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Abstract

Given a set of points P C R? and value ¢ > 0, an
e-core-set S C P has the property that the smallest
ball containing S is an e-approximation of the smallest
ball containing P. This paper shows that any point-
set has an e-core-set of size {2/¢]. We also give a fast
algorithm that finds this core-set. These results imply
the existence of small core-sets for solving approximate
k-center clustering and related problems. The sizes of
these core-sets are considerably smaller than the previ-
ously known bounds, and imply faster algorithms; one
such algorithm needs O(dn/e+ (1/€)®) time to compute
an e-approximate minimum enclosing ball (1-center) of
n points in d dimensions. A simple gradient-descent
algorithm is also given, for computing the minimum
enclosing ball in O(dn/e?) time. This algorithm also
implies slightly faster aigorithms for computing approx-
imately the smallest radius k-flat fitting a set of points.

1 Introduction

Given a set of points P C R% and value ¢ > 0, a
core-set S C P has the property that the smallest ball
containing S is within € of the smallest ball containing
P. That is, if the smallest ball containing S is expanded
by 1 + €, then the expanded ball contains P. It is
a surprising fact that for any given e there is a core-
set whose size is independent of d, depending only on
€. This is was shown by Béddoiu et ol.[BHI], where
applications to clustering were found, and the results
have been extended to k-flat clustering.[HV].

While the previous result was that a core-set has
size O(1/€®), where the constant hidden in the O-
notation was at least 64, here we show that there are
core-sets of size at most [2/€]. Such a bound is of
particular interest for k-center clustering, where the
core-set size appears as an exponent in the running time.

We give a simple effective construction which finds
the desired core-set. We also give a simple algorithm
for computing smallest balls, that looks something like
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gradient descent; this algorithm serves to prove a core-
set bound, and can also be used to prove a somewhat
better core-set bound for k-flats. Also, by combining
this algorithm with the construction of the core-sets, we
can approximate a 1-center in time O(dn/e + (1/¢€)®).
In the next section, we prove the [2/€] core-set
bound for 1-centers, and then describe the gradient-
descent algorithm. In the conclusion, we state the
resulting bound for the general k-center problem.

2 Core-sets for 1-centers

Given a ball B, let cg and rg denote its center and
radius, respectively. Let B(P) denote the 1-center of P,
the smallest ball containing it.

We restate the following lemma, proved in [GIV]:

LEMMA 2.1. If B(T) is the minimum enclosing ball of
T C R?, then any closed half-space that contains the
center cp(r) also contains a point of T that is at distance
rp(r) from cp(ry. It follows that for any point z at
distance K from cp(r), there is a pointt € T' at distance

at least r%(T) + K? from z.

The last statement follows from the first by considering
the halfspace bounded by a hyperplane perpendicular
to ZCp(p), and not containing z.

THEOREM 2.1. There ezists a set S C P of size [2]€]
such that the distance between cp(s) and any point p of
P is at most (1 + €)rp(p)-

Proof. We proceed in the same manner as in [BHI]: we
start with an arbitrary point p € P and set Sp = {p}.
Let r; = rp(s,) and ¢; = cp(s;)- Take the point ¢ € P
which is farthest away from ¢; and add it to the set:
Siy1 + Si{U{q}. Repeat this step at least 2/e times. _

Let ¢ = CB(P)> R= TB(P)> R=(1+¢R,\ = ’I‘i/R,
d; = |lc - ¢ and K; = |jciy1 — ¢i]- R

If all the points are at distance at most R from ¢;,
then we are done. Otherwise, the farthest point ¢ € P
from ¢; has ||g — ;]| > R. By the triangle inequality,

R < lg - cll < {lg — cipall + e — ail] < rigs + K,

SO Tiy1 > R — K;. By Lemma 2.1, using S; as T and
cit1 as z, there is a point of S; at least \/r? + K7 from
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¢i+1, and so combining these two lower bounds for r; 1,
we have

(21) )\i+1R = Tit+1 Z ma.x(R - Ki, V A3R2 + KzZ)

We want a lower bound on A;;; that depends only on
A;- The bound on A;;, is smallest with respect to Kj;

when
R—Ki= /MR + K}
R? - 2K.:R+K? = XR? + K?
1- )R
K, - U208
Using (2.1) we get that
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2. i1 > =
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Substituting v; = 24 in the recurrence (2.2), we get
Yir1 = iy = k(4 wr z};?---) > v +1/2
Since Ag = 0, we have 90 = 1, so y; > 1 + /2 and
Xi 2 1~ 7. That s, to get A > i, it’s enough
that i > 2/e. At that point, we must be done, or else
ri=MNR>R,but S;C P,sor; <R.

3 Simple algorithm for 1-center

The algorithm is the following: start with an arbitrary
point ¢; € P. Repeat the following step 1/€? times: at
step ¢ find the point p € P farthest away from ¢;, and
move toward p as follows: ¢i1 ¢ ¢; + (p — ¢:) 57

CramMm 3.1. If B(P) is the 1-center of P with center
cp(p) and radius TB(P); then ”CB(P) -l € TB(p)/\/;:
for all i.

Proof. Proof by induction: Let ¢ = cg(p). Since we
pick ¢; from P, we have that ||c — a1|| £ R = rp(p).
Assume that ||c — ¢;}| < R/Vi. If ¢ = ¢; then in step i
we move away from ¢ by at most R/(i+1) < R/vi+1,
so in that case ||c — ¢;1+1|| < R/vi+ 1. Otherwise, let
H be the hyperplane orthogonal to ¢é¢; which contains
c. Let H* be the closed half-space bounded by H that
does not contain ¢; and let H~ = ®\ H*. Note that
the farthest point from ¢; in B{P)( H~ is at distance
less than +/||¢; — ¢||? + R? and we can conclude that for
every point ¢ € P(VH™, |jc;i - ¢|| < /le; — ¢||? + R2.
By Lemma 2.1 there exists a point ¢ € P\ H™* such

that |lc; — q|| > V/{lei — ¢||? + R%. This implies that

p € PN H*. We have two cases to consider:

e If ¢;y; € HY, then the distance between c;y; and
¢ is maximized when ¢; = ¢. Then, as before, we
have |41 — ¢|| < R/(i +1) < R/+i+1. Thus,
lleiv1 — ]| < R/Vi+1

o if ciy1 € H™, by moving ¢; as far away from ¢
and p on the sphere as close as possible to H~, we
only increase ||c;+1 — ¢||- But in this case, ¢y
is orthogonal to €;p and we have ||e;41 — ¢|| =

R%/Vi _ -
VY R/vi+1.

4 Conclusions

In this paper we showed the existence of small core-sets
for solving k-center clustering. The new bounds are
not only asymptotically smaller but also the constant
is much smaller that the previous results. These
results combined with the techniques from [BHI] and
[HV] allow us to get faster algorithms for the k-center
problem and j-approximate k-flat respectively. We
can solve the k-center problem in 20((k10gk)/€) g while
the previous bound was 20((klg®)/)gn  Algo, the
running time for computing j-approximate k-flats (with
or without outliers) is dnO*i/¢") while the previous
known bound was dnO*i/"1063) By combining the
two algorithms above we get an O(dn/e + (1/€)®) time
algorithm for computing 1-centers, which is faster than
the previously fastest algorithm, with running time
O(dn/€? + (1/€)*%log L).

Recently, we have proved the existence of core-sets
of size [1/¢€], and this bound is tight in the worst case.
Independent of our result, core-sets of size O(1/¢) have
been proved by Kumar et al. [KMA] Their constant is
much larger than ours.
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