1,

(a) Set i = i + 1.

(b) Find a j and k for which there exists a λi+1 > λi such that

I ∪ {j} − {k} ∈ optSimpqλ
(aaa1/y1, . . . ,aaan/yn)

for λ ∈ [λi, λi+1]. If no such j and k exist, return unbounded.

(c) Set I = I ∪ {j} − {k}.
(d) Let λi+1 be maximal such that I ∈ optSimpt(aaa1/y1, . . . ,aaan/yn)

for λ ∈ [λi, λi+1].

(4) return I.

The x optimizing the linear program, namely optVertz (aaa1, . . . ,aaan;y), is given by the
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equations 〈x |aaa i〉 = yi, for i ∈ I.
Borgwardt [Bor80, Lemma 1.9] establishes that such j and k can be found in step (b) if

there exists an ǫ for which optSimpqλi+ǫ
(aaa1/y1, . . . ,aaan/yn) 6= ∅. That the algorithm may

conclude that the program is unbounded if a j and k cannot be found in step (b) follows
from:

Proposition 3.2.3 (Detecting unbounded programs) If there is an i and an ǫ > 0
such that λi+ǫ < 1 and optSimpqλi+ǫ

(aaa1/y1, . . . ,aaan/yn) = ∅, then optSimpz (aaa1/y1, . . . ,aaan/yn) =

∅.

Proof optSimpqλi+ǫ
(aaa1/y1, . . . ,aaan/yn) = ∅ if and only if qλi+ǫ 6∈ Cone (aaa1, . . . ,aaan).

The proof now follows from the facts that Cone (aaa1, . . . ,aaan) is a convex set and qλi+ǫ is a
positive multiple of a convex combination of t and z .

The running time of the shadow-vertex method is bounded by the number of vertices in
shadow of the polytope defined by the constraints of the linear program. Formally, this is

Definition 3.2.4 (Shadow) For independent vectors t and z , aaa1, . . . ,aaan in IRd and y ∈
IRn, y > 0,

Shadowt ,z (aaa1, . . . ,aaan;y)
def
=

⋃

q∈Span(t ,z )

{

optSimpq (aaa1/y1, . . . ,aaan/yn)
}

.

If y is understood to be 1, we will just write Shadowt ,z (aaa1, . . . ,aaan).

3.3 Two-Phase Method

We now describe a two-phase shadow vertex method that solves linear programs of form

maximize 〈z |x 〉
subject to 〈aaai|x 〉 ≤ yi, for 1 ≤ i ≤ n. (LP )

There are three issues that we must resolve before we can apply the polar shadow vertex
method as described in Section 3.2 to the solution of such programs:

(1) the method must know a feasible vertex of the linear program,

(2) the linear program might not even be feasible, and

(3) some yi might be non-positive.

The first two issues are standard motivations for two-phase methods, while the third is
motivated by the polar perspective from which we prefer to analyze the shadow vertex
method. We resolve these issues in two stages. We first relax the constraints of LP to
construct a linear program LP ′ such that

(a) the right-hand vector of the linear program is positive, and

(b) we know a feasible vertex of the linear program.
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After solving LP ′, we construct another linear program, LP+, in one higher dimension that
interpolates between LP and LP ′. LP+ has properties (a) and (b), and we can use the
shadow vertex method on LP+ to transform the solution to LP ′ into a solution of LP .

Our two-phase method first chooses a d-set I to define the known feasible vertex of LP ′.
The linear program LP ′ is determined by A, z and the choice of I. However, the magnitude
of the right-hand entries in LP ′ depends upon smin (AI). To reduce the chance that these
entries will need to be large, we examine several randomly chosen d-sets, and use the one
maximizing smin.

The algorithm then sets

M = 2⌈lg(maxi‖yi,aaai‖)⌉+2,

κ = 2⌊lg(smin(AI))⌋, and

y′i =

{

M for i ∈ I√
dM2/4κ otherwise.

These define the program LP ′:

maximize 〈z |x 〉
subject to 〈aaa i|x 〉 ≤ y′i, for 1 ≤ i ≤ n. (LP ′)

By Proposition 3.3.1, AI is a feasible basis for LP ′, and optimizes any objective function
of the form AIα, for α > 0. Our two-phase algorithm will solve LP ′ by starting the polar
shadow-vertex algorithm at the basis I and the objective function AIα for a randomly
chosen α satisfying

∑

αi = 1 and αi ≥ 1/d2, for all i.

Proposition 3.3.1 (Initial simplex of LP ′) For any α > 0, I = optSimpAIα
(aaa1, . . . ,aaan;y ′).

Proof Let x ′ be the solution of the linear system
〈

aaai|x ′
〉

= y′i, for i ∈ I.

By Definition 2.2.3 and Proposition 2.2.4 (a),
∥

∥x ′
∥

∥ ≤
∥

∥y ′I
∥

∥

∥

∥A−1
I

∥

∥ ≤ M
√

d
∥

∥A−1
I

∥

∥ = M
√

d/smin (AI) .

So, for all i 6∈ I,
〈

aaa i|x ′
〉

≤ (max
i

‖aaai‖)M
√

d/smin (AI) < M2
√

d/4κ.

Thus, for all i 6∈ I,
〈

aaa i|x ′
〉

< y′i,

and, by Definition 3.2.1, I = optSimpAIα
(aaa1, . . . ,aaan;y ′).

We will now define a linear program LP+ that interpolates between LP ′ and LP . This
linear program will contain an extra variable x0 and constraints of the form

〈aaai|x 〉 ≤
(

1 + x0

2

)

yi +

(

1 − x0

2

)

y′i,
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and −1 ≤ x0 ≤ 1. So, for x0 = 1 we see the original program LP while for x0 = −1 we get
LP ′. Formally, we let

a+
i =







((y′i − yi)/2,aaa i) for 1 ≤ i ≤ n
(1, 0, . . . , 0) for i = 0
(−1, 0, . . . , 0) for i = −1

y+
i =







(y′i + yi)/2 for 1 ≤ i ≤ n
1 for i = 0
1 for i = −1

z+ = (1, 0, . . . , 0),

and we define LP+ by

maximize
〈

z+|(x0,x )
〉

subject to
〈

a+
i |(x0,x )

〉

≤ y+
i , for −1 ≤ i ≤ n, (LP+)

and we set
y+ def

= (y+
−1, . . . , y

+
n ).

By Proposition 3.3.2,
√

dM/4κ ≥ 1, so y′i ≥ M and y+
i > 0, for all i. If LP is infeasible,

then the solution to LP+ will have x0 < 1. If LP is feasible, then the solution to LP+ will
have form (1,x ) where x is a feasible point for LP . If we use the shadow-vertex method to
solve LP+ starting from the appropriate initial vector, then x will be an optimal solution
to LP .

Proposition 3.3.2 (relation of M and κ) For M and κ as set by the algorithm,
√

dM/4κ ≥
1.

Proof By definition, κ ≤ smin (AI). On the other hand, smin (AI) ≤ ‖AI‖ ≤
√

d maxi ‖aaai‖,
by Proposition 2.2.4 (d). Finally, M ≥ 4maxi ‖aaai‖.

We now state and prove the correctness of the two-phase shadow vertex method.
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two-phase shadow-vertex method
Input: A = (aaa1, . . . ,aaan), y , z .

(1) Let I = {I1, . . . , I3nd ln n} be a collection of randomly chosen sets in
([n]

d

)

, and let I ∈ I be the set maximizing smin (AI).

(2) Set M = 2⌈lg(maxi‖yi,aaai‖)⌉+2 and κ = 2⌊lg(smin(AI ))⌋.

(3) Set y′i =

{

M for i ∈ I√
dM2/4κ otherwise.

.

(4) Choose α uniformly at random from
{

α :
∑

αi = 1 and αi ≥ 1/d2
}

.
Set t ′ = AIα.

(5) Let J be the output of the polar shadow vertex algorithm on LP ′ on
input I and t ′. If LP ′ is unbounded, then return unbounded.

(6) Let ζ > 0 be such that

{−1} ∪ J ∈ optSimp(−ζ,z )

(

a+
−1/y

+
−1, . . . ,a

+
n /y+

n

)

.

(7) Let K be the output of the polar shadow vertex algorithm on LP+ on
input {−1} ∪ J , (−ζ, z ).

(8) Compute (x0,x ) satisfying
〈

(x0,x )|a+
i

〉

= yi for i ∈ K.

(9) If x0 < 1, return infeasible. Otherwise, return x .

The following propositions prove the correctness of the algorithm.

Proposition 3.3.3 (Unbounded programs) The following are equivalent

(a) LP is unbounded;

(b) LP ′ is unbounded;

(c) there exists a 1 > λ > 0 such that optSimpλ(1,0)+(1−λ)(−ζ,z )

(

a+
−1, . . . ,a

+
n ;y+

)

= ∅;

(d) for all 1 > λ > 0, optSimpλ(1,0)+(1−λ)(−ζ,z )

(

a+
−1, . . . ,a

+
n ;y+

)

= ∅.

Proposition 3.3.4 (Bounded programs) If LP ′ is bounded and has solution J , then

(a) there exists ζ0 such that for all ζ > ζ0, {−1} ∪ J ∈ optSimp(−ζ,z )

(

a+
−1, . . . ,a

+
n ;y+

)

,

(b) If LP is feasible, then for K ′ ∈ optSimpz (aaa1, . . . ,aaan;y), there exists ξ0 such that for
all ξ > ξ0, {0} ∪ K ′ ∈ optSimp(ξ,z )

(

a+
−1, . . . ,a

+
n ;y+

)

, and

(c) if we use the shadow vertex method to solve LP+ starting from {−1, J} and objective
function (−ζ, z ), then the output of the algorithm will have form {0} ∪ K ′, where K ′

is a solution to LP .
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Proof of Proposition 3.3.3 LP is unbounded if and only if there exists a vector v

such that 〈z |v〉 > 0 and 〈aaa i|v〉 ≤ 0 for all i. The same holds for LP ′, and establishes the
equivalence of (a) and (b). To show that (a) or (b) implies (d), observe

〈λ(1,0) + (1 − λ)(−ζ, z )|(0, v )〉 = (1 − λ) 〈z |v 〉 > 0, (8)
〈

a+
i |(0, v )

〉

= 〈aaai|v 〉 , for i = 1, . . . , n, (9)
〈

aaa+
0 |(0, v )

〉

= 0, and
〈

aaa+
−1|(0, v )

〉

= 0.

To show that (c) implies (a) and (b), note that a+
0 and a+

−1 are arranged so that if for some
v0 we have

〈

a+
i |(v0, v )

〉

≤ 0, for −1 ≤ i ≤ n,

then v0 = 0. This identity allows us to apply (8) and (9) to show (c) implies (a) and (b).

Proof of Proposition 3.3.4 Let J be the solution to LP ′ and let x ′ = A−1
J y ′J be the

corresponding vertex. We then have

〈

x ′|aaa i

〉

= y
′
i, for i ∈ J , and

〈

x ′|aaa i

〉

≤ y
′
i, for i 6∈ J.

Therefore, it is clear that

〈

(−1,x ′)|a+
i

〉

= y+
i , for i ∈ {−1} ∪ J , and

〈

(−1,x ′)|a+
i

〉

≤ y+
i , for i 6∈ {−1} ∪ J.

Thus, △
(

a+
−1, (a

+
i )i∈J

)

is a facet of LP+. To see that there exists a ζ0 such that it
optimizes (−ζ, z ) for all ζ > ζ0, first observe that there exist αi > 0, for i ∈ J , such that
∑

i∈J αiaaa i = z . Now, let (−ζ0, z ) =
∑

i∈J αia
+
i . For ζ > ζ0, we have

(−ζ, z ) = (ζ − ζ0)a
+
−1 +

∑

i∈J

αia
+
i ,

which proves (−ζ, z ) ∈ Cone
(

a+
−1, (a

+
i )i∈J

)

and completes the proof of (a).
The proof of (b) is similar.
To prove part (c), let K be as in step (7). Then, there exists a λk such that for all

λ ∈ (λk, 1),
K = optSimp(1−λ)(−ζ,z )+λz+

(

a+
−1, . . . ,a

+
n ;y+

)

.

Let (x0,x ) satisfy
〈

(x0,x )|a+
i

〉

= y+
i , for i ∈ K. Then, by Proposition 3.2.2,

(x0,x ) = optVert(1−λ)(−ζ,z )+λz+

(

a+
−1, . . . ,a

+
n ;y+

)

.

If x0 < 1, then LP was infeasible. Otherwise, let x ∗ = optVertz (aaa1, . . . ,aaan;y). By part
(b), there exists ξ0 such that for all ξ > ξ0,

(1,x ∗) = optVert(ξ,z )

(

a+
−1, . . . ,a

+
n ;y+

)

.
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For ξ = −ζ + λ/(1 − λ), we have

(ξ, z ) =
1

1 − λ

(

(1 − λ)(−ζ, z ) + λz+
)

.

So, as λ approaches 1, ξ = −ζ + λ/(1 − λ) goes to infinity and we have

optVert(1−λ)(−ζ,z )+λz+

(

a+
−1, . . . ,a

+
n ;y+

)

= optVert(ξ,z )

(

a+
−1, . . . ,a

+
n ;y+

)

,

which implies (x0,x ) = (1,x ∗).

Finally, we bound the number of steps taken in step (7) by the shadow size of a related
polytope:

Lemma 3.3.5 (Shadow path of LP+) Let aaa+
−1, . . . ,aaa

+
n and y+

−1, . . . , y
+
n be as defined in

LP+. Let ζ > 0 be such that {−1} ∪ J = optSimp(−ζ,z )

(

a+
−1/y

+
−1, . . . ,a

+
n /y+

n

)

. Then the
number of simplex steps made by the polar shadow vertex algorithm while solving LP+ from
initial basis {−1} ∪ J and vector (−ζ, z ) is at most

2 +
∣

∣Shadow(0,z ),z+

(

a+
1 /y+

1 , . . . ,a+
n /y+

n

)∣

∣ .

Proof We will establish that {−1} ∈ I for the first step only. One can similarly prove
that {0} ∈ I is only true at termination.

Let I ∈ optSimpqλ

(

a+
−1/y

+
−1, . . . ,a

+
n /y+

n

)

have form {−1} ∪ L. As q0 = a+
−1 ∈

Cone
(

A{−1}∪L

)

, and Cone
(

A{−1}∪L

)

is a convex set, we have qλ′ ∈ Cone
(

A{−1}∪L

)

for all 0 ≤ λ′ ≤ λ. As [λi, λi+1] is exactly the set of λ optimized by △ (AI) in the ith step
of the polar shadow vertex method, I must be the initial set.

3.4 Discussion

We also note that our analysis of the two-phase algorithm actually takes advantage of the
fact that κ and M have been set to powers of two. In particular, this fact is used to show
that there are not too many likely choices for κ and M . For the reader who would like to
drop this condition, we briefly explain how the argument of Section 5 could be modified to
compensate: first, we could consider setting κ and M to powers of 1 + 1/poly(n, d, 1/σ).
This would still result in a polynomially bounded number of choices for κ and M . One
could then drop this assumption by observing that allowing κ and M to vary in a small
range would not introduce too much dependency between the variables.
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4 Shadow Size

In this section, we bound the expected size of the shadow of the perturbation of a polytope
onto a fixed plane. This is the main geometric result of the paper. The algorithmic results
of this paper will rely on extensions of this theorem derived in Section 4.3.

Theorem 4.0.1 (Shadow Size) Let d ≥ 3 and n > d. Let z and t be independent vectors
in IRd, and let µ1, . . . , µn be Gaussian distributions in IRd of standard deviation σ centered
at points each of norm at most 1. Then,

E
aaa1,...,aaan

[|Shadowt ,z (aaa1, . . . ,aaan)|] ≤ D(n, d, σ), (10)

where

D(n, d, σ) =
58, 888, 678 nd3

min
(

σ, 1/3
√

d ln n
)6 ,

and aaa1, . . . ,aaan have density
∏n

i=1 µi(aaa i).

The proof of Theorem 4.0.1, will use the following definitions.

Definition 4.0.2 (ang) For a vector q and a set S, we define

ang (q , S) = min
x∈S

angle (q ,x ) ,

If S is empty, we set ang (q , ∅) = ∞.

Definition 4.0.3 (angq) For a vector q and points aaa1, . . . ,aaan in IRd, we define

angq (aaa1, . . . ,aaan) = ang
(

q , ∂ △
(

optSimpq (aaa1, . . . ,aaan)
))

,

where ∂△
(

optSimpq (aaa1, . . . ,aaan)
)

denotes the boundary of the simplex △
(

optSimpq (aaa1, . . . ,aaan)
)

.

These definitions are arranged so that if the ray through q does not pierce the convex
hull of aaa1, . . . ,aaan, then angq (aaa1, . . . ,aaan) = ∞.

In our proofs, we will make frequent use of the fact that it is very unlikely that a
Gaussian random variable is far from its mean. To capture this fact, we define:

Definition 4.0.4 (P) P is the set of (aaa1, . . . ,aaan) for which ‖aaai‖ ≤ 2, for all i.

