Smaller Core-Sets for Balls

Mihai Bădoiu*

Kenneth L. Clarkson[†]

Abstract

Given a set of points $P \subset R^d$ and value $\epsilon > 0$, an ϵ -core-set $S \subset P$ has the property that the smallest ball containing S is an ϵ -approximation of the smallest ball containing P. This paper shows that any pointset has an ϵ -core-set of size $\lfloor 2/\epsilon \rfloor$. We also give a fast algorithm that finds this core-set. These results imply the existence of small core-sets for solving approximate k-center clustering and related problems. The sizes of these core-sets are considerably smaller than the previously known bounds, and imply faster algorithms; one such algorithm needs $O(dn/\epsilon + (1/\epsilon)^5)$ time to compute an ϵ -approximate minimum enclosing ball (1-center) of n points in d dimensions. A simple gradient-descent algorithm is also given, for computing the minimum enclosing ball in $O(dn/\epsilon^2)$ time. This algorithm also implies slightly faster algorithms for computing approximately the smallest radius k-flat fitting a set of points.

1 Introduction

Given a set of points $P \subset \mathbb{R}^d$ and value $\epsilon > 0$, a core-set $S \subset P$ has the property that the smallest ball containing S is within ϵ of the smallest ball containing P. That is, if the smallest ball containing S is expanded by $1 + \epsilon$, then the expanded ball contains P. It is a surprising fact that for any given ϵ there is a coreset whose size is independent of d, depending only on ϵ . This is was shown by Bădoiu *et al.*[BHI], where applications to clustering were found, and the results have been extended to k-flat clustering.[HV].

While the previous result was that a core-set has size $O(1/\epsilon^2)$, where the constant hidden in the O-notation was at least 64, here we show that there are core-sets of size at most $\lceil 2/\epsilon \rceil$. Such a bound is of particular interest for k-center clustering, where the core-set size appears as an exponent in the running time.

We give a simple effective construction which finds the desired core-set. We also give a simple algorithm for computing smallest balls, that looks something like

gradient descent; this algorithm serves to prove a coreset bound, and can also be used to prove a somewhat better core-set bound for k-flats. Also, by combining this algorithm with the construction of the core-sets, we can approximate a 1-center in time $O(dn/\epsilon + (1/\epsilon)^5)$.

In the next section, we prove the $\lceil 2/\epsilon \rceil$ core-set bound for 1-centers, and then describe the gradientdescent algorithm. In the conclusion, we state the resulting bound for the general k-center problem.

2 Core-sets for 1-centers

Given a ball B, let c_B and r_B denote its center and radius, respectively. Let B(P) denote the 1-center of P, the smallest ball containing it.

We restate the following lemma, proved in [GIV]:

LEMMA 2.1. If B(T) is the minimum enclosing ball of $T \subset \mathbb{R}^d$, then any closed half-space that contains the center $c_{B(T)}$ also contains a point of T that is at distance $r_{B(T)}$ from $c_{B(T)}$. It follows that for any point z at distance K from $c_{B(T)}$, there is a point $t \in T$ at distance at least $\sqrt{r_{B(T)}^2 + K^2}$ from z.

The last statement follows from the first by considering the halfspace bounded by a hyperplane perpendicular to $\overline{zc_{B(P)}}$, and not containing z.

THEOREM 2.1. There exists a set $S \subseteq P$ of size $\lfloor 2/\epsilon \rfloor$ such that the distance between $c_{B(S)}$ and any point p of P is at most $(1 + \epsilon)r_{B(P)}$.

Proof. We proceed in the same manner as in [BHI]: we start with an arbitrary point $p \in P$ and set $S_0 = \{p\}$. Let $r_i \equiv r_{B(S_i)}$ and $c_i \equiv c_{B(S_i)}$. Take the point $q \in P$ which is farthest away from c_i and add it to the set: $S_{i+1} \leftarrow S_i \bigcup \{q\}$. Repeat this step at least $2/\epsilon$ times. Let $c \equiv c_{B(D)}$, $R \equiv r_{B(D)}$, $\hat{R} \equiv (1+\epsilon)R$, $\lambda_i \equiv r_i/\hat{R}$.

