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Smaller Core-Sets for Balls 

Mihai B~tdoiu* Kenneth L. Clarkson I 

A b s t r a c t  

Given a set of points P C R d and value e > 0, an 
e-core-set S C P has the property that  the smallest 
ball containing S is an e-approximation of the smallest 
ball containing P.  This paper shows that  any point- 
set has an e-core-set of size [2/el.  We also give a fast 
algorithm that  finds this core-set. These results imply 
the existence of small core-sets for solving approximate 
k-center clustering and related problems. The sizes of 
these core-sets are considerably smaller than the previ- 
ously known bounds, and imply faster algorithms; one 
such algorithm needs O(dn/e + ( l /e)  5) time to compute 
an e-approximate minimum enclosing ball (1-center) of 
n points in d dimensions. A simple gradient-descent 
algorithm is also given, for computing the minimum 
enclosing ball in O(dn/e 2) time. This algorithm also 
implies slightly faster algorithms for computing approx- 
imately the smallest radius k-flat fitting a set of points. 

1 I n t r o d u c t i o n  

Given a set of points P C R a and value e > 0, a 
core-set S C P has the property that  the smallest ball 
containing S is within e of the smallest ball containing 
P.  Tha t  is, if the smallest ball containing S is expanded 
by 1 + e, then the expanded ball contains P.  It  is 
a surprising fact that  for any given e there is a core- 
set whose size is independent of d, depending only on 
e. This is was shown by B~doiu et al.[BHI], where 
applications to clustering were found, and the results 
have been extended to k-flat clustering.[HV]. 

While the previous result was that  a core-set has 
size O(1/e2), where the constant hidden in the O- 
notation was at least 64, here we show that  there are 
core-sets of size at most F2/e]. Such a bound is of 
particular interest for k-center clustering, where the 
core-set size appears as an exponent in the running time. 

We give a simple effective construction which finds 
the desired core-set. We also give a simple algorithm 
for computing smallest balls, that  looks something like 
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gradient descent; this algorithm serves to prove a core- 
set bound, and can also be used to prove a somewhat 
better core-set bound for k-flats. Also, by combining 
this algorithm with the construction of the core-sets, we 
can approximate a 1-center in time O(dn/e + (l /e)5).  

In the next section, we prove the [2/e] core-set 
bound for 1-centers, and then describe the gradient- 
descent algorithm. In the conclusion, we state the 
resulting bound for the general k-center problem. 

2 C o r e - s e t s  for  1 - cen t e r s  

Given a ball B, let cs  and r s  denote its center and 
radius, respectively. Let B(P)  denote the 1-center of P,  
the smallest ball containing it. 

We restate the following lemma, proved in [GIV]: 

LEMMA 2.1. f i B ( T )  is the minimum enclosing ball of 
T C ~d, then any closed half-space that contains the 
center CB(T) also contains a point o fT  that is at distance 
rB(T) f rom CB(T). It follows that for any point z at 
distance K from Ca(T), there is a point t E T at distance 

at least ~ r  2 K 2 from B(T) + Z. 

The last statement follows from the first by considering 
the halfspace bounded by a hyperplane perpendicular 
to zcB(p), and not containing z. 

THEOREM 2.1. There exists a set S _C P of size [2/e] 
such that the distance between cB(s) and any point p of 
P is at most (1 + e)rB(p). 

Proof. We proceed in the same manner as in [BHI]: we 
start  with an arbitrary point p E P and set So = {p}. 
Let ri ~ rn(s~) and ci ~- CB(s~). Take the point q E P 
which is farthest away from ci and add it to the set: 
Si+l ~-- Si U{q}- Repeat this step at least 2/e times. 

Let c ~ CB(p), R ~ rB(p) , 1~ ~ (1 +e)R,  Ai ~- r i /R ,  
di ~ II c - cill and Ki -= ])ci+1 - cill. 

If all the points are at distance at most R from ci, 
then we are done. Otherwise, the farthest point q E P 
from ci has ]]q - cill > R- By the triangle inequality, 

h < IIq - ci)l _< IIq - c i+l l l  + Ilci+l - c/ll _< ri+l -}- K i ,  

SO ri+l > 1 ~ -  Ki .  By Lemma 2.1, using Si as T and 
ci+l as z, there is a point of Si at least v/r~ + K~ from 
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ci+l, and so combining these two lower bounds for ri+l, 
we have 

(2.1) ~i+1/~ -- ri+l > max(R -- ~ .+ _ g i ,  A~/~ 2 g~ )  

We want a lower bound on Ai+i that  depends only on 
Ai. The bound on Ai+t is smallest with respect to Ki 
when 

- g i  = V/A~/~ 2 + g ~  

- 2K, R + K? = + K? 