Applying a union bound to Corollary 2.4.6, we obtain

Proposition 4.0.5 (Measure of P)

Pr [(aaa1, . . . ,aaan) ∈ P ] ≥ 1 − n(n−2.9d) = 1 − n−2.9d+1.
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Proof of Theorem 4.0.1 We first observe that we can assume σ ≤ 1/3
√

d ln n: if
σ > 1/3

√
d ln n, then we can scale down all the data until σ = 1/3

√
d ln n. As this could

only decrease the norms of the centers of the distributions, the theorem statement would
be unaffected.

Assume without loss of generality that z and t are orthogonal. Let

qθ = z sin(θ) + t cos(θ). (11)

We discretize the problem by using the intuitively obvious fact, which we prove as Lemma 4.0.6,
that the left-hand of (10) equals

lim
m→∞

E
aaa1,...,aaan







∣

∣

∣

∣

∣

∣

∣

⋃

θ∈{ 2π
m

, 2·2π
m

,..., m·2π
m }

{

optSimpqθ
(aaa1, . . . ,aaan)

}

∣

∣

∣

∣

∣

∣

∣






.

Let Ei denote the event
[

optSimpq2πi/m
(aaa1, . . . ,aaan) 6= optSimpq2π((i+1) mod m)/m

(aaa1, . . . ,aaan)
]

.

Then, for any m ≥ 2 and for all aaa1, . . . ,aaan,
∣

∣

∣

∣

∣

∣

∣

⋃

θ∈{ 2π
m

, 2·2π
m

,..., m·2π
m }

{

optSimpqθ
(aaa1, . . . ,aaan)

}

∣

∣

∣

∣

∣

∣

∣

=

m
∑

i=1

Ei(aaa1, . . . ,aaan).

We bound this sum by

E

[

m
∑

i=1

Ei

]

= E
P

[

∑

i

Ei

]

Pr [P ] + E
P̄

[

∑

i

Ei

]

Pr
[

P̄
]

≤ E
P

[

∑

i

Ei

]

+

(

n

d

)

n−2.9d+1

≤ E
P

[

∑

i

Ei

]

+ 1

Thus, we will focus on bounding EP [
∑

i Ei].

Observing that Ei implies
[

angq2πi/m
(aaa1, . . . ,aaan) ≤ 2π/m

]

, and applying linearity of

expectation, we obtain

E
P

[

∑

i

Ei

]

=

m
∑

i=1

Pr
P

[Ei]

≤
m
∑

i=1

Pr
P

[

angq2πi/m
(aaa1, . . . ,aaan) <

2π

m

]

≤ 2π
9, 372, 424 nd3

σ6
by Lemma 4.0.7,

≤ 58, 888, 677 nd3

σ6
.
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Lemma 4.0.6 (Discretization in limit) Let z and t be orthogonal vectors in IRd, and
let µ1, . . . , µn be non-degenerate Gaussian distributions. Then,

E
aaa1,...,aaan





∣

∣

∣

∣

∣

∣

⋃

q∈Span(z ,t)

{

optSimpq (aaa1, . . . ,aaan)
}

∣

∣

∣

∣

∣

∣



 =

lim
m→∞

E
aaa1,...,aaan







∣

∣

∣

∣

∣

∣

∣

⋃

θ∈{ 2π
m

, 2·2π
m

,..., m·2π
m }

{

optSimpqθ
(aaa1, . . . ,aaan)

}

∣

∣

∣

∣

∣

∣

∣






, (12)

where qθ is as defined in (11).

Proof For a I ∈
([n]

d

)

, let

FI(aaa1, . . . ,aaan) =

∫

θ

[

optSimpqθ
(aaa1, . . . ,aaan) = I

]

dθ .

The left and right hand sides of (12) can differ only if there exists a δ > 0 such that for all
ǫ > 0,

Pr
aaa1,...,aaan

[

∃I
∣

∣

∣

I = optSimpqθ
(aaa1, . . . ,aaan) for some θ, and

FI(aaa1, . . . ,aaan) < ǫ

]

≥ δ.

As there are only finitely many choices for I, this would imply the existence of a δ′ and a
particular I such that for all ǫ > 0,

Pr
aaa1,...,aaan

[

I = optSimpqθ
(aaa1, . . . ,aaan) for some θ, and

FI(aaa1, . . . ,aaan) < ǫ

]

≥ δ′.

As FI(aaa1, . . . ,aaan) = FI(AI) given that I = optSimpqθ
(aaa1, . . . ,aaan) for some θ, this implies

that for all ǫ > 0,

Pr
aaa1,...,aaan

[

I = optSimpqθ
(AI) for some θ, and

FI(AI) < ǫ

]

≥ δ′. (13)

Note that I = optSimpqθ
(AI) if and only if qθ ∈ Cone (AI). Now, let

G(AI) =

∫

θ
[qθ ∈ Cone (AI)] (ang (qθ, ∂ △ (AI)) /π) dθ .

As G(AI) ≤ FI(AI), (13) implies that for all ǫ > 0

Pr
aaa1,...,aaan

[

I = optSimpqθ
(aaa1, . . . ,aaan) for some θ, and

G(AI) < ǫ

]

≥ δ′.

However, G is a continuous function, and therefore measurable, so this would imply

Pr
aaa1,...,aaan

[

I = optSimpqθ
(aaa1, . . . ,aaan) for some θ, and

G(AI) = 0

]

≥ δ′,

which is clearly false as the set of AI satisfying

40



• G(AI) = 0, and

• ∃θ : optSimpqθ
(aaa1, . . . ,aaan) = {AI}

has co-dimension 1, and so has measure zero under the product distribution of non-degenerate
Gaussians.

Lemma 4.0.7 (Angle bound) Let d ≥ 3 and n > d. Let q be any unit vector and let
µ1, . . . , µn be Gaussian measures in IRd of standard deviation σ ≤ 1/3

√
d ln n centered at

points of norm at most 1. Then,

Pr
P

[

angq (aaa1, . . . ,aaan) < ǫ
]

≤ 9, 372, 424 nd3

σ6
ǫ

where aaa1, . . . ,aaan have density
n
∏

i=1

µi(aaa i).

The proof will make use of the following definition:

Definition 4.0.8 (P
j
I ) For a I ∈

([n]
d

)

and j ∈ I, we define P j
I to be the set of aaa1, . . . ,aaad

satisfying

(1) For all q , if optSimpq (aaa1, . . . ,aaan) 6= ∅, then s ≤ 2, where s is the real number for
which sq ∈ △

(

optSimpq (aaa1, . . . ,aaan)
)

,

(2) dist (aaai,aaak) ≤ 4, for i, k ∈ I − {j},

(3) dist
(

aaaj,Aff
(

AI−{j}
))

≤ 4, and

(4) dist
(

aaa⊥j ,aaa i

)

≤ 4, for all i ∈ I−{j}, where aaa⊥j is the orthogonal projection of aaaj onto

Aff
(

AI−{j}
)

.

Proposition 4.0.9 (P ⊂ P
j
I ) For all j, I, P ⊂ P j

I .

Proof Parts (2), (3), and (4) follow immediately from the restrictions ‖aaa i‖ ≤ 2. To see
why part (1) is true, note that sq lies in the convex hull of aaa1, . . . ,aaan, and so its norm, s,
can be at most maxi ‖aaa i‖ ≤ 2, for (aaa1, . . . ,aaan) ∈ P .

Proof of Lemma 4.0.7 Applying a union bound twice, we write

Pr
P

[

angq (aaa1, . . . ,aaan) < ǫ
]

≤
∑

I

Pr
P

[

optSimpq (aaa1, . . . ,aaan) = I and

ang(q , ∂ △ (AI)) < ǫ

]

≤
∑

I

d
∑

j=1

Pr
P

[

optSimpq (aaa1, . . . ,aaan) = I and

ang(q ,△
(

AI−{j}
)

) < ǫ

]

≤
∑

I

d
∑

j=1

Pr
P j

I

[

optSimpq (aaa1, . . . ,aaan) = I and

ang(q ,△
(

AI−{j}
)

) < ǫ

]

/

Pr
P j

I

[P ]
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(by Proposition 2.3.2)

≤
∑

I

d
∑

j=1

Pr
P j

I

[

optSimpq (aaa1, . . . ,aaan) = I and

ang(q ,△
(

AI−{j}
)

) < ǫ

]

/

Pr [P ]

(by P ⊂ P j
I )

≤ 1

1 − n−2.9d+1

∑

I

d
∑

j=1

Pr
P j

I

[

optSimpq (aaa1, . . . ,aaan) = I and

ang(q ,△
(

AI−{j}
)

) < ǫ

]

(by Proposition 4.0.5)

≤ 1

1 − n−2.9d+1

d
∑

j=1

∑

I

Pr
P j

I

[

optSimpq (aaa1, . . . ,aaan) = I and

ang(q ,△
(

AI−{j}
)

) < ǫ,

]

,

by changing the order of summation.
We now expand the inner summation using Bayes’ rule to get

∑

I

Pr
P j

I

[

optSimpq (aaa1, . . . ,aaan) = I and
ang(q ,△

(

AI−{j}
)

) < ǫ

]

=
∑

I

Pr
P j

I

[

optSimpq (aaa1, . . . ,aaan) = I
]

·

Pr
P j

I

[

ang(q ,△
(

AI−{j}
)

) < ǫ
∣

∣

optSimpq (aaa1, . . . ,aaan) = I

]

(14)

As optSimpq (aaa1, . . . ,aaan) is a set of size zero or one with probability 1,

∑

I

Pr
[

optSimpq (aaa1, . . . ,aaan) = I
]

≤ 1;

from which we derive
∑

I

Pr
P j

I

[

optSimpq (aaa1, . . . ,aaan) = I
]

≤
∑

I

Pr
[

optSimpq (aaa1, . . . ,aaan) = I
] /

Pr
[

P j
I

]

(by Proposition 2.3.2)

≤ 1

1 − n−2.9d+1

∑

I

Pr
[

optSimpq (aaa1, . . . ,aaan) = I
]

(by P ⊂ P j
I and Proposition 4.0.5)

≤ 1

1 − n−2.9d+1
.
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So,

(14) ≤ 1

1 − n−2.9d+1
.max

I
Pr
P j

I

[

ang(q ,△
(

AI−{j}
)

) < ǫ
∣

∣

optSimpq (aaa1, . . . ,aaan) = I

]

.

Plugging this bound in to the first inequality derived in the proof, we obtain the bound of

Pr
P

[

angq (aaa1, . . . ,aaan) < ǫ
]

≤ d

(1 − n−2.9d+1)2
max
j,I

Pr
P j

I

[

ang(q ,△
(

AI−{j}
)

) < ǫ
∣

∣

optSimpq (aaa1, . . . ,aaan) = I

]

≤ d
9, 372, 424 nd3

σ6
ǫ, by Lemma 4.0.11, d ≥ 3 and n ≥ d + 1,

=
9, 372, 424 nd3

σ6
ǫ.

Definition 4.0.10 (Q) We define Q to be the set of (b1, . . . , bd) ∈ IRd−1 satisfying

(1) dist (b1,Aff (b2, . . . , bd)) ≤ 4,

(2) dist (bi, bj) ≤ 4 for all i, j ≥ 2,

(3) dist
(

b⊥1 , b i

)

≤ 4 for all i ≥ 2, where b⊥1 is the orthogonal projection of b1 onto
Aff (b2, . . . , bd), and

(4) 0 ∈ △ (b1, . . . , bd).

Lemma 4.0.11 (Angle bound given optSimp) Let µ1, . . . , µn be Gaussian measures in
IRd of standard deviation σ ≤ 1/3

√
d ln n centered at points of norm at most 1. Then

Pr
P 1

1,...,d

[

ang(q ,△ (aaa2, . . . ,aaad)) < ǫ
∣

∣

optSimpq (aaa1, . . . ,aaan) = {1, . . . , d}

]

≤ 9, 371, 990 nd2ǫ

σ6
(15)

where aaa1, . . . ,aaan have density
n
∏

i=1

µi(aaa i).

Proof We begin by making the change of variables from aaa1, . . . ,aaad to ω, s, b1, . . . , bd

described in Corollary 2.5.3, and we recall that the Jacobian of this change of variables is

(d − 1)! 〈ω|q〉Vol (△ (b1, . . . , bd)) .

As this change of variables is arranged so that sq ∈ △ (aaa1, . . . ,aaad) if and only if 0 ∈
△ (b1, . . . , bd), the condition that optSimpq (aaa1, . . . ,aaan) = {1, . . . , d} can be expressed as

[0 ∈ △ (b1, . . . , bd)]
∏

j>d

[〈ω|aaaj〉 ≤ 〈ω|sq〉] .
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Let x be any point on △ (aaa2, . . . ,aaad). Given that sq ∈ △ (aaa1, . . . ,aaad), conditions (3)
and (4) for membership in P 1

1,...,d imply that

dist (sq ,x ) ≤ dist (aaa1,x ) ≤
√

dist (aaa1,Aff (aaa2, . . . ,aaad))
2 + dist

(

aaa⊥1 ,x
)2 ≤ 4

√
2,

where aaa⊥1 is the orthogonal projection of aaa1 onto Aff (aaa2, . . . ,aaad). So, Lemma 4.0.12 implies

ang (q ,△ (aaa2, . . . ,aaad)) ≥
dist (sq ,Aff (aaa2, . . . ,aaad)) 〈ω|q〉

2 + 4
√

2
=

dist (0,Aff (b2, . . . , bd)) 〈ω|q〉
2 + 4

√
2

.

Finally, observe that (aaa1, . . . ,aaad) ∈ P 1
1,...,d is equivalent to the conditions (b1, . . . , bd) ∈

Q and s ≤ 2, given that optSimpq (aaa1, . . . ,aaad) = {1, . . . , d}. Now, the left-hand side of
(15) can be bounded by

Pr
ω,s≤2

(b1,...,bd)∈Q

[

dist (0,Aff (b2, . . . , bd)) 〈ω|q 〉
2 + 4

√
2

< ǫ

]

, (16)

where the variables have density proportional to

〈ω|q〉Vol (△ (b1, . . . , bd))





∏

j>d

∫

aaaj

[〈ω|aaaj〉 ≤ s 〈ω|q〉]µj(aaaj) daaaj





d
∏

i=1

µi(Rωbi + sq).

As Lemma 4.1.1 implies

Pr
ω,s≤2

(b1,...,bd)∈Q

[dist (0,Aff (b2, . . . , bd)) < ǫ] ≤ 900e2/3d2ǫ

σ4
,

and Lemma 4.2.1 implies

max
s≤2,b1,...,bd∈Q

Pr
ω

[〈ω|q〉 < ǫ] <

(

340nǫ

σ2

)2

,

we can apply Lemma 2.3.5 to prove

(16) ≤ 4 · (2 + 4
√

2) ·
(

900e2/3d2

σ4

)

(

340n

σ2

)

ǫ ≤ 9, 371, 990 nd2ǫ

σ6
.

Lemma 4.0.12 (Division into distance and angle) Let x be a vector, let 0 < s ≤ 2,
and let q and ω be unit vectors satisfying

(a) 〈ω|x − sq〉 = 0, and

(b) dist (x , sq) ≤ 4
√

2.
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Then,

angle (q ,x ) ≥ dist (x , sq) 〈ω|q〉
2 + 4

√
2

.

Proof Let r = x − sq . Then, (a) implies

〈ω|q〉2 +

〈

r

‖r‖
∣

∣

∣
q

〉2

≤ ‖q‖ = 1;

so,

〈r |q〉 ≤
√

1 − 〈ω|q〉2 ‖r‖ .

Let h be the distance from x to the ray through q . Then,

h2 + 〈r |q〉2 = ‖r‖2 ;

so,
h ≥ 〈ω|q〉 ‖r‖ = 〈ω|q〉dist (x , sq)

Now,

angle (q ,x ) ≥ sin(angle (q ,x )) =
h

‖x‖ ≥ h

s + dist (x , sq)
≥ h

2 + 4
√

2
≥ 〈ω|q〉dist (x , sq)

2 + 4
√

2
.

4.1 Distance

The goal of this section is to prove it is unlikely that 0 is near ∂ △ (b1, . . . , bd).

d1

d2

0

d3

h

h

d3

d1

d2

0

b3
b2

b1

Figure 3: The change of variables in Lemma 4.1.2.
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Lemma 4.1.1 (Distance bound) Let q be a unit vector and let µ1, . . . , µn be Gaussian
measures in IRd of standard deviation σ ≤ 1/3

√
d ln n centered at points of norm at most 1.

Then,

Pr
ω,s≤2

(b1,...,bd)∈Q

[dist (0,Aff (b2, . . . , bd)) < ǫ] ≤ 900e2/3d2ǫ

σ4
, (17)

where the variables have density proportional to

〈ω|q〉Vol (△ (b1, . . . , bd))





∏

j>d

∫

aaaj

[〈ω|aaaj〉 ≤ s 〈ω|q〉]µj(aaaj) daaaj





d
∏

i=1

µi(Rωbi + sq).

Proof Note that if we fix ω and s, then the first and third terms in the density become
constant. For any fixed plane specified by (ω, s), Proposition 2.4.3 tells us that the induced
density on bi remains a Gaussian of standard deviation σ and is centered at the projection
of the center of µi onto the plane. As the origin of this plane is the point sq , and s ≤ 2,
these induced Gaussians have centers of norm at most 3. Thus, we can use Lemma 4.1.2 to
bound the left-hand side of (17) by

max
ω,s≤2

Pr
(b1,...,bd)∈Q

[dist (0,Aff (b2, . . . , bd)) < ǫ] ≤ 900e2/3d2ǫ

σ4
.