Let $c \equiv c_{B(P)}, R \equiv r_{B(P)}, \tilde{R} \equiv (1+\epsilon)R, \lambda_i \equiv r_i/\tilde{R}, d_i \equiv ||c-c_i||$ and $K_i \equiv ||c_{i+1} - c_i||$.

If all the points are at distance at most \hat{R} from c_i , then we are done. Otherwise, the farthest point $q \in P$ from c_i has $||q - c_i|| > \hat{R}$. By the triangle inequality,

$$\hat{R} < ||q - c_i|| \le ||q - c_{i+1}|| + ||c_{i+1} - c_i|| \le r_{i+1} + K_i,$$

so $r_{i+1} > \hat{R} - K_i$. By Lemma 2.1, using S_i as T and c_{i+1} as z, there is a point of S_i at least $\sqrt{r_i^2 + K_i^2}$ from

^{*}MIT Laboratory for Computer Science; 545 Technology Square, NE43-371; Cambridge, Massachusetts 02139-3594; mihai@theory.lcs.mit.edu

[†]Bell Labs; 600 Mountain Avenue; Murray Hill, New Jersey 07974; clarkson@research.bell-labs.com

 c_{i+1} , and so combining these two lower bounds for r_{i+1} , we have

(2.1) $\lambda_{i+1}\hat{R} = r_{i+1} \ge \max(\hat{R} - K_i, \sqrt{\lambda_i^2 \hat{R}^2 + K_i^2})$

We want a lower bound on λ_{i+1} that depends only on λ_i . The bound on λ_{i+1} is smallest with respect to K_i when

$$\hat{R} - K_{i} = \sqrt{\lambda_{i}^{2} \hat{R}^{2} + K_{i}^{2}}$$
$$\hat{R}^{2} - 2K_{i}\hat{R} + K_{i}^{2} = \lambda_{i}^{2}\hat{R}^{2} + K_{i}^{2}$$
$$K_{i} = \frac{(1 - \lambda_{i}^{2})\hat{R}}{2}$$

Using (2.1) we get that

(2.2)
$$\lambda_{i+1} \ge \frac{\hat{R} - \frac{(1 - \lambda_i^2)R}{2}}{\hat{R}} = \frac{1 + \lambda_i^2}{2}$$

Substituting $\gamma_i = \frac{1}{1-\lambda_i}$ in the recurrence (2.2), we get $\gamma_{i+1} = \frac{\gamma_i}{1-1/(2\gamma_i)} = \gamma_i(1+\frac{1}{2\gamma_i}+\frac{1}{4\gamma_i^2}\dots) \ge \gamma_i+1/2$. Since $\lambda_0 = 0$, we have $\gamma_0 = 1$, so $\gamma_i \ge 1+i/2$ and $\lambda_i \ge 1-\frac{1}{1+i/2}$. That is, to get $\lambda_i \ge \frac{1}{1+\epsilon}$, it's enough that $i \ge 2/\epsilon$. At that point, we must be done, or else $r_i = \lambda_i \hat{R} > R$, but $S_i \subset P$, so $r_i \le R$.

3 Simple algorithm for 1-center

The algorithm is the following: start with an arbitrary point $c_1 \in P$. Repeat the following step $1/\epsilon^2$ times: at step *i* find the point $p \in P$ farthest away from c_i , and move toward *p* as follows: $c_{i+1} \leftarrow c_i + (p-c_i)\frac{1}{i+1}$.

CLAIM 3.1. If B(P) is the 1-center of P with center $c_{B(P)}$ and radius $r_{B(P)}$, then $||c_{B(P)} - c_i|| \leq r_{B(P)}/\sqrt{i}$ for all i.

