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Abstract

In this paper, we show that there exists a small core-set for the problem of comput-
ing the “smallest” radius k-flat for a given point-set in IRd. The size of the core-set is
dimension independent. Such small core-sets yield immediate efficient algorithms for
finding the (1+ε)-approximate smallest radius k-flat for the points in dnO(k6/ε5 log(1/ε))

time. Furthermore, we can use it to (1 + ε)-approximate the the smallest radius k-flat
for a prespecified fraction of the given points, in the same running time. Our algorithm
can also be used for computing the min-max such coverage of the point-set by j flats,
each one of them of dimension k.

No previous efficient approximation algorithms were known for those problems in
high-dimensions, when k > 1 or j > 1.

1 Introduction

Clustering is one of the central problems in computer-science. It is related to unsupervised
learning, classification, databases, spatial range-searching, data-mining, etc. As such, it
received a lot of attention in computer-science in the last twenty years. There is a large
literature on this topic with numerous variants, see [DHS01, Hoc96]. In the projective
clustering problem, one wants to find a covering of points by j k-flats. Of course, such a
covering might not exist, and we are satisfied with the best fit by j k-flats. For example, for
k = 1, we are interested in covering a set of points in IRd by j cylinders of equal radius, such
that the radius is as small as possible. This problem is NP-Complete [MT82] even for k = 1.

Projective clustering has numerous applications. See [AP00] for extensive bibliography
on this problem. For example, such a projective clustering implies that the point-set can
be indexed as j point-sets where each of them is only k-dimensional. This is a considerable
saving when the dimension is very high, as most efficient indexing structures have exponential
dependency on the dimension. Thus, finding such a cover might result in a substantial
performance improvements for various database applications.
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Another, related problem, is the following fundamental data-mining problem: Given a
set P of points in IRd, and parameters r ≥ 0, k > 0 find a k flat that is within a distance r
of as many points of P as possible.

Such clustering problems become harder as the dimension increases, and unfortunately,
such applications of projective clustering are usually set in high dimensions. The intractabil-
ity arises because most algorithms for such problems tend to have running time exponential
in the dimension. It is thus interesting to come up with fast algorithms that have only poly-
nomial dependency on the dimension. A popular approach for doing so is to use dimension
reduction techniques (especially the Johnson-Lindenstrauss lemma [JL84] and its various
extensions, see [Ind01]). However, it is not clear that the projective clustering problem is
dimension reducible.

Given a set P of n points in d dimensions (d might be as large as n), we present efficient
algorithms for the following problems:

• Approximate k-flat: We compute in dnO(k6/ε5 log(1/ε)) time a k-flat that is within a
distance of (1 + ε)RDk(P ) from each point in P , where RDk(P ) is the minimum over
all k-flats F of maxp∈P dist(p,F).

The only previous result of this type is the result of Bădoiu et al. [BHI02], which
solves the problem in nO(1/ε2 log 1/ε) time, for k = 1. Although their algorithm is faster
than ours in this case, it is considerably more involved. For example, it makes use
of convex programming. While our algorithms also use convex programming, this is
not essential, and we can get algorithms without convex programming with a modest
increase in running time so that they are strongly polynomial. Also, it is not clear if
the algorithm of Bădoiu et al. can be extended to the case of k > 1 or the problem
with outliers.

• Approximate k-flat with outliers: Given an integer µ ≤ n and a parameter ε >
0, we compute in dnO(k6/ε5 log(1/ε)) time a k-flat that is within a distance of ≤ (1 +
ε)RDk(P, µ) from at least µ points in P , where RDk(P, µ) is the minimum, over all
k-flats F , of the distance of the µ-th closest point in P from F .

• j approximate k-flat: Given a parameter ε > 0, and j, we compute in dnO(k6j/ε5 log(1/ε))

time j k-flats such that each point in P is within a distance (1 + ε)RDj
k(P ) from at

least one of the flats, where RDj
k(P ) is the minimum over all sets of j k-flats F1, . . . ,Fj

of maxp∈P mini≤j dist(p,Fi).