Lemma 4.1.2 (Distance bound in plane) Let µ1, . . . , µd be Gaussian measures in IRd−1.
of standard deviation σ ≤ 1/3

√
d ln n centered at points of norm at most 3. Then

Pr
b1,...,bd∈Q

[dist (0,Aff (b2, . . . , bd)) < ǫ] ≤ 900e2/3d2ǫ

σ4
, (18)

where b1, . . . , bd have density proportional to

Vol (△ (b1, . . . , bd))
d
∏

i=1

µi(b i).

Proof In Lemma 4.1.3, we will prove it is unlikely that b1 is close to Aff (b2, . . . , bd).
We will exploit this fact by proving that it is unlikely that 0 is much closer than b1 to
Aff (b2, . . . , bd). We do this by fixing the shape of △ (b1, . . . , bd), and then considering
slight translations of this simplex. That is, we make a change of variables to

h =
1

d

d
∑

i=1

bi

di = h − b i, for i ≥ 2.

The vectors d2, . . . ,dd specify the shape of the simplex, and h specifies its location. As this
change of variables is a linear transformation, its Jacobian is constant. For convenience, we
also define d1 = h − b1 = −∑i≥2 di.
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It is easy to verify that

0 ∈ △ (b1, . . . , bd) ⇔ h ∈ △ (d1, . . . ,dd) ,

dist (0,Aff (b2, . . . , bd)) = dist (h ,Aff (d2, . . . ,dd)) ,

dist (b1,Aff (b2, . . . , bd)) = dist (d1,Aff (d2, . . . ,dd)) , and

Vol (△ (b1, . . . , bd)) = Vol (△ (d1, . . . ,dd)) .

Note that the relation between d1 and d2, . . . ,dd guarantees 0 ∈ △ (d1, . . . ,dd) for all
d2, . . . ,dd. So, (b1, . . . , bd) ∈ Q if and only if (d1, . . . ,dd) ∈ Q and h ∈ △ (d1, . . . ,dd). As
d1 is a function of d2, . . . ,dd, we let Q′ be the set of d2, . . . ,dd for which (d1, . . . ,dd) ∈ Q.

So, the left-hand side of (18) equals

Pr
(d2,...,dd)∈Q′

h∈△(d1,...,dd)

[dist (h ,Aff (d2, . . . ,dd)) < ǫ]

where h ,d2, . . . ,dd have density proportional to

Vol (△ (d1, . . . ,dd))

d
∏

i=1

µi(h − di). (19)

Similarly, Lemma 4.1.3 can be seen to imply

Pr
(d2,...,dd)∈Q′

h∈△(d1,...,dd)

[dist (d1,Aff (d2, . . . ,dd)) < ǫ] ≤
(

ǫ3e2/3d

σ2

)3

≤
(

ǫ3e2/3d

σ2

)2

(20)

under density proportional to (19). We take advantage of (20) by proving

max
d2,...,dd∈Q′

Pr
h∈△(d1,...,dd)

[

dist (h ,Aff (d2, . . . ,dd))

dist (d1,Aff (d2, . . . ,dd))
< ǫ

]

<
75dǫ

σ2
, (21)

where h has density proportional to

d
∏

i=1

µi(h − di).

Before proving (21), we point out that using Lemma 2.3.5 to combine (20) and (21), we
obtain

Pr
(d2,...,dd)∈Q′

h∈△(d1,...,dd)

[dist (h ,Aff (d2, . . . ,dd) < ǫ)] ≤ 900e2/3d2ǫ

σ4
,

from which the lemma follows.
To prove (21), we let

Uǫ =

{

h ∈ △ (d1, . . . ,dd) :
dist (h ,Aff (d2, . . . ,dd))

dist (d1,Aff (d2, . . . ,dd))
≥ ǫ

}

,
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and we set ν(h) =
∏d

i=1 µi(h − di). Under this notation, the probability in (21) is equal to

(ν(U0) − ν(Uǫ))/ν(U0).

To bound this ratio, we construct an isomorphism from U0 to Uǫ. The natural isomorphism,
which we denote Φǫ, is the map that contracts the simplex by a factor of (1 − ǫ) at d1.
To use this isomorphism to compare the measures of the sets, we use the facts that for
d1, . . . ,dd ∈ Q and h ∈ △ (d1, . . . ,dd),

(a) ‖h − di‖ ≤ maxi,j ‖di − dj‖ ≤ 4
√

2, so the distance from h − di to the center of its
distribution is at most ‖h − di‖ + 3 ≤ 4

√
2 + 3;

(b) dist (h ,Φǫ(h)) ≤ ǫmaxi dist (d1,di) ≤ 4
√

2ǫ

to apply Lemma 2.4.2 to show that for all h ∈ △ (d1, . . . ,dd),

µi(Φǫ(h) − di)

µi(h − di)
≥ e−

3·4
√

2(4
√

2+3)ǫ

2σ2 = e−
(48+18

√
2)ǫ

σ2 .

So,

min
h∈△(d1,...,dd)

ν(Φǫ(h))

ν(h)
= min

h∈△(d1,...,dd)

d
∏

i=1

µi(Φǫ(h) − di)

µi(h − di)
≥ e−

(48+18
√

2)dǫ

σ2 ≥ 1−(48 + 18
√

2)dǫ

σ2
.

(22)
As the Jacobian

∣

∣

∣

∣

∂Φǫ(h)

∂h

∣

∣

∣

∣

= (1 − ǫ)d ≥ 1 − dǫ,

using the change of variables x = Φǫ(h) we can compute

ν(Uǫ) =

∫

x∈Uǫ

ν(x ) dx =

∫

h∈U0

ν(Φǫ(h))

∣

∣

∣

∣

∂Φǫ(h)

∂h

∣

∣

∣

∣

dh ≥ (1−dǫ)

∫

h∈U0

ν(Φǫ(h)) dh . (23)

So,

ν(Uǫ)

ν(U0)
≥

(1 − dǫ)
∫

h∈U0
ν(Φǫ(h)) dh

∫

h∈U0
ν(h) dh

by (23)

≥ (1 − dǫ)

(

min
h∈△(d1,...,dd)

ν(Φǫ(h))

ν(h)

)

∫

h∈U0
dh

∫

h∈U0
dh

≥ (1 − dǫ)

(

1 − (48 + 18
√

2)dǫ

σ2

)

by (22)

≥ 1 − 75dǫ

σ2
, as σ ≤ 1.

(21) now follows from (ν(U0) − ν(Uǫ))/ν(U0) < 75dǫ
σ2 .
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c3 c2 c1

b3 b2

τ
t

l

b1

Figure 4: The change of variables in Lemma 4.1.3.

Lemma 4.1.3 (Height of simplex) Let µ1, . . . , µd be Gaussian measures in IRd−1 of stan-
dard deviation σ ≤ 1/3

√
d ln n centered at points of norm at most 3. Then

Pr
b1,...,bd∈Q

[dist (b1,Aff (b2, . . . , bd) < ǫ)] ≤
(

3ǫe2/3d

σ2

)3

where b1, . . . , bd have density proportional to

Vol (△ (b1, . . . , bd))

d
∏

i=1

µi(b i).

Proof We begin with a simplifying change of variables. As in Theorem 2.5.2, we let

(b2, . . . , bd) = (Rτc2 + tτ , . . . ,Rτcd + tτ ) ,

where τ ∈ Sd−2 and t ≥ 0 specify the plane through b2, . . . , bd, and c2, . . . , cd ∈ IRd−2

denote the local coordinates of these points on that plane. Recall that the Jacobian of
this change of variables is Vol (△ (c2, . . . , cd)). Let l = −〈τ |b1〉, and let c1 denote the
coordinates in IRd−2 of the projection of b1 onto the plane specified by τ and t. Note that
l ≥ 0. In this notation, we have

dist (b1,Aff (b2, . . . , bd)) = l + t.

The Jacobian of the change from b1 to (l, c1) is 1 as the transformation is just an orthogonal
change of coordinates. The conditions for (b1, . . . , bd) ∈ Q translate into the conditions
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(a) dist (ci, cj) ≤ 4 for all i 6= j;

(b) (l + t) ≤ 4; and

(c) 0 ∈ △ (b1, . . . , bd).

Let R denote the set of c1, . . . , cd satisfying the first condition. As the lemma is vacuously
true for ǫ ≥ 4, we will drop the second condition and note that doing so cannot decrease
the probability that (t + l) < ǫ. Thus, our goal is to bound

Pr
τ,t,l,(c1,...,cd)∈R

[(l + t) < ǫ] , (24)

where the variables have density proportional to2

[0 ∈ △ (b1, . . . , bd)]Vol (△ (b1, . . . , bd))Vol (△ (c2, . . . , cd))

d
∏

i=1

µi(bi).

As Vol (△ (b1, . . . , bd)) = (l + t)Vol (△ (c1, . . . , cd)) /d, this is the same as having density
proportional to

(l + t) [0 ∈ △ (b1, . . . , bd)]Vol (△ (c2, . . . , cd))
2

d
∏

i=1

µi(b i).

Under a suitable system of coordinates, we can express b1 = (−l, c1) and bi = (t, ci) for
i ≥ 2. The key idea of this proof is that multiplying the first coordinates of these points by a
constant does not change whether or not 0 ∈ △ (b1, . . . , bd); so, we can determine whether
0 ∈ △ (b1, . . . , bd) from the data (l/t, c1, . . . , cd). Thus, we will introduce a new variable
α, set l = αt, and let S denote the set of (α, c1, . . . , cd) for which 0 ∈ △ (b1, . . . , bd) and
(c1, . . . , cd) ∈ R. This change of variables from l to α incurs a Jacobian of ∂l

∂α = t, so (24)
equals

Pr
τ ,t,(α,c1,...,cd)∈S

[(1 + α)t < ǫ] ,

where the variables have density proportional to

t2(1 + α)Vol (△ (c2, . . . , cd))
2 µ1(−αt, c1)

d
∏

i=2

µi(t, ci).

We upper bound this probability by

max
τ ,(α,c1,...,cd)∈S

Pr
t

[(1 + α)t < ǫ] ≤ max
τ,(α,c1,...,cd)∈S

Pr
t

[max(1, α)t < ǫ] ,

where t has density proportional to

t2µ1(−αt, c1)

d
∏

i=2

µi(t, ci).

2While we keep terms such as b1 in the expression of the density, they should be interpreted as functions

of τ , t, l, c1, . . . , cd.
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For c1, . . . , cd fixed, the points (−αt, c1), (t, c2), . . . , (t, cd) become univariate Gaussians of
standard deviation σ and mean of absolute value at most 3. Let t0 = σ2/(3max(1, α)d).
Then, for t in the range [0, t0], −αt is at most 3+αt0 from the mean of the first distribution
and t is at most 3 + t0 from the means of the other distributions. We will now observe that
if t is restricted to a sufficiently small domain, then the densities of these Gaussians will
have bounded variation. In particular, Lemma 2.4.2 implies that

maxt∈[0,t0] µ1(−αt, c1)
∏d

i=2 µi(t, ci)

mint∈[0,t0] µ1(−αt, c1)
∏d

i=2 µi(t, ci)
≤ e3(3+αt0)αt0/2σ2

d
∏

i=2

e3(3+t0)t0/2σ2

≤ e9αt0/2σ2

(

d
∏

i=2

e9t0/2σ2

)

· e3(αt0)2/2σ2

(

d
∏

i=2

e3t20/2σ2

)

≤ e3/2d

(

d
∏

i=2

e3/2d

)

· eσ2/6d2

(

d
∏

i=2

eσ2/6d2

)

≤ e3/2 · e1/6d

≤ e2.

Thus, we can now apply Lemma 2.3.7 to show that

Pr
t

[t < ǫ] < e2

(

3ǫ(max(1, α)d

σ2

)3

,

from which we conclude

Pr
t

[max(1, α)t < ǫ] <

(

3ǫe2/3d

σ2

)3

.

4.2 Angle of q to ω

Lemma 4.2.1 (Angle of incidence) Let d ≥ 3 and n > d. Let µ1, . . . , µn be Gaussian
densities in IRd of standard deviation σ centered at points of norm at most 1 in IRd. Let
s ≤ 2 and let (b1, . . . , bd) ∈ Q. Then,

Pr
ω

[〈ω|q〉 < ǫ] <

(

340ǫn

σ2

)2

, (25)

where ω has density proportional to

〈ω|q〉





∏

j>d

∫

aaaj

[〈ω|aaaj〉 ≤ s 〈ω|q〉]µj(aaaj) daaaj





d
∏

i=1

µi(Rωbi + sq).
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Proof First note that the conditions for (b1, . . . , bd) to be in Q imply that for 1 ≤ i ≤ d,
b i has norm at most

√

(4)2 + (4)2 = 4
√

2 by properties (1), (3) and (4) of Q.
As in Proposition 2.5.4, we change ω to (c,ψ), where c = 〈ω|q〉 and ψ ∈ Sd−2.The

Jacobian of this change of variables is

(1 − c2)(d−3)/2.

In these variables, the bound follows from Lemma 4.2.2.

Lemma 4.2.2 (Angle of incidence, II) Let d ≥ 3 and n > d. Let µd+1, . . . , µn be Gaus-
sian densities in IRd of standard deviation σ centered at points of norm at most 1 in IRd.
Let s ≤ 2, and let b1, . . . , bd each have norm at most 4

√
2. Let ψ ∈ Sd−2. Then

Pr [c < ǫ] <

(

340ǫn

σ2

)2

,

where c has density proportional to

(1− c2)(d−3)/2 · c ·





∏

j>d

∫

aaaj

[〈ωψ,c|aaaj〉 ≤ s 〈ωψ,c|q〉] µj(aaaj) daaaj





d
∏

i=1

µi(Rωψ ,c
bi + sq) (26)

Proof Let

ν1(c) = (1 − c2)(d−3)/2,

ν2(c) =
∏

j>d

∫

aaaj

[〈ωψ,c|aaaj〉 ≤ s 〈ωψ,c|q〉]µj(aaaj) daaaj , and

ν3(c) =

d
∏

i=1

µi(Rωψ,c
b i + sq).

Then, the density of c is proportional to

(26) = c · ν1(c)ν2(c)ν3(c).

Let

c0 =
σ2

240n
. (27)

We will show that, for c between 0 and c0, the density will vary by a factor no greater than
2. We begin by letting θ0 = π/2 − arccos(c0), and noticing that a simple plot of the arccos
function reveals c0 < 1/26 implies

θ0 ≤ 1.001c0. (28)

So, as c varies in the range [0, c0], ωψ,c travels in an arc of angle at most θ0 and therefore
travels a distance at most θ0. As c = 〈q |ωψ,c〉, we can apply Lemma 4.2.3 to show

min0≤c≤c0 ν2(c)

max0≤c≤c0 ν2(c)
≥ 1 − 8n(1 + s)θ0

3σ2
≥ 1 − 24nθ0

3σ2
≥ 1 − 1.001

30
, (29)
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by (27) and (28).
We similarly note that as c varies between 0 and c0, the point Rωψ,c

b i + sq moves a
distance of at most

θ0 ‖b i‖ ≤ 4
√

2θ0.

As this point is at distance at most

1 + s + ‖b i‖ ≤ 4
√

2 + 3

from the center of µi, Lemma 2.4.2 implies

min0≤c≤c0 µi(Rωψ,c
b i + sq)

max0≤c≤c0 µi(Rωψ,c
b i + sq)

≥ e−(3(4
√

2+3)4
√

2θ0)/2σ2 ≥ e−147θ0/σ2
.

So,

min0≤c≤c0 ν3(c)

max0≤c≤c0 ν3(c)
≥ e−147dθ0/σ2 ≥ e−148/240, (30)

by (27) and (28) and d ≤ n.
Finally, we note that

1 ≥ ν1(c) = (1 − c2)(d−3)/2 ≥ (1 − 1/26d)(d−3)/2 ≥
(

1 − 1

52

)

. (31)

So, combining equations (29), (30), and (31), we obtain

min0≤c≤c0 ν1(c)ν2(c)ν3(c)

max0≤c≤c0 ν1(c)ν2(c)ν3(c)
≥
(

1 − 1

52

)

e−
148
240

(

1 − 1.001

30

)

≥ 1/2.

We conclude by using Lemma 2.3.7 to show

Pr
c

[c < ǫ] ≤ 2(ǫ/c0)
2 = 2

(

240ǫn

σ2

)2

≤
(

340ǫn

σ2

)2

.

Lemma 4.2.3 (Points under plane) For n > d, let µd+1, . . . , µn be Gaussian distribu-
tions in IRd of standard deviation σ centered at points of norm at most 1. Let s ≥ 0 and let
ω1 and ω2 be unit vectors such that 〈ω1|q〉 and 〈ω2|q 〉 are non-negative. Then,

∏

j>d

∫

aaaj
[〈ω2|aaaj〉 ≤ s 〈ω2|q〉]µj(aaaj) daaaj

∏

j>d

∫

aaaj
[〈ω1|aaaj〉 ≤ s 〈ω1|q〉]µj(aaaj) daaaj

≥ 1 − 8n(1 + s) ‖ω1 − ω2‖
3σ2

.