Proof. Proof by induction: Let $c \equiv c_{B(P)}$. Since we pick c_1 from P, we have that $||c - c_1|| \leq R \equiv r_{B(P)}$. Assume that $||c - c_i|| \leq R/\sqrt{i}$. If $c = c_i$ then in step i we move away from c by at most $R/(i+1) \leq R/\sqrt{i+1}$, so in that case $||c - c_{i+1}|| \leq R/\sqrt{i+1}$. Otherwise, let H be the hyperplane orthogonal to $\overline{cc_i}$ which contains c. Let H^+ be the closed half-space bounded by H that does not contain c_i and let $H^- \equiv \Re \setminus H^+$. Note that the farthest point from c_i in $B(P) \cap H^-$ is at distance less than $\sqrt{||c_i - c||^2 + R^2}$ and we can conclude that for every point $q \in P \cap H^-$, $||c_i - q|| < \sqrt{||c_i - c||^2 + R^2}$. By Lemma 2.1 there exists a point $q \in P \cap H^+$ such that $||c_i - q|| \geq \sqrt{||c_i - c||^2 + R^2}$. This implies that $p \in P \cap H^+$. We have two cases to consider:

• If $c_{i+1} \in H^+$, then the distance between c_{i+1} and c is maximized when $c_i = c$. Then, as before, we have $||c_{i+1} - c|| \leq R/(i+1) \leq R/\sqrt{i+1}$. Thus, $||c_{i+1} - c|| \leq R/\sqrt{i+1}$

• if $c_{i+1} \in H^-$, by moving c_i as far away from cand p on the sphere as close as possible to H^- , we only increase $||c_{i+1} - c||$. But in this case, $\overline{cc_{i+1}}$ is orthogonal to $\overline{c_ip}$ and we have $||c_{i+1} - c|| = \frac{R^2/\sqrt{i}}{R_2/1+1/i} = R/\sqrt{i+1}$.

4 Conclusions

In this paper we showed the existence of small core-sets for solving k-center clustering. The new bounds are not only asymptotically smaller but also the constant is much smaller that the previous results. These results combined with the techniques from [BHI] and [HV] allow us to get faster algorithms for the k-center problem and j-approximate k-flat respectively. We can solve the k-center problem in $2^{O((k \log k)/\epsilon)} dn$ while the previous bound was $2^{O((k \log k)/\epsilon^2)} dn$. Also, the running time for computing j-approximate k-flats (with or without outliers) is $dn^{O(kj/\epsilon^5)}$, while the previous known bound was $dn^{O(kj/\epsilon^5 \log \frac{1}{\epsilon})}$. By combining the two algorithms above we get an $O(dn/\epsilon + (1/\epsilon)^5)$ time algorithm for computing 1-centers, which is faster than the previously fastest algorithm, with running time $O(dn/\epsilon^2 + (1/\epsilon)^{10}\log\frac{1}{\epsilon}).$

Recently, we have proved the existence of core-sets of size $\lceil 1/\epsilon \rceil$, and this bound is tight in the worst case. Independent of our result, core-sets of size $O(1/\epsilon)$ have been proved by Kumar *et al.* [KMA] Their constant is much larger than ours.

References

- [BHI] Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. Proceedings of the 34th Symposium on Theory of Computing, 2002.
- [HV] Sariel Har-Peled, and Kasturi R. Varadarajan. Projective Clustering in High Dimensions using Core-Sets. Symposium on Computational Geometry, 2002.
- [GIV] Ashish Goel, Piotr Indyk, and Kasturi R. Varadarajan. Reductions among high dimensional proximity problems. Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, 2001.
- [KMA] Piyush Kumar, Joseph S. B. Mitchell, and Alper Yıldırım, Computing Core-Sets and Approximate Smallest Enclosing HyperSpheres in High Dimensions. manuscript, 2002.