• j approximate k-flat with outliers: Same as above with outliers.

Note that these results are interesting only when the dimension d = Ω(k6/ε6), as all those
problems can be solved directly using direct enumerations of all possible solutions. Never-
theless, the authors believe that the ability to solve those problems in time which depends
only polynomially on the dimension is quite surprising. To our knowledge, this the first
efficient (1 + ε)-approximation algorithms in high-dimensions for those problems for k > 1
or j > 1.

Our results rely on a scheme, obtained by extending a new technique of Bădoiu et al.
[BHI02], that extracts a small subset of points that “represents” this point-set ε-well as
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far as those projective clustering problems are concerned. The surprising property of those
sets is that their size is independent of the dimension. The existence of such core-sets for
various approximation problems was known before, but their size depended polynomially
or exponentially on the dimension [MOP01, ADPR00, Har01, HV01, IT00]. (It must be
pointed out, however, that as in [BHI02] the core sets in this paper satisfy much weaker
requirements.)

The paper is organized as follows: In Section 2, we introduce our basic technique. In
Section 3 we prove the existence of small core-set for the k-flat problem. In Section 4 we
present our algorithms. Concluding remarks are presented at Section 5.

2 Preliminaries

Let dist(p, q) denote the Euclidean distance between two points p, q ∈ IRd. We define the
distance dist(P, Q) between two point sets P, Q ⊆ IRd to be minp∈P,q∈Q dist(p, q).

Definition 2.1 A k-flat is an affine subspace of dimension k. For a point-set P ⊆ IRd, and
a k-flat F , the radius of F is

RD(P,F) = max
p∈P

dist(p,F).

The k-th outer radius of P is

RDk(P ) = min
F is a k-flat

RD(P,F).

The quantity RD0(P ) is the radius of the smallest enclosing ball of P and 2RDd−1(P ) is
the width of P . See [GK92] for related results. In particular, just computing the width of a
simplex in d dimension is NP-Hard [GK93, GK94].

For a set C ⊆ IRd, let ∆(C) = maxp,q∈C dist(p, q) denote the diameter of C.

Definition 2.2 For an affine subspace F of IRd, let F⊥ be the linear subspace orthogonal
to F , and let T PF be the linear mapping projecting IRd into F⊥. The mapping T PF maps
F into a point in F⊥.

Definition 2.3 Let U be any set of points in IRd, and ε > 0 be a parameter. We say that a
subset V of points in CH(U) is an ε-net for U if for any flat F that intersects CH(U), there
is a v ∈ V such that dist(v,F) ≤ ε

2
RD(U,F).

Lemma 2.4 If V is an ε-net for U and π is a projection from IRd to IRd′
, then π(V ) is an

ε-net for π(U).

Proof: Indeed, let Fπ be any k-flat that intersects CH(π(U)). Let F = π−1(Fπ) be the
affine subspace of all points in the original set that are being mapped to Fπ by π. Clearly,
for any point x ∈ IRd, we have dist(x,F) = dist(π(x),Fπ), and in particular, RD(U,F) =
RD(π(U),Fπ). Thus, there exists a point y ∈ V , such that dist(y,F) ≤ (ε/2)RD(U,F). In
particular, π(y) ∈ π(V ), and dist(π(y),Fπ) ≤ (ε/2)RD(π(U),Fπ), namely π(V ) is an ε-net
from π(U).
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We are given a small point-set U in high-dimensions, and we want to perform a search
over CH(U). The problem is that CH(U) contains infinitely many points. In the following
lemma, we generate a small grid A(U) (i.e., ε-net) that “represents” CH(U) as far as our
search for a good k-flat is involved.

Lemma 2.5 Let U be a set of points in IRd and ε > 0 be a parameter. We can compute an
ε-net A(U) for U in (|U |2.5/ε)O(|U |) time. The cardinality of A(U) is (|U |2.5/ε)O(|U |).