Proof As the integrals in the statement of the lemma are just the integrals of Gaussian
measures over half-spaces, they can be reduced to univariate integrals. If µj is centered at
āj , then

∫

aaaj

[〈ω1|aaaj〉 ≤ s 〈ω1|q〉] µj(aaaj) daaaj =

(

1√
2πσ

)d ∫

aaaj

[〈ω1|aaaj〉 ≤ s 〈ω1|q〉] e−‖aaaj−āj‖2/2σ2
daaaj

=

(

1√
2πσ

)d ∫

gj

[〈

ω1|g j + āj

〉

≤ s 〈ω1|q〉
]

e−‖gj‖2
/2σ2

dg j ,
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(setting g j = aaaj − āj)

=

(

1√
2πσ

)d ∫

gj

[〈

ω1|g j

〉

≤ 〈ω1|sq − āj〉
]

e−‖gj‖2
/2σ2

dg j

=
1√
2πσ

∫ t=〈ω1|sq−āj〉

t=−∞
e−t2/2σ2

dt

(by Proposition 2.4.4)

=
1√
2πσ

∫ t=∞

t=−〈ω1|sq−āj〉
e−t2/2σ2

dt .

As ‖āj‖ ≤ 1, we know

−〈ω1|sq − āj〉 = −〈ω1|sq〉 + 〈ω1|āj〉 ≤ 〈ω1|āj〉 ≤ 1 (32)

Similarly,

∣

∣− 〈ω1|sq − ā j〉 + 〈ω2|sq − āj〉
∣

∣ =
∣

∣− 〈ω1 − ω2|sq − āj〉
∣

∣

≤ ‖ω1 −ω2‖ ‖sq − ā j‖ (33)

≤ ‖ω1 −ω2‖ (s + 1). (34)

Thus, by applying Lemma 2.4.11 to (32) and (34), we obtain

∫

aaaj
[〈ω2|aaaj〉 ≤ s 〈ω2|q〉] µj(aaaj) daaaj

∫

aaaj
[〈ω1|aaaj〉 ≤ s 〈ω1|q〉] µj(aaaj) daaaj

=

∫ t=∞
t=−〈ω2|sq−āj〉 e

−t2/2σ2
dt .

∫ t=∞
t=−〈ω1|sq−āj〉 e

−t2/2σ2
dt .

≥
(

1 − 8(1 + s) ‖ω1 − ω2‖
3σ2

)

.

Thus,

∏

j>d

∫

aaaj
[〈ω2|aaaj〉 ≤ s 〈ω2|q〉]µj(aaaj) daaaj

∏

j>d

∫

aaaj
[〈ω1|aaaj〉 ≤ s 〈ω1|q〉]µj(aaaj) daaaj

≥
(

1 − 8(1 + s) ‖ω1 − ω2‖
3σ2

)n−d

≥
(

1 − 8n(1 + s) ‖ω1 − ω2‖
3σ2

)

.

4.3 Extending the shadow bound

In this section, we relax the restrictions made in the statement of Theorem 4.0.1. The
extensions of Theorem 4.0.1 are needed in the proof of Theorem 5.0.1.

We begin by removing the restrictions on where the distributions are centered in the
shadow bound.
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Corollary 4.3.1 (‖aaai‖ free) Let z and t be unit vectors and let aaa1, . . . ,aaan be Gaussian
random vectors in IRd of standard deviation σ ≤ 1/3

√
d ln n centered at points ā1, . . . , ān.

Then,

E [Shadowz ,t (aaa1, . . . ,aaan)] ≤ D
(

d, n,
σ

max (1,maxi ‖ā‖)

)

where D(d, n, σ) is as given in Theorem 4.0.1.

Proof Let k = maxi ‖ā i‖. Assume without loss of generality that k ≥ 1, and let bi = aaai/k
for all i. Then, bi is a Gaussian random variable of standard deviation (σ/k) centered at a
point of norm at most 1. So, Theorem 4.0.1 implies

E [Shadowz ,t (b1, . . . , bn)] ≤ D
(

d, n,
σ

k

)

.

On the other hand, the shadow of the polytope defined by the b is can be seen to be a dilation
of the polytope defined by the aaais: the division of the b is by a factor of k is equivalent to
the multiplication of x by k. So, we may conclude that for all aaa1, . . . ,aaan,

|Shadowz ,t (aaa1, . . . ,aaan)| = |Shadowz ,t (b1, . . . , bn)| .

Corollary 4.3.2 (Gaussians free) Let z and t be unit vectors and let aaa1, . . . ,aaan be Gaus-
sian random vectors in IRd with covariance matrices M 1, . . . ,M n centered at points ā1, . . . , ān,
respectively. If the eigenvalues of each M i lie between σ2 and 1/9d ln n, then

E [Shadowz ,t (aaa1, . . . ,aaan)] ≤ D
(

d, n,
σ

1 + maxi ‖ā‖

)

+ 1

where D(d, n, σ) is as given in Theorem 4.0.1.

Proof By Proposition 2.4.1, each aaa i can be expressed as

aaa i = ā i + g i + g̃ i,

where g̃ i is a Gaussian random vector of standard deviation σ centered at the origin and g i

is a Gaussian random vector centered at the origin with covariance matrix M 0
i = M i−σ2I,

each of whose eigenvalues is at most 1/9d ln n. Let ã i = ā i + g i. If ‖ã i‖ ≤ 1 + ‖ā i‖, for all
i, then we can apply Corollary 4.3.1 to show

E
g̃1,...,g̃n

[Shadowz ,t (aaa1, . . . ,aaan)] ≤ D
(

d, n,
σ

max (1,maxi ‖ã‖)

)

≤ D
(

d, n,
σ

1 + maxi ‖ā‖

)

.

On the other hand, Corollary 2.4.6 implies

Pr
g1,...,gn

[∃i : ‖ã i‖ > 1 + ‖ā i‖] ≤ 0.0015

(

n

d

)−1
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So, using Lemma 2.3.3 and Shadowz ,t (aaa1, . . . ,aaan) ≤
(n

d

)

, we can show

E
g̃1,...,g̃n

[

E
g1,...,gn

[Shadowz ,t (aaa1, . . . ,aaan)]

]

≤ D
(

d, n,
σ

1 + maxi ‖ā‖

)

+ 1.

from which the Corollary follows.

Corollary 4.3.3 (yi free) Let y ∈ IRn be a positive vector. Let z and t be unit vectors
and let aaa1, . . . ,aaan be Gaussian random vectors in IRd with covariance matrices M 1, . . . ,M n

centered at points ā1, . . . , ān, respectively. If the eigenvalues of each M i lie between σ2 and
1/9d ln n, then

E [Shadowz ,t (aaa1, . . . ,aaan) ;y ] ≤ D
(

d, n,
σ

(1 + maxi ‖ā i‖)(maxi yi)/(mini yi)

)

+ 1

where D(d, n, σ) is as given in Theorem 4.0.1.

Proof Nothing in the statement is changed if we rescale the yis. So, assume without loss
of generality that mini yi = 1.

Let b i = aaa i/yi. Then bi is a Gaussian random vector with covariance matrix M i/y
2
i

centered at a point of norm at most ‖aaa i‖ /yi ≤ ‖aaa i‖. Then, the eigenvalues of each M i

lie between σ2/y2
i and 1/(9d ln ny2

i ) ≤ 1/9d ln n, so we may complete the proof by applying
Corollary 4.3.2.
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5 Smoothed Analysis of a Two-Phase Simplex Algorithm

In this section, we will analyze the smoothed complexity of the two-phase shadow-vertex
simplex method introduced in Section 3.3. The analysis of the algorithm will use as a black-
box the bound on the expected sizes of shadows proved in the previous section. However,
the analysis is not immediate from this bound.

The most obvious difficulty in applying the shadow bound to the analysis of an algorithm
is that, in the statement of the shadow bound, the plane onto which the polytope was
projected to form the shadow was fixed, and unrelated to the data defining the polytope.
However, in the analysis of the shadow-vertex algorithm, the plane onto which the polytope
is projected will necessarily depend upon data defining the linear program. This is the
dominant complication in the analysis of the number of steps taken to solve LP ′.

Another obstacle will stem from the fact that, in the analysis of LP+, we need to
consider the expected sizes of shadows of the convex hulls of points of the form a+

i /y+
i ,

which do not have a Gaussian distribution. In our analysis of LP+, we essentially handle
this complication by demonstrating that in almost every small region the distribution can
be approximated by some Gaussian distribution.

The last issue we need to address is that if smin (AI) is too small, then the resulting
values for y′i and y+

i can be too large. In Section 5.1 we resolve this problem by proving that
one of 3nd ln n randomly chosen I will have reasonable smin (AI) with very high probability.
Having a reasonable smin (AI) is also essential for the analysis of LP ′.

As our two-phase shadow-vertex simplex algorithm is randomized, we will measure its
expected complexity on each input. For an input linear program specified by A, y and z ,
we let

C(A,y , z )

denote the expected number of simplex steps taken by the algorithm on input (A,y , z ). As
this expectation is taken over the choices for I and α, and can be divided into the number
of steps taken to solve LP+ and LP ′, we introduce the functions

S ′z (A,y ,I,α),

to denote the number of simplex steps taken by the algorithm in step (5) to solve LP ′ for
a given A, y , I and α, and

S+
z (A,y ,I) + 2

to denote the number of simplex steps3 taken by the algorithm in step (7) to solve LP+

for a given A, y and I. We note that the complexity of the second phase does not depend
upon α, however it does depend upon I as I affects the choice of κ and M . We have

C(A,y , z ) ≤ E
I,α

[

S ′z (A,y ,I,α)
]

+ E
I,α

[

S+
z (A,y ,I,α)

]

+ 2.

Theorem 5.0.1 (Main) There exists a polynomial P and a constant σ0 such that for every
n > d ≥ 3, Ā = [āaa1, . . . , āaan] ∈ IRn×d, ȳ ∈ IRn and z ∈ IRd, and σ > 0,

E
A,y

[C(A,y , z )] ≤ min

(

P(d, n, 1/min(σ, σ0)),

(

n

d

)

+

(

n

d + 1

)

+ 2

)

,

3The seemingly odd appearance of +2 in this definition is explained by 3.3.5.
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where A is a Gaussian random matrix centered at Ā of standard deviation σ maxi ‖(ȳi, āaa i)‖,
and y is a Gaussian random vector centered at ȳ of standard deviation σ maxi ‖(ȳi, āaa i)‖.

Proof We first observe that the behavior of the algorithm is unchanged if one multiplies
A and y by a power of two. That is,

C(A,y , z ) = C(2kA, 2ky , z ),

for any integer k. When A and y are Gaussian random variables centered at Ā and ȳ of
standard deviation σ maxi ‖(ȳi, āaa i)‖, 2kA and 2ky are Gaussian random variables centered
at 2kĀ and 2kȳ of standard deviation σ maxi

∥

∥(2kȳi, 2
kāaa i)

∥

∥. Accordingly, we may assume
without loss of generality in our analysis that maxi ‖(ȳi, āaa i)‖ ∈ (1/2, 1].

The Theorem now follows from Proposition 5.0.2 and Lemmas 5.2.1 and 5.3.1.

Before proceeding with the proof of Theorem 5.0.1, we state a trivial upper bound on
S ′ and S+:

Proposition 5.0.2 (trivial shadow bounds) For all A, y , z , I and α:

S ′z (A,y ,I,α) ≤
(

n

d

)

and S+
z (A,y ,I,α) ≤

(

n

d + 1

)

.

Proof The bound on S ′ follows from the fact that there are
(n

d

)

d-subsets of [n]. The
bound on S+ follows from the observation in Lemma 3.3.5 that the number of steps taken
by the second phase is at most 2 plus the number of (d + 1)-subsets of [n].
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5.1 Many Good Choices

For a Gaussian random d-by-d matrix (aaa1, . . . ,aaad), it is possible to show that the probability
that the smallest singular value of (aaa1, . . . ,aaad) is less than ǫ is at most O(d1/2ǫ). In this
section, we consider the probability that almost all of the d-by-d minors of a d-by-n matrix
(aaa1, . . . ,aaan) have small singular value. If the events for different minors were independent,
then the proof would be straightforward. However, distinct minors may have significant
overlap. While we believe stronger concentration results should be obtainable, we have
only been able to prove:

Lemma 5.1.1 (Many good choices) For n > d ≥ 3, let aaa1, . . . ,aaan be Gaussian random
variables in IRd of standard deviation σ centered at points of norm at most 1. Let A =
(aaa1, . . . ,aaan). Then, we have

Pr
aaa1,...,aaan







∑

I∈([n]
d )

[smin (AI) ≤ κ0] ≥
(

1 − 1

n

)(

n

d

)






≤ n−d + n−n+d−1 + n−2.9d+1,

where

κ0
def
=

σ min(1, σ)

12d2n7
√

ln n
. (35)

In the analyses of LP ′ and LP+, we use the following consequence of Lemma 5.1.1,
whose statement is facilitated by the following notation for a set of d-sets, I

I(A)
def
= argmaxI∈I (smin (AI)) .

Corollary 5.1.2 (probability of small smin

(

AI(A)

)

) For n > d ≥ 3, let aaa1, . . . ,aaan be

Gaussian random variables in IRd of standard deviation σ centered at points of norm at
most 1, and let A = (aaa1, . . . ,aaan). For I a set of 3nd ln n randomly chosen d-subsets of [n],

Pr
A,I

[

smin

(

AI(A)

)

≤ κ0

]

≤ 0.417

(

n

d

)−1

.
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Proof

Pr
A,I

[

smin

(

AI(A)

)

≤ κ0

]

= Pr
A,I

[∀I ∈ I : smin (AI) ≤ κ0]

≤ Pr
A







∑

I∈([n]
d )

[smin (AI) ≤ κ0] <

(

1 − 1

n

)(

n

d

)







+ Pr
I,A






∀I ∈ I : smin (AI) ≤ κ0

∣

∣

∣

∣

∣

∑

I∈([n]
d )

[smin (AI) ≤ κ0] ≥
(

1 − 1

n

)(

n

d

)







≤ n−d + n−n+d−1 + n−2.9d+1 +

(

1 − 1

n

)|I|
, by Lemma 5.1.1

≤ n−d + n−n+d−1 + n−2.9d+1 + n−3d, as |I| = 3nd ln n,

≤ 0.417

(

n

d

)−1

,

for n > d ≥ 3.

We also use the following corollary, which states that it is highly unlikely that κ falls
outside the set K, which we now define:

K =
{

2⌊lg(x)⌋ : κ0 ≤ x ≤
√

d + 3d
√

ln nσ
}

. (36)

Corollary 5.1.3 (probability of κ in K) For n > d ≥ 3, let aaa1, . . . ,aaan be Gaussian
random variables in IRd of standard deviation σ centered at points of norm at most 1, and
let A = (aaa1, . . . ,aaan). For I a set of 3nd ln n randomly chosen d-subsets of [n],

Pr
A,I

[

2⌊lg(smin(AI(A)))⌋ 6∈ K
]

≤ 0.42

(

n

d

)−1

.

Proof
It follows from Corollary 5.1.2 that

Pr
A,I

[

smin

(

AI(A)

)

≤ κ0

]

≤ 0.417

(

n

d

)−1

.

On the other hand, as
smin (AI) ≤ ‖AI‖ ≤

√
dmax

i
‖aaai‖ ,

Pr
A,I

[

smin

(

AI(A)

)

≥
√

d
(

1 + 3
√

d ln nσ
)]

≤ Pr
A

[

max
i

‖aaa i‖ ≥ 1 + 3
√

d ln nσ

]

≤ 0.0015

(

n

d

)−1

,

by Corollary 2.4.6.
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Proposition 5.1.4 (size of K)

|K| ≤ 9 lg(nd/min(σ, 1)).

The rest of this section is devoted to the proof of Lemma 5.1.1. The key to the proof is
an examination of the relation between the events which we now define.

Definition 5.1.5 For I ∈
([n]

d

)

, K ∈
( [n]
d−1

)

, and j 6∈ K, we define the indicator random
variables

XI = [smin (AI) ≤ κ0] , and

Y j
K = [dist (aaaj ,Span (AK)) ≤ h0] ,

where
h0

def
=

σ

4n4
.

In Lemma 5.1.8, we obtain a concentration result on the Y j
Ks using the fact that the Y j

K

are independent for fixed K and different j. To relate this concentration result to the XIs,
we show in Lemma 5.1.9 that when XI is true, it is probably the case that Y j

I−{j} is true
for most j.
Proof of Lemma 5.1.1 The proof has two parts. The first, and easier, part is Lemma 5.1.8
which implies

Pr
aaa1,...,aaan







∑

K∈( [n]
d−1)

∑

j 6∈K

Y j
K ≤

⌈

n − d − 1

2

⌉(

n

d − 1

)






> 1 − n−n+d−1.

To apply this fact, we use Lemma 5.1.9, which implies

Pr
aaa1,...,aaan







∑

K∈( [n]
d−1)

∑

j 6∈K

Y j
K >

d

2

∑

I

XI






> 1 − n−d − n−2.9d+1.