(1 - ~ ) h  
K~= 

2 

Using (2.1) we get that  

2 _ l + A i  
(2.2) Ai+l ~ /~ 2 

1 in the recurrence (2.2), we get Substituting "fi = 
1 t 7i+1 ---- ~ = 7i(1 + ~7  + T~ z ' ' ' )  -> 7i + 1/2. 

Since A0 -- 0, we have '70 = 1, so '7i _> 1 + i /2 and 
A i >  1 -  1 l -- iTUT" Tha t  is, to get Ai > Y47, it's enough 
that  i ~ 2/e. At that  point, we must be done, or else 
ri = AiR > R, but Si C P,  so ri _< R. 

3 S i m p l e  a lgor i thm for 1-center  

The algorithm is the following: start  with an arbitrary 
point cl E P .  Repeat the following step 1/e  2 t imes:  at 
step i find the point p E P farthest away from ci, and 
move toward p as follows: Ci+l ~ ci + (p - ci) y~f. 

CLAIM 3.1. If B (P)  is the 1-center of P with center 
CB(p) and radius rB(p), then IICB(P) -- Cill <_ rB(P)/V/~ 
for all i. 

Proof. Proof  by induction: Let c =_ CB(p). Since we 
pick Cl from P,  we have that  [Ic - c111 _< R --_ rB(p). 
Assume that  IIc - cil ] < R/v/ i .  If c = ci then in step i 
we move away from c by at most R / ( i  + 1) < R / / ~  1, 
so in tha t  case I Ic - ci+t II _< R /  i ~  1. Otherwise, let 
H be the hyperplane orthogonal to ~ / w h i c h  contains 
c. Let H + be the closed half-space bounded by H that  
does not contain ci and let H -  _-- ~ \ H +. Note that  
the farthest point from ci in B ( P ) N  H -  is at distance 
less than ~llci  - ell ~ + R 2 and we can conclude that  for 
every point q e P A H - ,  ]lci - qll < vIIIci - c l l  2 + R2. 
By Lemma 2.1 there exists a point q E P A H  + such 
that  Ilci - all >_ x/llci - c]l 2 + R2. This implies that  
p E P N H+- We have two cases to consider: 

• If Ci+l E H +, then the distance between Ci+l and 
c is maximized when ci = c. Then, as before, we 
have [Ici+1 - ell <_ R / ( i  + 1) _< R/x / i  + 1. Thus, 
I le~+t  - cl l  _< R / i ~ l  

* if ci+l E H - ,  by moving ci as far away from c 
and p on the sphere as close as possible to H - ,  we 
only increase [[ci+1 - c[I. But in this case, cci+l 
is orthogonal to c ~  and we have IlCi+l -c]]  -- 

~2/e~ = R A / Y V 1 .  

4 Conc lus ions  

In this paper we showed the existence of small core-sets 
for solving k-center clustering. The new bounds are 
not only asymptotically smaller but  also the constant 
is much smaller that  the previous results. These 
results combined with the techniques from [BHI] and 
[HV] allow us to get faster algorithms for the k-center 
problem and j-approximate k-flat respectively. We 
can solve the k-center problem in 2 O((kl°g k)/¢)dn while 
the previous bound was 20((kl°gk)/¢2)dTt. AlsO, the 
running time for computing j -approximate k-flats (with 
or without outliers) is dn °(kj /P) ,  while the previous 
known bound was dn °(k j /P tog ~). By combining the 
two algorithms above we get an O(dn/e + ( l /e )  5) time 
algorithm for computing 1-centers, which is faster than 
the previously fastest algorithm, with running time 
O(dn/e 2 + ( l /e)  TM log ~). 

Recently, we have proved the existence of core-sets 
of size [ l / e / ,  and this bound is tight in the worst case. 
Independent of our result, core-sets of size O(1/e) have 
been proved by Kumar  et al. [KMA] Their constant is 
much larger than ours. 
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