Proof: Let H the (M − 1)-dimensional affine subspace spanned by U (notice that M ≤
|U |), and let E ⊆ H be an ellipsoid such that E/(M + 1)2 ⊆ CH(U) ⊆ E , where E/(M + 1)2

is the scaling down of E around its center by a factor of 1/(M + 1)2. Such an ellipsoid exists
(a stronger version of this statement is known as John theorem), and can be computed in
polynomial time in |U | [GLS88, Section 4.6]. Let B be the minimum bounding box of E
which is parallel to the main axises of E . We claim, that B/

√
M is contained inside E .

Indeed, there exists a linear transformation T that maps E to a unit ball S. The point
q = (1/

√
M, 1/

√
M, . . . , 1/

√
M) lies on the boundary of this sphere. Clear, T −1(q) is a

corner of B/
√

M , and is on the boundary of E . In particular,

∆(B) =
√

M∆(B/
√

M) ≤
√

M∆(E) ≤
√

M(M + 1)2∆(E/(M + 1)2) ≤
√

M(M + 1)2∆(U).

For any flat F , the same arguments works for the projection of those entities by T PF . In
particular,

∆(T PF(B)) ≤
√

M(M + 1)2∆(T PF(U)) ≤ 2
√

M(M + 1)2RD(U,F).

Next, we partition B into a grid, where each grid cell is a translated copy of
Bε = (ε/2)B/(2

√
M(M + 1)2). This grid has V = (M2.5/ε)O(M) vertices, and let A(U)

denote this set of vertices.
Let F be any flat intersecting CH(U). We claim that one of the points in A(U) is in

distance ≤ ε
2
RD(U,F) from F . Indeed, let z be any point in CH(U) ∩ F . Let B′′

ε be the
grid cell containing z, and let v be one of its vertices. Clearly,

dist(v,F) ≤ ‖T PF(v)T PF(z)‖ ≤ ∆(T PF(B′′
ε ))

=
ε

2
· 1

2
√

M(M + 1)2
∆(T PF(B)) ≤ ε

2
RD(U,F),

which establishes our claim.

Remark 2.6 We can guarantee that the set A(U) lies completely inside CH(U) by modifying
the above algorithm slightly. We compute the grid as before. For each grid cell C, we compute
a point xC ∈ C ∩CH(U) if such a point exists. Arguing as above, it is easy to verify that the
resulting set of points is indeed an ε-net. The size of the ε-net remains the same as above.
To compute xC , we compute a triangulation of CH(U) in O(|U ||M |) time, and check if each
feature of the triangulation intersects C. It is easy to verify that doing this for each grid cell
C does not increase the running time by too much. In fact the overall running time is the
same as in Lemma 2.5. We also point out that the requirement that A(U) lie in CH(U) is
only needed to make our proofs simpler.
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Figure 1: The distance between o and x′i is maximized when u′i+1 lies on H ′, and ou′i+1 is as
long as possible.

Remark 2.7 In Lemma 2.5 we had used convex-programming techniques to find the “good”
ellipsoid E . If we insist on simplicity and the constant induced by the dimension is not that
crucial, we can just use the simple algorithm of Barequet and Har-Peled [BH01]. We will
get an ε-net for U of size |U |O(|U |2)/εO(|U |) in |U |O(|U |2)/εO(|U |) time. This will make all the
algorithms in this paper strongly polynomial.

The following lemma, shows that we can always find a small set of points U , such that
a near-optimal flat must cross the convex hull of this point-set. In particular, together with
the usage of ε-nets, this implies that we can find a polynomial number of candidate points
one of which must be on a near-optimal k-flat. To do so, we will enumerate all possible such
subsets U , and for each such subset we will generate a set of possible candidate points by
computing an ε-net of U .

Lemma 2.8 Let P be a point-set in IRd, F be a k-flat that intersects CH(P ), RF =
RD(P,F), and let 0 < ε < 1 be a parameter. Then there exists a subset U of P of size
O(1/ε2 log (1/ε)) such that dist(CH(U),F) ≤ (ε/2)RF .

Furthermore, if A(U) is an ε-net for U , then dist(F , A(U)) ≤ εRF .