Combining these two Lemmas, we obtain

Pr
aaa1,...,aaan

[

d

2

∑

I

XI <

⌈

n − d − 1

2

⌉(

n

d − 1

)

]

≥ 1 − n−d − n−n+d−1 − n−2.9d+1.

Observing,

d

2

∑

I

XI <

⌈

n − d − 1

2

⌉(

n

d − 1

)

=⇒
∑

I

XI <
n − d

d

(

n

d − 1

)

=
n − d

n − d + 1

(

n

d

)

=

(

1 − 1

n − d + 1

)(

n

d

)

≤
(

1 − 1

n

)(

n

d

)

,
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we obtain

Pr
aaa1,...,aaan

[

∑

I

XI ≥
(

1 − 1

n

)(

n

d

)

]

≤ n−d + n−n+d−1 + n−2.9d+1.

Lemma 5.1.6 (Probability of Y jK) Under the conditions of Lemma 5.1.1, for all K ∈
( [n]
d−1

)

and j 6∈ K,

Pr
aaa1,...,aaan

[

Y j
K

]

≤ h0

σ
.

Proof Follows from Proposition 2.4.7.

Lemma 5.1.7 (Sum over j of Y jK) Under the conditions of Lemma 5.1.1, for all K ∈
( [n]
d−1

)

,

Pr
aaa1,...,aaan





∑

j 6∈K

Y j
K ≥ ⌈(n − d + 1)/2⌉



 ≤
(

4h0

σ

)⌈(n−d+1)/2⌉

Proof Using the fact that for fixed K, the events Y j
K are independent, we compute

Pr
aaa1,...,aaan





∑

j 6∈K

Y j
K ≥ ⌈(n − d + 1)/2⌉



 ≤
∑

J∈( [n]−K
⌈(n−d+1)/2⌉)

Pr
aaa1,...,aaan

[

∀j ∈ J, Y j
K

]

=
∑

J∈( [n]−K
⌈(n−d+1)/2⌉)

∏

j∈J

Pr
aaa1,...,aaan

[

Y j
K

]

≤
∑

J∈( [n]−K
⌈(n−d+1)/2⌉)

(

h0

σ

)⌈(n−d+1)/2⌉
, by Lemma 5.1.6,

≤
(

4h0

σ

)⌈(n−d+1)/2⌉
,

as
∣

∣

∣

( [n]−K
⌈(n−d+1)/2⌉

)

∣

∣

∣ ≤ 2|[n]−K| = 2n−d+1.

Lemma 5.1.8 (Sum over K and j of Y jK) Under the conditions of Lemma 5.1.1,

Pr
aaa1,...,aaan







∑

K∈( [n]
d−1)

∑

j 6∈K

Y j
K >

⌈

n − d − 1

2

⌉(

n

d − 1

)






≤ n−n+d−1.
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Proof If
∑

K∈( [n]
d−1)

∑

j 6∈K Y j
K >

⌈

n−d−1
2

⌉ ( n
d−1

)

, then there must exist a K for which
∑

j 6∈K Y j
K >

⌈

n−d−1
2

⌉

, which implies for that K

∑

j 6∈K

Y j
K ≥

⌈

n − d − 1

2

⌉

+ 1 =

⌈

n − d + 1

2

⌉

.

Using this trick, we compute

Pr
aaa1,...,aaan







∑

K∈( [n]
d−1)

∑

j 6∈K

Y j
K ≥

⌈

n − d − 1

2

⌉(

n

d − 1

)






≤ Pr

aaa1,...,aaan



∃K ∈
(

[n]

d − 1

)

:
∑

j 6∈K

Y j
K ≥

⌈

n − d + 1

2

⌉





≤
(

n

d − 1

)

Pr
aaa1,...,aaan





∑

j 6∈K

Y j
K ≥

⌈

n − d + 1

2

⌉





≤
(

n

d − 1

)(

4h0

σ

)⌈(n−d+1)/2⌉

(by Lemma 5.1.7)

=

(

n

n − d + 1

)(

4h0

σ

)⌈(n−d+1)/2⌉

≤ nn−d+1

(

1

n4

)⌈(n−d+1)/2⌉

≤ n−n+d−1.

The other statement needed for the proof of Lemma 5.1.1 is:

Lemma 5.1.9 (Relating Xs to Y s) Under the conditions of Lemma 5.1.1,

Pr
aaa1,...,aaan







∑

K∈( [n]
d−1)

∑

j 6∈K

Y j
K ≤ d

2

∑

I

XI






≤ n−d + n−2.9d+1

Proof Follows immediately from Lemmas 5.1.10 and 5.1.12.

Lemma 5.1.10 (Geometric condition for bad I) If there exists a d-set I such that

XI and
∑

j∈I

Y j
I−{j} ≤ d/2,

then there exists a set L ⊂ I, |L| = ⌊d/2 − 1⌋ and a j0 ∈ I − L such that

dist (aaaj0,Span (AL)) ≤
√

dκ0

(

1 +

⌈

d

2

⌉

maxi ‖aaai‖
h0

)

.
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Proof Let I = {i1, . . . , id}. By Proposition 2.2.6 (a), XI implies the existence of
ui1 , . . . , uid , ‖(ui1 , . . . , uid)‖ = 1, such that

∥

∥

∥

∥

∥

∑

i∈I

uiaaa i

∥

∥

∥

∥

∥

≤ κ0.

On the other hand,
∑

j∈I Y j
I−{j} ≤ d/2 implies the existence of a J ⊂ I, |J | = ⌈d/2⌉, such

that Y j
I−{j} = 0 for all j ∈ J . By Lemma 5.1.11, this implies |uj | < κ0/h0 for all j ∈ J . As

‖(ui1 , . . . , uid)‖ = 1 and κ0/h0 ≤ 1/
√

d, there exists some j0 ∈ I−J such that |uj0| ≥ 1/
√

d.
Setting L = I − J − {j0}, we compute

∥

∥

∥

∥

∥

∥

∑

j∈I

ujaaaj

∥

∥

∥

∥

∥

∥

≤ κ0 =⇒

∥

∥

∥

∥

∥

∥

uj0aaaj0 +
∑

j∈L

ujaaaj +
∑

j∈J

ujaaaj

∥

∥

∥

∥

∥

∥

≤ κ0

=⇒

∥

∥

∥

∥

∥

∥

uj0aaaj0 +
∑

j∈L

ujaaaj

∥

∥

∥

∥

∥

∥

≤ κ0 +

∥

∥

∥

∥

∥

∥

∑

j∈J

ujaaaj

∥

∥

∥

∥

∥

∥

=⇒

∥

∥

∥

∥

∥

∥

aaaj0 +
∑

j∈L

(uj/uj0)aaaj

∥

∥

∥

∥

∥

∥

≤ (1/ |uj0|)



κ0 +

∥

∥

∥

∥

∥

∥

∑

j∈J

ujaaaj

∥

∥

∥

∥

∥

∥





=⇒

∥

∥

∥

∥

∥

∥

aaaj0 +
∑

j∈L

(uj/uj0)aaaj

∥

∥

∥

∥

∥

∥

≤
√

d



κ0 +
∑

j∈J

|uj| ‖aaaj‖





=⇒ dist (aaaj0,Span (AL)) ≤
√

d

(

κ0 +

⌈

d

2

⌉

κ0 maxi ‖aaai‖
h0

)

.

Lemma 5.1.11 (Big height, small coefficient) Let aaa1, . . . ,aaad be vectors and u be a
unit vector such that

∥

∥

∥

∥

∥

d
∑

i=1

uiaaa i

∥

∥

∥

∥

∥

≤ κ0.

If dist
(

aaaj ,Span
(

{aaa i}i6=j

))

> h0, then |uj | < κ0/h0.

Proof We have
∥

∥

∥

∥

∥

d
∑

i=1

uiaaai

∥

∥

∥

∥

∥

≤ κ0 =⇒

∥

∥

∥

∥

∥

∥

ujaaaj +
∑

i6=j

uiaaa i

∥

∥

∥

∥

∥

∥

≤ κ0

=⇒

∥

∥

∥

∥

∥

∥

aaaj +
∑

i6=j

(ui/uj)aaa i

∥

∥

∥

∥

∥

∥

≤ κ0/ |uj |

=⇒ dist
(

aaaj ,Span
(

{aaa i}i6=j

))

≤ κ0/ |uj | ,

from which the lemma follows.
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Lemma 5.1.12 (Probability of bad geometry) Under the conditions of Lemma 5.1.1,

Pr
aaa1,...,aaan





∃L ∈
( [n]
⌊d/2−1⌋

)

, j0 6∈ L such that

dist (aaaj0,Span (AL)) ≤
√

dκ0

(

1 +
⌈

d
2

⌉ maxi‖aaai‖
h0

)



 ≤ n−d + n−2.9d+1.

Proof We first note that

Pr
aaa1,...,aaan





∃L ∈
( [n]
⌊d/2−1⌋

)

, j0 6∈ L such that

dist (aaaj0,Span (AL)) ≤
√

dκ0

(

1 +
⌈

d
2

⌉ maxi‖aaai‖
h0

)





≤ Pr
aaa1,...,aaan





∃L ∈
( [n]
⌊d/2−1⌋

)

, j0 6∈ L such that

dist (aaaj0,Span (AL)) ≤
√

dκ0

(

1 +
⌈

d
2

⌉

1+3
√

d lnnσ
h0

)



 (37)

+ Pr
aaa1,...,aaan

[

max
i

‖aaai‖ > 1 + 3
√

d ln nσ

]

. (38)

We now apply Proposition 2.4.7 to bound (37) by

∑

L∈( [n]
⌊d/2−1⌋)

∑

j0 6∈L

Pr
aaa1,...,aaan

[

dist (aaaj0,Span (AL)) ≤
√

dκ0

(

1 +

⌈

d

2

⌉

1 + 3
√

d ln nσ

h0

)]

≤
(

n

⌊d/2 − 1⌋

)

(n − d/2 + 1)

(√
dκ0

σ

(

1 +

⌈

d

2

⌉

1 + 3
√

d ln nσ

h0

))d−|L|

(39)

To simplify this expression, we note that
⌈

d
2

⌉

≤ 2d
3 , for d ≥ 3. We then recall

κ0

h0
=

min(σ, 1)

3d2n3
√

ln n
,

and apply d ≥ 3 to show

√
dκ0

σ

(

1 +

⌈

d

2

⌉

1 + 3
√

d ln nσ

h0

)

≤
√

dκ0

σ
+

κ0

h0

(

2d3/2

3σ
+ 2d2

√
ln n

)

≤ 1

n3
.

So, we have

(39) ≤
(

n

⌊d/2 − 1⌋

)

(n − d/2 + 1)

(

1

n3

)⌈d/2⌉
(40)

≤ n⌊d/2−1⌋+1n−3d/2 (41)

≤ n−d. (42)

On the other hand, we can use Corollary 2.4.6, to bound (38) by n−2.9d+1.

65



5.1.1 Discussion

It is natural to ask whether one could avoid the complication of this section by setting
I = {1, . . . , d}, or even choosing I to be the best d-set in {1, . . . , d + k} for some constant k.
It is possible to show that the probability that all d-by-d minors of a perturbed d-by-(d+k)
matrix have condition number at most ǫ grows like (

√
dǫ/σ)k. Thus, the best of these sets

would have reasonable condition number with polynomially high probability. This bound
would be sufficient to handle our concerns about the magnitude of y′i. The analysis in
Lemma 5.2.4 might still be possible in this situation; however, it would require considering
multiple possible splittings of the perturbation (for multiple values of τ1), and it is not clear
whether such an analysis can be made rigorous. Finally, it seems difficult in this situation
to apply the trick in the proofs of Lemma 5.3.1 and 5.2.1 of summing over all likely values
for κ. If the algorithm is given σ as input, then it is possible to avoid the need for this trick
(and an such an analysis appeared in an earlier draft of this paper). However, we believe
that it is preferable for the algorithm to make sense without taking σ as an input.

While choosing I in such a simple fashion could possibly simplify this section, albeit at
the cost of complicating others, we feel that once Lemma 5.1.1 has been improved and the
correct concentration bound has been obtained, this technique will provide the best bounds.

One of the anonymous referees pointed out that it should be possible to use the rank
revealing QR factorization to find an I with almost maximal smin (AI) (see [CH92]). While
doing so seems to be the best choice algorithmically, it is not clear to us how we could
analyze the smoothed complexity of the resulting two-phase algorithm. The difficulty is
that the assumption that a particular I was output by the rank revealing QR factorization
would impose conditions on A that we are currently not able to analyze.
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5.2 Bounding the shadow of LP ′

Before beginning our analysis of the shadow of LP ′, we define the set from which α is
chosen to be A1/d2 , where we define

A = {α : 〈α|1〉 = 1} , and

Aδ = {α : 〈α|1〉 = 1 and αi ≥ δ,∀i} .

The principal obstacle to proving the bound for LP ′ is that Theorem 4.0.1 requires one
to specify the plane on which the shadow of the perturbed polytope will be measured be-
fore the perturbation is known, whereas the shadow relevant to the analysis of LP ′ depends
on the perturbation—it is the shadow onto Span (Aα, z ). To overcome this obstacle, we
prove in Lemma 5.2.4 that if smin

(

ĀI(A)

)

≥ κ0/2, then the expected size of the shadow
onto Span (Aα, z ) is close to the expected size of the shadow onto Span

(

Āᾱ, z
)

, where
ᾱ is chosen from A0. As this plane is independent of the perturbation, we can apply The-
orem 4.0.1 to bound the size of the shadow on this plane. Unfortunately, Ā is arbitrary, so
we cannot make any assumptions about smin

(

ĀI(A)

)

. Instead, we decompose the pertur-
bation into two parts, as in Corollary 4.3.2, and can then use Corollary 5.1.2 to show that

with high probability smin

(

ÃI(A)

)

≥ κ0/2. We begin the proof with this decomposition,

and build to the point at which we can apply Lemma 5.2.4.
A secondary obstacle in the analysis is that κ and M are correlated with A and y . We

overcome this obstacle by considering the sum of the expected sizes of the shadows when κ
and M are fixed to each of their likely values. This analysis is facilitated by the notation

T ′z (A, I,α, κ,M)
def
=
∣

∣ShadowAIα,z

(

aaa1, . . . ,aaan;y ′
)∣

∣ , where y′i =

{

M if i ∈ I√
dM2/4κ otherwise.

We note that

S ′z (A,y ,I,α) = T ′z
(

A,I(A),α, 2⌊lg smin(AI(A))⌋, 2⌈lg(maxi‖(yi,aaai)‖)⌉+2
)

.

Lemma 5.2.1 (LP’) Let d ≥ 3 and n ≥ d + 1. Let Ā = [āaa1, . . . , āaan] ∈ IRn×d, ȳ ∈ IRn and
z ∈ IRd satisfy maxi ‖(ȳi, ā i)‖ ∈ (1/2, 1]. For any σ > 0, let A be a Gaussian random matrix
centered at Ā of standard deviation σ, and let y by a Gaussian random vector centered at
ȳ of standard deviation σ. Let α be chosen uniformly at random from A1/d2 and let I be a
collection of 3nd ln n randomly chosen d-subsets of [n]. Then,

E
A,y ,I,α

[

S ′z (A,y ,I,α)
]

= 326nd(ln n) lg(dn/min(1, σ)) D
(

d, n,
min(1, σ4)

12, 960d8.5n14 ln2.5 n

)

,

where D(d, n, σ) is as given in Theorem 4.0.1.

Proof Instead of treating A as a perturbation of standard deviation σ of Ā, we will
view A as the result of applying a perturbation of standard deviation τ0 followed by a
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perturbation of standard deviation τ1, where τ2
0 + τ2

1 = σ2. Formally, we will let G be a
Gaussian random matrix of standard deviation τ0 centered at the origin, Ã = Ā+G, G̃ be
a Gaussian random matrix of standard deviation τ1 centered at the origin, and A = Ã+G̃,
where

τ1
def
=

κ0

6d3
√

ln n
.

and τ2
0 = σ2 − τ2

1 . We similarly decompose the perturbation to y into a perturbation of
standard deviation τ0 from which we obtain ỹ , and a perturbation of standard deviation τ1

from which we obtain y . We will let h̃ = y − ỹ .
We can then apply Lemma 5.2.2 to show

Pr
I,Ã,G̃

[

smin

(

ÃI(A)

)

< κ0/2
]

< 0.42

(

n

d

)−1

. (43)

One difficulty in bounding the expectation of T ′ is that its input parameters are corre-
lated. To resolve this difficulty, we will bound the expectation of T ′ by the sum over the
expectations obtained by substituting each of the likely choices for κ and M .

In particular, we set

M =

{

2⌈lg x⌉+2 :

(

max
i

‖(ỹi, ã i)‖
)

− 3
√

d ln nτ1 ≤ x ≤
(

max
i

‖(ỹi, ã i)‖
)

+ 3
√

d ln nτ1

}

.

We now define indicator random variables V , W , X, Y , and Z by

V = [|M| ≤ 2] ,

W =

[

max
i

‖(ỹi, ã i)‖ ≤ 1 + 3
√

(d + 1) ln nσ

]

,

X =
[

smin

(

ÃI(A)

)

≥ κ0/2
]

,

Y =
[

2⌊lg smin(AI(A))⌋ ∈ K
]

, and

Z =
[

2⌈lg maxi‖(yi,aaai)‖⌉+2 ∈ M
]

,

and then expand

E
I,A,y,α

[

S ′(A,y ,I,α)
]

= E
I,A,y,α

[

S ′(A,y ,I,α)V WXY Z
]

+ E
I,A,y,α

[

S ′(A,y ,I,α)(1 − V WXY Z)
]

. (44)

From Corollary 5.1.3, we know

Pr
A,I

[not(Y )] = Pr
A,I

[

2⌊lgsmin(AI(A))⌋ 6∈ K
]

≤ 0.42

(

n

d

)−1

. (45)

Similarly, Corollary 2.4.6 implies for any Ã and ỹ and n > d ≥ 3.

Pr
G̃,h̃ ,I

[not(Z)] = Pr
G̃,h̃,I

[

2⌈lg maxi‖(yi,aaai)‖⌉+2 6∈ M
]

≤ 0.0015

(

n

d

)−1

. (46)
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From Corollary 2.4.6 we have

Pr
Ã,ỹ

[not(W )] ≤ n−2.9(d+1)+1 ≤ 0.0015

(

n

d

)−1

.

For i0 an index for which ‖(yi0 ,aaa i0)‖ ≥ 1/2, Proposition 2.4.9 implies

Pr
Ã

[not(V )] ≤ Pr
ã i0

,ỹi0

[

‖(ỹi0, ã i0)‖ < 9
√

(d + 1) ln nτ1

]

≤ 0.01

(

n

d

)−1

.

By also applying inequality (43) to bound the probability of not(X), we find

Pr
A,y ,I

[(1 − V WXY Z) = 1] ≤ 0.86

(

n

d

)−1

.

As

S ′(A,y ,I,α) ≤
(

n

d

)

, (by Proposition 5.0.2)

the second term of (44) can be bounded by 1.
To bound the first term of (44), we note

E
I,A,y,α

[

S ′(A,y ,I,α)V WXY Z
]

≤ E
I,Ã,ỹ



V W
∑

κ∈K,M∈M
E

G̃,h̃,α

[

T ′ (A,I(A),α, κ,M) XW
]



 (47)

Moreover,

E
G̃,h̃,α

[

T ′ (A,I(A),α, κ,M) XW
]

= E
G̃,h̃,α

[

∑

I∈I
T ′ (A, I,α, κ,M) W

[

smin

(

ÃI

)

≥ κ0/2
]

[I(A) = I]

]

≤ E
G̃,h̃,α

[

∑

I∈I
T ′ (A, I,α, κ,M) W

[

smin

(

ÃI

)

≥ κ0/2
]

]

≤ E
G̃,h̃,α

[

∑

I∈I
T ′ (A, I,α, κ,M)

∣

∣

∣
W and smin

(

ÃI

)

≥ κ0/2

]

=
∑

I∈I
E

G̃,h̃,α

[

T ′ (A, I,α, κ,M)
∣

∣

∣W and smin

(

ÃI

)

≥ κ0/2
]

≤
∑

I∈I
(6 + 10−4)D

(

d, n,
τ1

(2 + 3
√

d ln nσ)(
√

dM2/4κM)

)

, by Lemma 5.2.3,

≤ 3(6 + 10−4)nd(ln n)

(

D
(

d, n,
4τ1κ

(2 + 3
√

d ln nσ)(
√

dM)

))

.
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Thus,

(47) ≤ E
I,Ã,ỹ



V W
∑

κ∈K,M∈M
3(6 + 10−4)nd(ln n)D

(

d, n,
4τ1κ

(2 + 3
√

d ln nσ)(
√

dM)

)





≤ E
I,Ã,ỹ

[

3(6 + 10−4)nd(ln n)(V |M|) |K|WD
(

d, n,
4τ1 min(K)

(2 + 3
√

d ln nσ)(
√

dmax(M))

)]

≤ E
I,Ã,ỹ

[

6(6 + 10−4)nd(ln n) |K|WD
(

d, n,
4τ1 min(K)

(2 + 3
√

d ln nσ)(
√

dmax(M))

)]

≤ 6(6 + 10−4)nd(ln n) |K|D
(

d, n,
2τ1κ0√

d(2 + 3
√

d ln nσ)(1 + 6
√

(d + 1) ln nσ)

)

,

where the last inequality follows from max(M) ≤ 1 + 6
√

(d + 1) ln nσ when W is true.
To simplify, we first bound the third argument of the function D by:

2τ1κ0√
d(2 + 3

√
d ln nσ)(1 + 6

√

(d + 1) ln nσ)

=
1

3d3
√

ln n

κ2
0√

d(2 + 3
√

d ln nσ)(1 + 6
√

(d + 1) ln nσ)

=
1

3d3.5
√

ln n

(

1

12d2n7
√

ln n

)2 σ2(min(1, σ))2

(2 + 3
√

d ln nσ)(1 + 6
√

(d + 1) ln nσ)

≥ 1

432d7.5n14(ln n)1.5

min(1, σ4)

(2 + 3
√

d ln n)(1 + 6
√

(d + 1) ln n)

≥ 1

432d7.5n14(ln n)1.5

min(1, σ4)

30d ln n

=
min(1, σ4)

12, 960d8.5n14 ln2.5 n

where the last inequality follows from the assumption that n > d ≥ 3.
Applying Proposition 5.1.4 to show |K| ≤ 9 lg(dn/min(1, σ)), we now obtain

(47) ≤ 6(6 + 10−4) |K|nd(ln n)D
(

d, n,
min(1, σ4)

12, 960d8.5n14 ln2.5 n

)

≤ 325nd(ln n) lg(dn/min(1, σ))D
(

d, n,
min(1, σ4)

12, 960d8.5n14 ln2.5 n

)

.

Lemma 5.2.2 (probability of small smin

(

ÃI(A)

)

) For A, Ã, and I as defined in the

proof of Lemma 5.2.1,

Pr
I,Ã,G̃

[

smin

(

ÃI(A)

)

< κ0/2
]

< 0.42

(

n

d

)−1

.
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Proof Let I = I(A), we have

Pr
[

smin

(

ÃI

)

< κ0/2
]

≤ Pr [smin (AI) < κ0]

Pr
[

smin (AI) < κ0

∣

∣smin

(

ÃI

)

< κ0/2
] .

From Corollary 5.1.2, we have

Pr [smin (AI) < κ0] ≤ 0.417

(

n

d

)−1

,

On the other hand, we have

Pr
[

smin (AI) ≥ κ0

∣

∣smin

(

ÃI

)

< κ0/2
]

≤ Pr
[

smin (AI) ≥ κ0 and smin

(

ÃI

)

< κ0/2
]

≤ Pr
[∥

∥

∥
AI − ÃI

∥

∥

∥
≥ κ0/2

]

, by Proposition 2.2.6 (b),

≤ Pr
A

[

max
i

‖aaai − ã i‖ ≥ κ0/2
√

d

]

, by Proposition 2.2.4 (d),

= Pr
A

[

max
i

‖aaai − ã i‖ ≥ 3d5/2
√

ln nτ1

]

≤ n−2.9d+1,

by Corollary 2.4.6. Thus,

(5.2) ≤ 0.417
(

n
d

)−1

1 − n−2.9d+1
≤ 0.42

(

n

d

)−1

,

for n > d ≥ 3.

Lemma 5.2.3 (From ã) Let I be a set in
([n]

d

)

and let ã1, . . . , ãn be points each of norm

at most 1 + 3
√

(d + 1) ln nσ such that

smin

(

ÃI

)

≥ κ0/2.

Then,

E
A,α∈A1/d2

[

ShadowAIα,z

(

aaa1, . . . ,aaan;y ′
)]

≤ (6+10−4)D
(

d, n,
τ1

(2 + 3
√

d ln nσ)(maxi y′i/mini y′i)

)

.

(48)
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Proof We apply Lemma 5.2.4 to show

E
A,α∈A1/d2

[∣

∣ShadowAIα,z

(

aaa1, . . . ,aaan;y ′
)∣

∣

]

≤ 6 E
A,α̃∈A0

[∣

∣

∣ShadowÃIα̃,z

(

aaa1, . . . ,aaan;y ′
)

∣

∣

∣

]

+ 1

≤ 6 max
α̃∈A0

E
A

[∣

∣

∣
Shadow

ÃIα̃,z

(

aaa1, . . . ,aaan;y ′
)

∣

∣

∣

]

+ 1

≤ 6D
(

d, n,
τ1

(2 + 3
√

d ln nσ)(maxi y
′
i/mini y′i)

)

+ 7

≤ (6 + 10−4)D
(

d, n,
τ1

(2 + 3
√

d ln nσ)(maxi y
′
i/mini y′i)

)

,

by Corollary 4.3.3 and fact that D(n, d, σ) ≥ 58, 888, 678 for any positive n, d, σ.

Lemma 5.2.4 (Changing α to α̃) Let I ∈
([n]

d

)

. Let aaa1, . . . ,aaan be Gaussian random

vectors in IRd of standard deviation τ1, centered at points ã1, . . . , ãn. If smin

(

ÃI

)

≥ κ0/2,

then

E
A,α∈A1/d2

[∣

∣ShadowAIα,z

(

aaa1, . . . ,aaan;y ′
)∣

∣

]

≤ 6 E
A,α̃∈A0

[∣

∣

∣Shadow
ÃIα̃,z

(

aaa1, . . . ,aaan;y ′
)

∣

∣

∣

]

+1.

Proof The key to our proof is Lemma 5.2.5. To ready ourselves for the application of
this lemma, we let

FA(t) =
∣

∣Shadowt ,z

(

aaa1, . . . ,aaan;y ′
)∣

∣ ,

and note that FA(t) = FA(t/ ‖t‖). If
∥

∥

∥
Ã−A

∥

∥

∥
≤ 3d

√
ln nτ1, then

∥

∥

∥I − Ã
−1

A

∥

∥

∥ ≤
∥

∥

∥Ã
−1
∥

∥

∥

∥

∥

∥Ã−A

∥

∥

∥ ≤
(

2

κ0

)

3d
√

ln nτ1 ≤
(

2

κ0

)

3d
√

ln nκ0

12d3
√

lnn
≤ 1

2d2
.

By Proposition 2.2.6 (b),

smin (AI) ≥ smin

(

ÃI

)

−
∥

∥

∥
Ã−A

∥

∥

∥

≥ κ0/2 − 3d
√

ln nτ1

≥ κ0

2

(

1 − 1

2d2

)

≥ κ0

2

(

17

18

)

,

for d ≥ 3. So, we can similarly bound

∥

∥

∥I −A−1Ã

∥

∥

∥ ≤ 9

17d2
.

We can then apply Lemma 5.2.5 to show

E
α∈A1/d2

[∣

∣ShadowAIα,z

(

aaa1, . . . ,aaan;y ′
)∣

∣

]

≤ 6 E
α̃∈A

[∣

∣

∣
Shadow

ÃIα̃,z

(

aaa1, . . . ,aaan;y ′
)

∣

∣

∣

]

.
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From Corollary 2.4.6 and Proposition 2.2.4 (d), we know that the probability that
∥

∥

∥Ã−A

∥

∥

∥ >

3d
√

lnnτ1 is at most n−2.9d+1. As Shadow
ÃIα̃,z (aaa1, . . . ,aaan;y ′) ≤

(

n
d

)

, we can apply
Lemma 2.3.3 to show

E
A

[

E
α∈A1/d2

[∣

∣ShadowAIα,z

(

aaa1, . . . ,aaan;y ′
)∣

∣

]

]

≤ 6E
A

[

E
α̃∈A

[∣

∣

∣
Shadow

ÃIα̃,z

(

aaa1, . . . ,aaan;y ′
)

∣

∣

∣

]

]

+1.

To compare the expected sizes of the shadows, we will show that the distribution

Span (Aα, z ) is close to the distribution Span
(

Ãα̃, z
)

. To this end, we note that for

a given α̃ ∈ A0 the α ∈ A for which Aα is a positive multiple of Ãα̃ is given by

α = Ψ(α̃)
def
=

A−1Ãα̃
〈

A−1Ãα̃|1
〉 . (49)

To derive this equation, note that Ãα̃ is the point in △ (ã1, . . . , ãd) specified by α̃. A−1Ãα̃

provides the coordinates of this point in the basis A. Dividing by
〈

A−1Ãα̃|1
〉

provides

the α ∈ A specifying the parallel point in Aff (aaa1, . . . ,aaad). We can similarly derive

Ψ−1(α) =
Ã
−1

Aα
〈

Ã
−1

Aα|1
〉 .

Our analysis will follow from a bound on the Jacobian of Ψ.

Lemma 5.2.5 (Approximation of α by α̃) Let F(x ) be a non-negative function de-

pending only on x/ ‖x‖. If δ = 1/d2,
∥

∥

∥I − Ã
−1

A

∥

∥

∥ ≤ ǫ, and
∥

∥

∥I −A−1Ã

∥

∥

∥ ≤ ǫ, where

ǫ ≤ 9/17d2, then

E
α∈Aδ

[F(Aα)] ≤ 6 E
α̃∈A0

[

F(Ãα̃)
]

Proof Expressing the expectations as integrals, the lemma is equivalent to

1

Vol (Aδ)

∫

α∈Aδ

F(Aα) dα ≤ 6

Vol (A0)

∫

α̃∈A0

F(Ãα̃) dα̃ .

Applying Lemma 5.2.7 and setting α = Ψ(α̃), we bound

1

Vol (Aδ)

∫

α∈Aδ

F(Aα) dα ≤ 1

Vol (Aδ)

∫

α∈Ψ(A0)
F(Aα) dα

=
1

Vol (Aδ)

∫

α̃∈A0

F(AΨ(α̃))

∣

∣

∣

∣

∂Ψ(α̃)

∂α̃

∣

∣

∣

∣

dα̃

=
1

Vol (Aδ)

∫

α̃∈A0

F(Ãα̃)

∣

∣

∣

∣

∂Ψ(α̃)

∂α̃

∣

∣

∣

∣

dα̃
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(as Ãα̃ is a positive multiple of AΨ(α̃) and F(x ) only depends on x/ ‖x‖)

≤ max
α̃∈A0

(∣

∣

∣

∣

∂Ψ(α̃)

∂α̃

∣

∣

∣

∣

)

1

Vol (Aδ)

∫

α̃∈A0

F(Ãα̃) dα̃

= max
α̃∈A0

(∣

∣

∣

∣

∂Ψ(α̃)

∂α̃

∣

∣

∣

∣

)(

Vol (A0)

Vol (Aδ)

)

1

Vol (A0)

∫

α̃∈A0

F(Ãα̃) dα̃

≤ (1 + ǫ)d

(1 − ǫ
√

d)d(1 − ǫ)

(

1

1 − dδ

)d 1

Vol (A0)

∫

α̃∈A0

F(Ãα̃) dα̃

(by Proposition 5.2.6 and Lemma 5.2.10)

≤ 6
1

Vol (A0)

∫

α̃∈A0

F(Ãα̃) dα̃ ,

for ǫ ≤ 9/17d2, δ = 1/d2 and d ≥ 3.

Proposition 5.2.6 (Volume dilation)

Vol (A0)

Vol (Aδ)
=

(

1

1 − dδ

)d

.

Proof The set Aδ may be obtained by contracting the set A0 at the point (1/d, 1/d, . . . , 1/d)
by the factor (1 − dδ).

Lemma 5.2.7 (Proper subset) Under the conditions of Lemma 5.2.5,

Aδ ⊂ Ψ(A0).

Proof We will prove
Ψ−1(Aδ) ⊂ A0.

Let α ∈ Aδ, α
′ = Ã

−1
Aα and α̃ = α′/ 〈α′|1〉. Using Proposition 2.2.2 to show ‖α‖ ≤

‖α‖1 = 1 and Proposition 2.2.4 (a), we bound

α′i ≥ αi−
∣

∣αi − α′i
∣

∣ ≥ δ−
∥

∥α−α′
∥

∥ ≥ δ−
∥

∥

∥I − Ã
−1

A

∥

∥

∥ ‖α‖ ≥ δ−ǫ > 0.

So, all components of α′ are positive and therefore all components of α̃ = α′/ 〈α′|1〉 are
positive.

We will now begin a study of the Jacobian of Ψ. This study will be simplified by
decomposing Ψ into the composition of two maps. The second of these maps is given by:

Definition 5.2.8 (Γu,v) Let u and v be vectors in IRd and let Γu,v (x ) be the map from
{x : 〈x |u〉 = 1} to {x : 〈x |v 〉 = 1} by

Γu ,v (x ) =
x

〈x |v 〉 .
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Figure 5: Γu,v can be understood as the projection through the origin from one plane onto
the other.

Lemma 5.2.9 (Jacobian of Ψ)
∣

∣

∣

∣

∂Ψ(α̃)

∂α̃

∣

∣

∣

∣

= det
(

A−1Ã
) ‖1‖
〈

A−1Ãα̃|1
〉d
∥

∥

∥

∥

(

Ã
−1

A
)T

1

∥

∥

∥

∥

.

Proof Let α = Ψ(α̃) and let α′ = A−1Ãα̃. As 〈α̃|1〉 = 1, we have
〈

α′|
(

Ã
−1

A
)T

1

〉

= 1.