Proof: We construct U iteratively. Let u1 be any point of P . Let Ci−1 = CH(Ui−1), where
Ui−1 = {u1, . . . , ui−1}. If dist(Ci−1,F) ≤ (ε/2)RF we had found U = Ui−1. Otherwise, let
xi−1 be the closest point on Ci−1 to F .

Let F⊥ be the linear subspace orthogonal to F , and let T PF be the linear mapping
projecting IRd into F⊥. The mapping T PF maps F into a point o in F⊥, and P is being
mapped into a set P ′ which is contained inside a ball B′ of radius RF centered at o.

Clearly, finding a point in Ci in distance ≤ (ε/2)RF from F , is equivalent to finding
a point x ∈ C ′

i = T PF(Ci) in distance ≤ (ε/2)RF from o. Furthermore, o is contained
inside the CH(P ′), the distance between C ′

i and o is achieved by x′i = T PF(xi), and ‖x′io‖ ≥
(ε/2)RF . In particular, let H ′ be a hyperplane in F⊥ passing through o and perpendicular
to x′io. There must be a point u′i+1 of P ′ that is on the other side of H ′ than xi. Let ui+1 be
the corresponding point in P .

We next bound the distance between o and x′iu
′
i+1. Clearly, this distance is maximized

when when x′io ⊥ ou′i+1, and x′io is as long as possible, see Figure 2. Thus, we can assume
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that x′io ⊥ ou′i+1 and ‖x′io‖ = RF . It follows,

∥∥x′iu
′
i+1

∥∥ ≥ √
‖x′io‖

2 +
∥∥ou′i+1

∥∥2 ≥
√

((ε/2)2 + 1)R2
F ≥ (1 + ε2/8)RF ,

as ‖x′io‖ = dist(Ci, o) ≥ (ε/2)RF . By similarity of triangles, we have:

dist(F , Ci+1) ≤ dist(o, x′iu
′
i+1) = ‖ox′i‖ ·

∥∥ou′i+1

∥∥∥∥x′iu
′
i+1

∥∥ ≤ ‖ox′i‖ ·
RF

(1 + ε2/8)RF

≤
(

1− ε2

16

)
‖ox′i‖ ≤

(
1− ε2

16

)
dist(F , xi) ≤

(
1− ε2

16

)
dist(F , Ci)

since ε < 1.
Overall, as dist(F , x1) ≤ RF , it follows that dist(F , CM) ≤ (ε/2)RF , for

M = O(1/ε2 log(1/ε)). Let U = UM be the resulting point-set.
Let F ′ be a translation of F to the point of CH(U) closest to F . It is easy to verify that

dist(F ,F ′) ≤ ε
2
RF . If A(U) is an ε-net for U , dist(F ′, A(U)) ≤ ε

2
RF . This implies that

dist(F , A(U)) ≤ dist(F ,F ′) + dist(F ′, A(U)) ≤ εRF .

3 Good Core Sets Exist

Lemma 2.8 implies that we can essentially assume that we have at our hand a “small” list
(i.e., O(n1/ε2 log 1/ε)) of points, such that one of those points lies on the optimal k-flat Fopt.
If we could just find additional k points that lie on Fopt, then we would be done, as we could
just inspect all possible k-flats induced by such a point-set, and take the best one. What we
actually show is that we can find k such points on some near-optimal k-flat. To do so, we
first solve the problem for k = 1, namely the case of a cylinder.

Lemma 3.1 Let P be a set of points in IRd, F be the k-flat that minimizes the maximum
distance to the set P , namely RF = RD(P,F) = RDk(P ), and let ε > 0 be a parameter.
There is a subset Q ⊆ P of O(1/ε2 log(1/ε)) points and a k-flat G that intersects CH(Q)
such that RD(P,G) ≤ (1+ε)RF . Furthermore, we can assume that G passes through a point
in an ε/-net of Q

Proof: From the optimality of F , it follows that F intersects CH(P ). From Lemma 2.8,
we get a set Q ⊆ P of O(1/ε2 log 1/ε) points such that CH(Q) contains a point s with
dist(s,F) ≤ εRF . We can also assume that s is in an ε-net of Q. Let G be the translate of
F that passes through s. It is easy to see that RD(P,G) ≤ (1 + ε)RF .

Proposition 3.2 Let p be a point in IRd at distance x from the origin, and let `1 and
`2 be two lines through the origin making an angle θ with each other. Then dist(p, `2) ≤
dist(p, `1) + x sin θ.

The following lemma, shows that we can find a core-set for a cylinder. Namely, we can
find a small subset of points, so that it defines the axis of the approximate minimum radius
cylinder. This is the critical step in our construction, as once we have such a core-set, we can
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Figure 2: Proof of Lemma 3.3 for the short diameter case.

collapse the space along this line, and find the best (k− 1)-dimensional flat in the collapsed
space. Namely, applying this lemma repeatedly k times, will results in an ε-approximation
to the optimal k-flat.

Lemma 3.3 Let P be a set of points in IRd, ` be a line through the origin o, RD` = RD(P, `),
and ε > 0 be a parameter. There is a subset Q ⊆ P of O(1/ε5 log 1/ε) points such that the
linear subspace spanned by Q contains a line `′ through o such that RD(P, `′) ≤ (1+ ε)RD`.

Furthermore, the line `′ can be assumed to pass through o and a point s different from o
that lies in an (ε5/2/16)-net of U , where U is obtained from Q by inverting some subset of
Q.

Proof: Let µ ∈ P be the point furthest from the origin o and ∆ = ‖oµ‖.

• Short diameter - RD` ≥ ε∆/8: Let P1 ⊆ P be the set of points at distance at most
(1+ ε)RD` from the origin, and P2 = P \P1 be the complement set. Let `2 be the line
through the origin that minimizes RD(P2, `2). (If P2 is empty, we simply let `′ be the
line through o and any point in P1.) Clearly, RD(P2, `2) ≤ RD`. See Figure 2. Let
h be the hyperplane orthogonal to `2. Notice that the projection of any point p ∈ P2

onto h is at distance at most RD(P2, `2) ≤ RD` from o. Since ‖op‖ ≥ (1+ ε)RD`, the

projection of p onto `2 is at distance at least
√

(1 + ε)2RD2
` −RD2

` ≥
√

εRD` from o.
Let us call one of the half-spaces bounded by h the positive half-space.

Let P+
2 be the point set obtained from P2 by replacing any point p ∈ P2 in the negative

half-space by its inversion −p in the positive half-space. It is easy to verify that the
optimality of `2 for P2 implies that `2 intersects the convex hull of P+

2 (if not, we can
“tilt” `2 so that RD(P2, `2) decreases). Applying Lemma 2.8 to P+

2 and `2, we obtain
a subset Q+ ⊆ P+

2 of O(1/ε5 log 1/ε) points such that CH(Q+) contains a point s at

distance at most ε5/2

8
RD` from `2. Furthermore, s can be assumed to be one of the

points in an (ε5/2/8)-net of Q+. Since s is in CH(P+
2 ), its projection t onto `2 is at

distance at least
√

εRD` from o. Let `′ be the line that passes through o and s. The
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line `′ lies in the linear subspace spanned by the points Q ⊆ P2 corresponding to Q+

together with the origin. The angle θ between `′ and `2 satisfies

tan θ =
‖st‖
‖ot‖

≤ ε5/2RD`/8√
εRD`

≤ ε2

8
.

For any p ∈ P2, we have

dist(p, `′) ≤ dist(p, `2) + ∆ sin θ ≤ dist(p, `2) + ∆ tan θ ≤ dist(p, `2) +
8RD`

ε
tan θ

≤ dist(p, `2) +
8RD`

ε
· ε2

8
≤ dist(p, `2) + εRD` ≤ (1 + ε)RD`.

For any p ∈ P1, dist(p, `′) ≤ dist(p, o) ≤ (1 + ε)RD`.