So, α = Γu,v (α′), where u =
(

Ã
−1

A
)T

1 and v = 1. By Lemma 5.2.11,

∣

∣

∣

∣

∂α

∂α̃

∣

∣

∣

∣

=

∣

∣

∣

∣

∂α

∂α′

∣

∣

∣

∣

∣

∣

∣

∣

∂α′

∂α̃

∣

∣

∣

∣

= det

(

∂Γu,v (α′)
∂α′

)

det
(

A−1Ã
)

= det
(

A−1Ã
) ‖1‖
〈

A−1Ãα̃|1
〉d
∥

∥

∥

∥

(

Ã
−1

A
)T

1

∥

∥

∥

∥

.

Lemma 5.2.10 (Bound on Jacobian of Ψ) Under the conditions of Lemma 5.2.5,
∣

∣

∣

∣

∂Ψ(α̃)

∂α̃

∣

∣

∣

∣

≤ (1 + ǫ)d

(1 − ǫ
√

d)d(1 − ǫ)
.

for all α̃ ∈ A0.
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Proof The condition
∥

∥

∥I −A−1Ã

∥

∥

∥ ≤ ǫ implies
∥

∥

∥A−1Ã

∥

∥

∥ ≤ 1 + ǫ, so Proposition 2.2.4 (e)

implies

det
(

A−1Ã
)

≤ (1 + ǫ)d.

Observing that ‖1‖ =
√

d, and
∥

∥

∥
I − (Ã

−1
A)T

∥

∥

∥
=
∥

∥

∥
I − (Ã

−1
A)
∥

∥

∥
, we compute

∥

∥

∥(Ã
−1

A)T1
∥

∥

∥ ≥ ‖1‖ −
∥

∥

∥1 − (Ã
−1

A)T 1
∥

∥

∥ ≥
√

d −
∥

∥

∥I − (Ã
−1

A)T
∥

∥

∥ ‖1‖ ≥
√

d − ǫ
√

d.

So,
‖1‖

∥

∥

∥

∥

(

Ã
−1

A
)T

1

∥

∥

∥

∥

≤ 1

1 − ǫ
.

Finally, as 〈α̃|1〉 = 1 and ‖α̃‖ ≤ 1, we have

〈

A−1Ãα̃|1
〉

= 〈α̃|1〉 +
〈

A−1Ãα̃− α̃|1
〉

= 1 +
〈

(A−1Ã− I)α̃|1
〉

≥ 1 −
∥

∥

∥
A−1Ã− I

∥

∥

∥
‖α̃‖ ‖1‖

≥ 1 − ǫ
√

d.

Applying Lemma 5.2.9, we have

∣

∣

∣

∣

∂Ψ(α̃)

∂α̃

∣

∣

∣

∣

= det
(

A−1Ã
) ‖1‖
〈

A−1Ãα|1
〉d
∥

∥

∥

∥

(

Ã
−1

A
)T

1

∥

∥

∥

∥

≤ (1 + ǫ)d

(1 − ǫ
√

d)d(1 − ǫ)
.

Lemma 5.2.11 (Jacobian of Γu,v)

∣

∣

∣

∣

det

(

∂Γu ,v (x )

∂x

)∣

∣

∣

∣

=
‖v‖

〈x |v 〉d ‖u‖
.

Proof Consider dividing IRd into Span (u , v ) and the space orthogonal to Span (u , v).
In the (d − 2)-dimensional orthogonal space, Γu ,v acts as a multiplication by 1/ 〈x |v〉.
On the other hand, the Jacobian of the restriction of Γu ,v to Span (u , v) is computed by
Lemma 5.2.12 to be

‖v‖
〈x |v 〉2 ‖u‖

.

So,
∣

∣

∣

∣

det

(

∂Γu,v (x )

∂x

)∣

∣

∣

∣

=

(

1

〈x |v〉

)d−2 ‖v‖
〈x |v 〉2 ‖u‖

=
‖v‖

〈x |v〉d ‖u‖
.
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Lemma 5.2.12 (Jacobian of Γu,v in 2D) Let u and v be vectors in IR2 and let Γu,v (x )
be the map from {x : 〈x |u〉 = 1} to {x : 〈x |v 〉 = 1} by

Γu ,v (x ) =
x

〈x |v 〉 .

Then,
∣

∣

∣

∣

det

(

∂Γu ,v (x )

∂x

)∣

∣

∣

∣

=
‖v‖

〈x |v〉2 ‖u‖
.

Proof Let R =

(

0 −1
1 0

)

, the 90o rotation counter-clockwise. Let

u⊥ = Ru/ ‖u‖ and v⊥ = Rv/ ‖v‖ .

Express the x such that 〈x |u〉 = 1, as x = u/ ‖u‖2 +xu⊥. Similarly, parameterize the line
{x : 〈x |v 〉 = 1} by v/ ‖v‖2 + yv⊥. Then, we have

Γu,v

(

u/ ‖u‖2 + xu⊥
)

= v/ ‖v‖2 + yv⊥,

where

y =

〈

u/ ‖u‖2 + xu⊥|v⊥
〉

〈

u/ ‖u‖2 + xu⊥|v
〉 =

〈

u/ ‖u‖2 + xu⊥|v⊥
〉

〈x |v 〉 .

So,
∣

∣

∣

∣

det

(

∂Γu ,v (x )

∂x

)∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

∂y

∂x

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

〈

u⊥
∣

∣

∣v⊥
〉〈

u

‖u‖2 + xu⊥
∣

∣

∣v
〉

−
〈

u⊥
∣

∣

∣v
〉〈

u

‖u‖2 + xu⊥
∣

∣

∣v⊥
〉

〈x |v〉2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

〈

u⊥
∣

∣

∣
v⊥
〉〈

u

‖u‖2
∣

∣

∣
v
〉

−
〈

u⊥
∣

∣

∣
v
〉〈

u

‖u‖2
∣

∣

∣
v⊥
〉

〈x |v〉2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

‖v‖
(〈

u⊥
∣

∣

∣
v⊥
〉〈

u
‖u‖

∣

∣

∣

v
‖v‖

〉

−
〈

u⊥
∣

∣

∣

v
‖v‖

〉〈

u
‖u‖

∣

∣

∣
v⊥
〉)

‖u‖ 〈x |v 〉2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

‖v‖
(

〈

u
‖u‖

∣

∣

∣

v
‖v‖

〉2
+
〈

u⊥
∣

∣

∣

v
‖v‖

〉2
)

‖u‖ 〈x |v 〉2

∣

∣

∣

∣

∣

∣

∣

∣

, as R is orthogonal and R2 = −1,

=
‖v‖

‖u‖ 〈x |v 〉2
, as

u

‖u‖ ,u⊥ is a basis.

77



5.3 Bounding the shadow of LP+

The main obstacle to proving a bound on the size of the shadow of LP+ is that the vectors
a+

i /y+
i are not Gaussian random vectors. To resolve this problem, we will show that, in

almost every sufficiently small region, we can construct a family of Gaussian random vectors
with distributions similar to the vectors a+

i /y+
i . We will then bound the expected size of

the shadow of the vectors a+
i /y+

i by a small multiple of the expected size of the shadow
of these Gaussian vectors. These regions are defined by splitting the original perturbation
into two, and letting the first perturbation define the region.

As in the analysis of LP ′, a secondary obstacle is the correlation of κ and M with A

and y . We again overcome this obstacle by considering the sum of the expected sizes of the
shadows when κ and M are fixed to each of their likely values, and use the notation

T +
z (A,y , κ,M)

def
=

{

∣

∣Shadow(0,z ),z+

(

a+
1 /y+

1 , . . . ,a+
n /y+

n

)∣

∣ , if
√

dM/4κ ≥ 1

0 otherwise,

where

a+
i =

(

(y′i − yi)/2,aaa i

)

,

y+
i = (y′i + yi)/2, and

y′i =

{

M if i ∈ I√
dM2/4κ otherwise.

By Lemma 3.3.5 and Proposition 3.3.2, we then have

S+
z (A,y ,I) = T +

z

(

A,y , 2⌊lgsmin(AI(A))⌋, 2⌈lg(maxi‖(yi,aaai)‖)⌉+2
)

.

Lemma 5.3.1 (LP+) Let d ≥ 3 and n ≥ d + 1. Let Ā = [āaa1, . . . , āaan] ∈ IRn×d, ȳ ∈ IRn

and z ∈ IRd, satisfy maxi ‖(ȳi, ā i)‖ ∈ (1/2, 1]. For any σ > 0, let A be a Gaussian random
matrix centered at Ā of standard deviation σ, and let y by a Gaussian random vector
centered at ȳ of standard deviation σ. Let I be a set of 3nd ln n randomly chosen d-subsets
of [n]. Then,

E
A,y ,I

[

S+(A,y ,I)
]

≤ 49 lg(nd/min(σ, 1))D
(

d, n,
min(1, σ5)

223(d + 1)11/2n14(ln n)5/2

)

+ n.

where D(d, n, σ) is as given in Theorem 4.0.1.

Proof For ρ0 and ρ1 defined below, we let G and G̃ be Gaussian random matrices
centered at the origin of standard deviations ρ0 and ρ1, respectively. We then let Ã = Ā+G

and A = Ã + G̃. We similarly let h and h̃ be Gaussian random vectors centered at the
origin of standard deviations ρ0 and ρ1, respectively, and let ỹ = y ′+h and y = ỹ + h̃ . If

σ ≤ 3
√

1/4√
2en(60n(d + 1)3/2(ln n)3/2)

,
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we set ρ1 = σ. Otherwise, we set ρ1 so that

ρ1 =
3
√

1/4 + d(σ2 − ρ2
1)√

2en(60n(d + 1)3/2(ln n)3/2)
,

and set ρ2
0 = σ2 − ρ2

1. We note that

ρ1 = min

(

σ,
3
√

1/4 + dρ2
0√

2en(60n(d + 1)3/2(ln n)3/2)

)

.

As in the proof of Lemma 5.2.1, we define the set of likely values for M :

M =

{

2⌈lg x⌉+2 :

(

max
i

‖(ỹi, ã i)‖
)

(

1 − 9
√

(d + 1) ln n

(60n(d + 1)3/2(ln n)3/2)

)

≤ x

≤
(

max
i

‖(ỹi, ã i)‖
)

(

1 +
9
√

(d + 1) ln n

(60n(d + 1)3/2(ln n)3/2)

)}

.

Observed that |M| ≤ 2.
As in the proof of Lemma 5.2.1, we define random variables:

W =

[

max
i

‖(ỹi, ã i)‖ ≤ 1 + 3
√

(d + 1) ln nρ0

]

,

X =

[

max
i

‖(ỹi, ã i)‖ ≥
√

1/4 + dρ2
0√

2en

]

,

Y =
[

2⌊lgsmin(AI(A))⌋ ∈ K
]

, and

Z =
[

2⌈lgmaxi‖(yi,aaai)‖⌉+2 ∈ M
]

.

In order to apply the shadow bound proved below in Lemma 5.3.2, we need

M ≥ 3max
i

‖(ỹi, ã i)‖ ,

and
M ≥ (60n(d + 1)3/2(ln n)3/2)ρ1.

From the definition of M and the inequality 1 − 9
√

(d + 1) ln n/(60n(d + 1)3/2(ln n)3/2) ≥
3/4, the first of these inequalities holds if Z is true. Given that Z is true, the second
inequality holds if X is also true.

From Corollary 5.1.3, we know

Pr
A,I

[not(Y )] ≤ Pr
A,I

[

2⌊lg smin(AI(A))⌋ 6∈ K
]

≤ 0.42

(

n

d

)−1

≤ 0.42n

(

n

d + 1

)−1

. (50)

From Corollary 2.4.6 we have

Pr
Ã,ỹ

[not(W )] ≤ n−2.9(d+1)+1 ≤ 0.0015

(

n

d + 1

)−1

. (51)
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From Proposition 2.4.9, we know

Pr [not(X)] = Pr

[

max
i

‖(ỹi, ã i)‖ <

√

1/4 + dρ2
0√

2en

]

< n−(d+1) ≤ 1

24

(

n

d + 1

)−1

. (52)

To bound the probability that Z fails, we note that

max
i

‖(ỹi, ã i)‖ ≥
√

1/4 + dρ2
0√

2en

and
max

i
‖(yi − ỹi,aaa i − ã i)‖ ≤ ρ13

√

(d + 1) ln n,

imply Z is true. Hence, by Corollary 2.4.6 and (52),

Pr [not(Z)] ≤ n−2.9(d+1)+1 + n−(d+1) ≤ .044

(

n

d + 1

)−1

. (53)

As in the proof of Lemma 5.2.1, we now expand

E
I,A,y

[

S+(A,y ,I)
]

= E
I,A,y

[

S+(A,y ,I)WXY Z
]

+ E
I,A,y

[

S+(A,y ,I)(1 − WXY Z)
]

. (54)

To bound the second term by n, we apply (51) , (52) , (50) and (53) to show

Pr
A,I

[not(W ) or not(X) or not(Y ) or not(Z)] ≤ n

(

n

d + 1

)−1

,

and then combine this inequality with Proposition 5.0.2.
To bound the first term of (54), we note

E
I,A,y

[

S+(A,y ,I)WXY Z
]

≤ E
I,Ã,ỹ



WX
∑

κ∈K,M∈M
E

G̃,h̃

[

T + (A,y , κ,M) XZ
]





≤ E
I,Ã,ỹ



WX
∑

κ∈K,M∈M
E

G̃,h̃

[

T + (A,y , κ,M)
∣

∣

∣XZ
]





≤ E
I,Ã,ỹ



WX
∑

κ∈K,M∈M
eD
(

d, n,
ρ1 mini y′i

3(maxi y′i)
2

)

+ 1,



 by Lemma 5.3.2 (55)

≤ E
I,Ã,ỹ



WX
∑

κ∈K,M∈M
eD
(

d, n,
σM

3(M2/4κ)2

)

+ 1





≤ E
I,Ã,ỹ

[

WX |K| |M | eD
(

d, n,
16σ min(K)2

3max(M)3

)

+ 1

]

. (56)
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As min(K) ≥ κ0/2 and W implies max(M) ≤ 9
(

1 + 3
√

(d + 1) ln nσ
)

,

16σ min(K)2

3max(M)3
≥ 16σ3 min(1, σ)2

3 · 4
(

9(1 + 3
√

(d + 1) ln nσ
)3 (

12d2n7
√

ln n
)2

≥ 16min(1, σ5)

3 · 4
(

9(1 + 3
√

(d + 1) ln n
)3 (

12d2n7
√

ln n
)2

≥ min(1, σ5)

223(d + 1)11/2n14(ln n)5/2
.

Applying this inequality, Proposition 5.1.4, and the fact that X implies |M| ≤ 2, we obtain

(56) ≤ 49 lg(nd/min(σ, 1))D
(

d, n,
min(1, σ5)

223(d + 1)11/2n14(ln n)5/2

)

.

Lemma 5.3.2 (LP+ Shadow, part 2) Let d ≥ 3 and n ≥ d + 1. Let y be a Gaussian
random vector of standard deviation ρ1 centered at a point ỹ , and let aaa1, . . . ,aaan be Gaussian
random vectors in IRd of standard deviation ρ1 centered at ã1, . . . , ãn respectively. Under
the conditions

y′i > 3(‖ỹi, ã i‖),∀i, and (57)

y′i > 60n(d + 1)3/2(ln n)3/2ρ1,∀i. (58)

Let

a+
i =

(

(y′i − yi)/2,aaa i

)

, and

y+
i = (y′i + yi)/2.

Then,

E
(y1,aaa1),...,(yn,aaan)

[∣

∣Shadow(0,z ),z+

(

a+
1 /y+

1 , . . . ,a+
n /y+

n

)∣

∣

]

≤ eD
(

d, n,
ρ1 mini y

′
i

3(maxi y′i)
2

)

+ 1.

Proof We use the notation

(pi,0(h̃i),p i(h̃i, g̃ i)) = a+
i /y+

i =

(

y′i − ỹi − h̃i

y′i + ỹi + h̃i

,
2(ã i + g̃ i)

y′i + ỹi + h̃i

)

,

where g̃1, . . . , g̃n are the columns of G̃ and (h̃1, . . . , h̃n) = h̃ as defined in the proof of
Lemma 5.3.1.

The Gaussian random vectors that we will use to approximate these will come from
their first-order approximations:

(p̂i,0(h̃i), p̂(h̃i, g̃ i)) =

(

y′i − ỹi − h̃i(2y
′
i/(y

′
i + ỹi))

y′i + ỹi
,
2ã i + 2g̃ i − h̃i(2ã i/(y

′
i + ỹi))

y′i + ỹi

)
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Let ν̂i(p̂i,0, p̂ i) be the induced density on (p̂i,0, p̂ i). In Lemma 5.3.4, we prove that there
exists a set B of ((p1,0,p1), . . . , (pn,0,pn)) such that

Pr
∏n

i=1 νi(pi,0,pi)
[((p1,0,p1), . . . , (pn,0,pn)) ∈ B] ≥ 1 − 0.0015

(

n

d + 1

)−1

,

and for ((p1,0,p1), . . . , (pn,0,pn)) ∈ B,

n
∏

i=1

νi(pi,0,p i) ≤ e
n
∏

i=1

µ′i(pi,0,p i).