• Long diameter - RD` ≤ ε∆/8: Let P1 ⊆ P be the set of points at distance at most
ε∆/4 from the origin, and P2 = P \ P1 be the complement set. Let `2 be the line
through the origin that minimizes the distance to P2. Clearly RD(P2, `2) ≤ RD`. We
now argue that the angle α between `2 and ` satisfies sin α ≤ 2r/∆.

Let `µ be the line through o and µ, where µ, we remind the reader, is the point of P
furthest away from o. Let α` be the angle between ` and `µ, α2 be the angle between
`2 and `µ. Clearly, α ≤ α` + α2. Since dist(µ, `), dist(µ, `2) ≤ RD`, we know that
sin α`, sin α2 ≤ RD`/∆. Thus sin α ≤ sin(α` + α2) ≤ sin α` + sin α2 ≤ 2RD`/∆. This
means that for any point p ∈ P1,

dist(p, `2) ≤ dist(p, `) + ε
∆

4
sin α ≤ (1 + ε/2)RD`.

We conclude that dist(p, `2) ≤ (1 + ε/2)RD` for any p ∈ P .

As in the first case, let h be the hyperplane orthogonal to `2. Notice that the projection
of any point p ∈ P2 onto h is at distance at most RD` from o. Since ‖op‖ ≥ ε∆/4, the
projection of p onto `2 is at distance at least ε∆/4−RD` ≥ ε∆/8 from o. As before,
we argue that `2 intersects CH(P+

2 ). Applying Lemma 2.8 to P+
2 and `2, we obtain

a subset Q+ ⊆ P+
2 of O(1/ε4 log(1/ε)) points such that CH(Q+) contains a point s

at distance at most ε2RD`/16 from `2. Furthermore, we may assume that s is in an
(ε2/16)-net of Q+. Since s is in CH(P+

2 ), its projection t onto `2 is at distance at least
ε∆/8 from o. Let `′ be the line that passes through o and s. The line `′ lies in the
linear subspace spanned by the points Q ∈ P2 corresponding to Q+ and the origin.
The angle θ between `′ and `2 satisfies

tan θ =
dist(s, t)

dist(o, t)
≤ εRD`

2∆
.

For any p ∈ P , we have

dist(p, `′) ≤ dist(p, `2) + ∆ sin θ ≤ (1 + ε)RD`.
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We next extend the cylinder argument of Lemma 3.3 to k-flats. Note, that we can assume
that we a point o on the k-flat, by algorithmically using the proof of Lemma 2.8 to generate
a list of candidate points to lie on the k-flat, and exhaustively check all of them.

Lemma 3.4 Let P be a set of points in IRd, F be a k-flat through the origin o, RF =
RD(P,F), and ε > 0 be a parameter. There is a subset Q ⊆ P of O(k/ε5 log 1/ε) points such
that the linear subspace spanned by Q contains a k-flat G through o such that RD(P,G) ≤
(1 + ε)kRF .

We can also compute a set of nO(ν) k-flats so that for some k-flat G in this set, RD(P,G) ≤
(1+ε)kRF , and the running time of this algorithm is dnO(ν), where ν = O

(
k
ε5 log(1/ε)

)
. The

only information this algorithm needs from P is the set of all subsets of P with O(k/ε5 log 1/ε)
points.

Proof: The proof is by induction on k. The base case k = 1 follows from Lemma 3.3.
Let k > 1. Our first step is to show that there is a subset Q1 ⊆ P of O(1/ε5 log 1/ε)
points such that there is a k-flat H through o that satisfies the following two properties:
(1) RD(P,H) ≤ (1 + ε)RF , and (2) H intersects the linear subspace spanned by Q1 in a
line. Let us consider an orthonormal co-ordinate system in which the first k unit vectors
e1, . . . , ek span the k-flat F . Let π : IRd → IRd−k+1 be the projection which takes a point
(x1, . . . , xk−1, xk, . . . , xd) to the point (xk, . . . , xd). The transformation π maps each k-flat F ′