Consequently, Lemma 2.3.4 allows us to prove

E
∏n

i=1 νi(pi,0,pi)

[∣

∣Shadow(0,z ),z+ ((p1,0,p1), . . . , (pn,0,pn))
∣

∣

]

≤ e E
∏n

i=1 ν̂i(pi,0,pi)

[∣

∣Shadow(0,z ),z+ ((p1,0,p1), . . . , (pn,0,pn))
∣

∣

]

+ 1.

By Lemma 5.3.3, the densities ν̂i represent Gaussian distributions centered at points of
norm at most

∥

∥

∥

∥

(

y′i − ỹi

y′i + ỹi
,

2ã i

y′i + ỹi

)∥

∥

∥

∥

≤
√

5, (by condition (57))

whose covariance matrices have eigenvalues at most

(

9ρ1/2y
′
i

)2 ≤
(

9/2(60n(d + 1)3/2(ln n)3/2)
)2

≤ 1/9d ln n, (by condition (58))

and at least
(

9ρ1/8y
′
i

)2
.

Thus, we can apply Corollary 4.3.3 to bound

E
∏n

i=1 ν̂i(pi,0,pi)

[∣

∣Shadow(0,z ),z+ ((p1,0,p1), . . . , (pn,0,pn))
∣

∣

]

≤ eD
(

d, n,
9ρ1/8maxi y

′
i

(1 +
√

5)(maxi y′i/mini y′i)

)

+ 1,

≤ eD
(

d, n,
ρ1 mini y

′
i

3(maxi y′i)
2

)

+ 1,

thereby proving the Lemma.

Lemma 5.3.3 (ν̂) Under the conditions of Lemma 5.3.2, the vector (p̂i,0(h̃i), p̂(h̃i, g̃ i)) is
a Gaussian random vector centered at

(

y′i − ỹi

y′i + ỹi
,

2ã i

y′i + ỹi

)

,

and has a covariance matrix with eigenvalues between (9ρ1/8y
′
i)

2 and (9ρ1/2y
′
i)

2.
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Proof Because (p̂i,0(h̃i), p̂(h̃i, g̃ i)) is linear in (h̃i, g̃ i) and (h̃i, g̃ i) is a Gaussian random
vector, (p̂i,0(h̃i), p̂(h̃i, g̃ i)) is a Gaussian vector. The statement about the center of the
distributions follows immediately from the fact that (h̃i, g̃ i) is centered at the origin. To
construct the covariance matrix, we note that the matrix corresponding to the transforma-
tion from (h̃i, g̃ i) to (p̂i,0(h̃i), p̂(h̃i, g̃ i)) is

Ci
def
=

























−2y′

i

(y′

i+ỹi)2
, 0, . . . , 0

−2ãi,1

(y′

i+ỹi)2
−2ãi,2

(y′

i+ỹi)2

...
−2ãi,d

(y′

i+ỹi)2

2
y′

i+ỹi
I

























Thus, the covariance matrix of (p̂i,0(h̃i), p̂(h̃i, g̃ i)) is given by ρ2
1C

T
i Ci.

We now note that

y′i + ỹi

2
Ci −





















−1 0, . . . , 0

0

0
...

0

I





















=

























ỹi

y′

i+ỹi
, 0, . . . , 0

− ãi,1

y′

i+ỹi

− ãi,2

y′

i+ỹi

...

− ãi,d

y′

i+ỹi

0

























As all the singular values of the middle matrix are 1, and the norm of the right-hand matrix
is ‖(ỹi, ã i)‖ /(y′i + ỹi), all the singular values of Ci lie between

2

y′i + ỹi

(

1 − ‖(ỹi, ã i)‖
y′i + ỹi

)

and
2

y′i + ỹi

(

1 +
‖(ỹi, ã i)‖
y′i + ỹi

)

The stated bounds now follow from inequality (57).

Lemma 5.3.4 (Almost Gaussian) Under the conditions of Lemma 5.3.2, let νi(pi,0,p i)
be the induced density on (pi,0,p i), and let ν̂i(p̂i,0, p̂ i) be the induced density on (p̂i,0, p̂ i).
Then, there exists a set B of ((p1,0,p1), . . . , (pn,0,pn)) such that

(a) Pr [((p1,0,p1), . . . , (pn,0,pn)) ∈ B] ≥ 1 − 0.0015
( n

d+1

)−1
; and

(b) for all ((p1,0,p1), . . . , (pn,0,pn)) ∈ B,

n
∏

i=1

νi(pi,0,p i) ≤ e

n
∏

i=1

ν̂i(pi,0,p i).
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Proof Let

B =

{

((p1,0(h̃1),p1(h̃1, g̃ 1)), . . . , (pn,0(h̃n),pn(h̃n, g̃n)))

such that
∥

∥

∥
(h̃i, g̃ i)

∥

∥

∥
≤ 3
√

(d + 1) ln nρ1, for 1 ≤ i ≤ n

}

.

From inequalities (57) and (58), and the assumption
∣

∣

∣h̃i

∣

∣

∣ ≤ 3
√

(d + 1) ln nρ1, we can show

y′i + ỹi + h̃i > 0, and so the map from (h̃1, g̃1), . . . , (h̃n, g̃n) to (p1,0,p1), . . . , (pn,0,pn) is
invertible for (p1,0,p1), . . . , (pn,0,pn) ∈ B. Thus, we may apply Corollary 2.4.6 to establish
part (a).

Part (b) of follows directly Lemma 5.3.5.

Lemma 5.3.5 (Almost Gaussian, single variable) Under the conditions of Lemma 5.3.2,

for all h̃i and g̃ i such that
∥

∥

∥
(h̃i, g̃ i)

∥

∥

∥
≤ 3
√

(d + 1) ln nρ1,

νi(pi,0(h̃i),p i(h̃i, g̃ i)) ≤ e1/nν̂i(pi,0(h̃i),p i(h̃i, g̃ i)).

Proof Let µ(h̃i, g̃ i) be the density on (h̃i, g̃ i). As observed in the proof of Lemma 5.3.4,

the map from (h̃i, g̃ i) to (pi,0(h̃i),p i(h̃i, g̃ i)) is injective for
∥

∥

∥(h̃i, g̃ i)
∥

∥

∥ ≤ 3
√

(d + 1) ln nρ1;

so, by Proposition 2.5.1, the induced density on νi is

νi(pi,0,p i) =
1

∣

∣

∣
det

(

∂(pi,0,pi)

∂(h̃i,g̃i)

)∣

∣

∣

µ(h̃i, g̃ i),where (pi,0,p i) = (pi,0(h̃i),p i(h̃i, g̃ i)).

Similarly,

ν̂i(p̂i,0, p̂ i) =
1

∣

∣

∣det
(

∂(p̂i,0,p̂i)

∂(ĥi,ĝi)

)∣

∣

∣

µ(ĥi, ĝ i),where (p̂i,0, p̂ i) = (p̂i,0(ĥi), p̂ i(ĥi, ĝ i)).

The proof now follows from Lemma 5.3.6, which tells us that

µ(h̃i, g̃ i)

µ(ĥi, ĝ i)
≤ e0.81/n,

and Lemma 5.3.7, which tells us that
∣

∣

∣
det

(

∂(p̂i,0,p̂i)

∂(ĥi,ĝ i)

)∣

∣

∣

∣

∣

∣det
(

∂(pi,0,pi)

∂(h̃i,g̃ i)

)∣

∣

∣

≤ e1/10n.

Lemma 5.3.6 (Almost Gaussian, pointwise) Under the conditions of Lemma 5.3.5, If

pi,0(h̃i) = p̂0(ĥi), p i(h̃i, g̃ i) = p̂ i(ĥi, ĝ i), and
∥

∥

∥
h̃i, g̃ i

∥

∥

∥
≤ 3
√

(d + 1) ln nρ1, then

µ(h̃i, g̃ i)

µ(ĥi, ĝ i)
≤ e0.81/n.
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Proof We first observe that the conditions of the lemma imply

ĥi =
h̃i(y

′
i + ỹi)

y′i + ỹi + h̃i

, and ĝ i =
g̃ i(y

′
i + ỹi)

y′i + ỹi + h̃i

.

We then compute

µ(h̃i, g̃ i)

µ(ĥi, ĝ i)
= exp

(

−1

2ρ2
1

∥

∥

∥
(h̃i, g̃ i)

∥

∥

∥

2
(

2h̃i(y
′
i + ỹi) + h̃2

i

(y′i + ỹi + h̃i)2

))

. (59)

Assuming
∥

∥

∥(h̃i, g̃ i)
∥

∥

∥ ≤ 3
√

(d + 1) ln nρ1, the absolute value of the exponent in (59) is at

most
9(d + 1) ln n

2

(

2h̃i(y
′
i + ỹi) + h̃2

i

(y′i + ỹi + h̃i)2

)

.

From inequalities (57) and (58), we find

y′i + ỹi

(y′i + ỹi + h̃i)2
≤ 40

(37)2n(d + 1)3/2(ln n)3/2ρ1
.

Observing that h̃i ≤ (1/40)(y′i + ỹi), we can now lower bound the exponent in (59) by

9(d + 1) ln n

2

(

2h̃i(81/80)40

(37)2n(d + 1)3/2(ln n)3/2ρi

)

≤ 0.81/n.

Lemma 5.3.7 (Almost Gaussian, Jacobians) Under the conditions of Lemma 5.3.5,

∣

∣

∣
det

(

∂(p̂0,p̂i)

∂(ĥi,ĝi)

)∣

∣

∣

∣

∣

∣det
(

∂(pi,0,pi)

∂(h̃i,g̃i)

)∣

∣

∣

≤ e.0094/n

Proof We first note that
∣

∣

∣

∣

∣

det

(

∂(p̂0, p̂ i)

∂(ĥi, ĝ i)

)∣

∣

∣

∣

∣

= |det (Ci)| =
2d+1y′i

(y′i + ỹi)d+2
.

To compute
∣

∣

∣
det

(

∂(pi,0,pi)

∂(h̃i,g̃i)

)∣

∣

∣
, we note that

∣

∣

∣

∣

∂pi,0

∂h̃i

∣

∣

∣

∣

=
−2y′i

(y′i + ỹi + h̃i)2
, and

∣

∣

∣

∣

∣

∂p i,j(h̃i, gi,k)

∂gi,k

∣

∣

∣

∣

∣

=

{

0 if j 6= k
2

y′
i+ỹi+h̃i

otherwise.
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Thus, the matrix of partial derivatives is lower-triangular, and its determinant has absolute
value

∣

∣

∣

∣

det

(

∂(pi,0,p i)

∂(h̃i, g̃ i)

)∣

∣

∣

∣

=
2d+1y′i

(y′i + ỹi + h̃i)d+2
.

Thus,

∣

∣

∣
det

(

∂(p̂0,p̂i)

∂(ĥi,ĝi)

)∣

∣

∣

∣

∣

∣det
(

∂(pi,0,pi)

∂(h̃i,g̃i)

)∣

∣

∣

=

(

y′i + ỹi + h̃i

y′i + ỹi

)d+2

=

(

1 +
h̃i

y′i + ỹi

)d+2

≤
(

1 +
3h̃i

2y′i

)d+2

, by (57)

≤ e
3(d+2)h̃i

2y′
i

≤ e0.094/n, by d ≥ 3 and (58).
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6 Discussion and Open Questions

The results proved in this paper support the assertion that the shadow-vertex simplex
algorithm usually runs in polynomial time. However, our understanding of the performance
of the simplex algorithm is far from complete. In this section, we discuss problems in the
analysis of the simplex algorithm and in the smoothed analysis of algorithms that deserve
further study.

6.1 Practicality of the analysis

While we have demonstrated that the smoothed complexity of the shadow-vertex algorithm
is polynomial, the polynomial we obtain is quite large. Yet, we believe that the present
analysis provides some intuition for why the shadow-vertex simplex algorithm should run
quickly. It is clear that the proofs in this paper are very loose and make many worst-case
assumptions that are unlikely to be simultaneously valid. We did not make any attempt
to optimize the coefficients or exponents of the polynomial we obtained. We have not
attempted such optimization for two reasons: they would increase the length of the paper
and probably make it more difficult to read; and, we believe that it should be possible to
improve the bounds in this paper by simplifying the analysis rather than making it more
complicated. Finally, we point out that most of our intuition comes from the shadow size
bound, which is not so bad as the bound for the two-phase algorithm.

6.2 Further analysis of the simplex algorithm

• While we have analyzed the shadow-vertex pivot rule, there are many other pivot rules
that are more commonly used in practice. Knowing that one pivot rule usually takes
polynomial time makes it seem reasonable that others should as well. We consider the
maximum-increase and steepest-increase rules, as well as randomized pivot rules, to
be good candidates for smoothed analysis. However, the reader should note that there
is a reason that the shadow-vertex pivot rule was the first to be analyzed: there is a
simple geometric description of the vertices encountered by the algorithm. For other
pivot rules, the only obvious characterization of the vertices encountered is by iterative
application of the pivot rule. This iterative characterization introduces dependencies
that make probabilistic analysis difficult.

• Even if we cannot perform a smoothed analysis of other pivot rules, we might be able
to measure the diameter of a polytope under smoothed analysis. We conjecture that
it is expected polynomial in m, d, and 1/σ.

• Given that the shadow-vertex simplex algorithm can solve the perturbations of linear
programs efficiently, it seems natural to ask if we can follow the solutions as we
unperturb the linear programs. For example, having solved an instance of type (4),
it makes sense to follow the solution as we let σ approach zero. Such an approach
is often called a homotopy or path-following method. So far, we know of no reason
that there should exist an A for which one cannot follow these solutions in expected
polynomial time, where the expectation is taken over the choice of G. Of course, if
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one could follow these solutions in expected polynomial time for every A, then one
would have a randomized strongly-polynomial time algorithm for linear programming!

6.3 Degeneracy

One criticism of our model is that it does not allow for degenerate linear programs. It is
an interesting problem to find a model of local perturbations that will preserve meaningful
degeneracies. It seems that one might be able to expand upon the ideas of Todd [Tod91]
to construct such a model. Until such a model presents itself and is analyzed, we make the
following observations about types of degeneracies.

• In primal degeneracy, a single feasible vertex may correspond to multiple bases, I.
In the polar formulation, this corresponds to an unexpectedly large number of the
aaa is lying in a (d − 1)-dimensional affine subspace. In this case, a simplex method
may cycle—spending many steps switching among bases for this vertex, failing to
make progress toward the objective function. Unlike many simplex methods, the
shadow-vertex method may still be seen to be making progress in this situation: each
successive basis corresponds to a simplex that maps to an edge further along the
shadow. It just happens that these edges are co-linear.

A more severe version of this phenomenon occurs when the set of feasible points of a
linear program lies in an affine subspace of fewer then d dimensions. By considering
perturbations to the constraints under the condition that they do not alter the affine
span of the set of feasible points, the results on the sizes of shadows obtained in
Section 4 carry over unchanged. However, how such a restriction would affect the
results in Section 5 is presently unclear.

• In dual degeneracy, the optimal solution of the linear program is a face of the polyhe-
dron rather than a vertex. This does not appear to be a very strong condition, and we
expect that one could extend our analysis to a model that preserves such degeneracies.

6.4 Smoothed Analysis

We believe that many algorithms will be better understood through smoothed analysis.
Scientists and engineers routinely use algorithms with poor worst-case performance. Often,
they solve problems that appear intractable from the worst-case perspective. While we do
not expect smoothed analysis to explain every such instance, we hope that it can explain
away a significant fragment of the discrepancy between the algorithmic intuitions of engi-
neers and theorists. To make it easier to apply smoothed analyses, we briefly discuss some
alternative definitions of smoothed analysis.

Zero-preserving perturbations: One criticism of smoothed complexity as defined
in Section 1.2 is that the additive Gaussian perturbations destroy any zero-structure that
the problem has, as it will replace the zeros with small values. One can refine the model
to fix this problem by studying zero-preserving perturbations. In this model, one applies
Gaussian perturbations only to non-zero entries. Zero entries remain zero.

Relative perturbations: A further refinement is the model of relative perturbations.
Under a relative perturbation, an input is mapped to a constant multiple of itself. For
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example, a reasonable definition would be to map each variable by

x 7→ x(1 + σg),

where g is a Gaussian random variable of mean zero and variance 1. Thus, each number
is usually mapped to one of similar magnitude, and zero is always mapped to zero. When
we measure smoothed complexity under relative perturbations, we call it relative smoothed
complexity. Smooth complexity as defined in Section 1.2 above can be called absolute
smoothed complexity if clarification is necessary. It would be very interesting to know if the
simplex method has polynomial relative smoothed complexity.

ǫ-smoothed-complexity: Even if we cannot bound the expectation of the running
time of an algorithm under perturbations, we can still obtain computationally meaningful
results for an algorithm by proving that it has ǫ-smoothed-complexity f(n, σ, ǫ), by which
we mean that the probability that it takes time more than f(n, σ, ǫ) is at most ǫ:n

∀x∈Xn Pr
g

[C(A,x + σ max(x)g) ≤ f(n, σ)] ≥ 1 − ǫ.
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