in IRd that contains the vectors e1, . . . , ek−1 bijectively to a line π(F ′) through the origin in
IRd−k+1 such that for any p ∈ P , dist(p,F ′) = dist(π(p), π(F ′)). In particular, F is mapped
to a line π(F) through the origin such that dist(π(p), π(F)) ≤ RF for any p ∈ P . Applying
Lemma 3.3 to π(F), we see that there is a subset Q1 ⊆ P of O(1/ε5 log 1/ε) points such
that the linear subspace in IRd−k+1 spanned by π(Q1) contains a line `′ through the origin
such that dist(π(p), `′) ≤ (1 + ε)RF for any p ∈ P . Furthermore, we may assume that `′

passes through the origin and a point s′ in an (ε5/2/16)-net of U ′, where U ′ is obtained by
inverting some of the points in π(Q1). But by Lemma 2.4, s′ can be assumed to be π(s) for
some s in an (ε5/2/16)-net of U , where U is obtained by inverting the corresponding set of
points in Q1. Let H be the k-flat in IRd containing e1, . . . , ek−1 such that π(H) = `′. We
see that H intersects the linear subspace spanned by Q1 in a line ` through o and s that
dist(p,H) ≤ (1 + ε)RF for any p ∈ P .

Let us consider another orthonormal co-ordinate system in which the first unit vector e1

spans `. Let σ : IRd → IRd−1 be the projection that takes a point (x1, x2, . . . , xd) to the
point (x2, . . . , xd). The transformation σ maps each k-flat H′ containing ` bijectively to a
(k− 1)-flat σ(H′) through the origin such that dist(p,H′) = dist(σ(p), σ(H′)). In particular,
H is mapped to a (k−1)-flat σ(H) through the origin such that dist(σ(p), σ(H)) ≤ (1+ε)RF
for any p ∈ P . Applying the induction hypothesis, we see that there is a subset Q2 ⊆ P of
O((k−1)/ε5 log 1/ε) points such that the linear subspace in IRd−1 spanned by σ(Q2) contains
a (k − 1)-flat B through the origin such that dist(σ(p),B) ≤ (1 + ε)kRF for any p ∈ P . Let
G be the k-flat in IRd containing ` such that π(G) = B. Clearly, dist(p,G) ≤ (1 + ε)kRF for
any p ∈ P . It is also easy to verify that G lies in the linear subspace spanned by Q2 and `,
and therefore the linear subspace spanned by Q = Q1 ∪Q2. Q has O(k/ε5 log 1/ε) points.
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The algorithm to compute G is as follows. We first enumerate all possible candidates
for the point s. There are nO(1/ε5 log 1/ε) possibilities for the set Q1, 2|Q1| possibilities for the
set U given Q1, exp

(
O(1/ε5 log2(1/ε))

)
possibilities for s in the (ε5/2/16)-net A(U) for U

(Lemma 2.5). Once s is determined, the projection σ is also determined. For each possible
s, we recursively apply the same algorithm to compute a good (k − 1)-flat B through the
origin for σ(P ). The flat G containing ` such that σ(G) = B is a good k-flat for P . It is
straightforward to verify that the running time of the algorithm is as stated.

4 Algorithms

The results in the previous section imply efficient approximation algorithms for the k-flat
problem, the same problem with outliers, and the j k-flat problem. We now state these
algorithms with their running times.

Theorem 4.1 Let P be a set of n points in IRd, F be the k-flat that realized RF = RDk(P )
the minimum k-flat radius of P , and ε > 0 be a parameter. We can compute, in dnO(ν) time,
a set of nO(ν) k-flats so that for some k-flat G in this set, RD(P,G) ≤ (1 + ε)k+1RF for
every p ∈ P , where ν = O

(
k
ε5 log(1/ε)

)
. The only information this algorithm needs from P

is all subsets of P with O(k/ε5 log 1/ε) points. Furthermore, we can determine such a k-flat
G using O(nd) time for each candidate.

Proof: The theorem follows from Lemma 3.1 and Lemma 3.4. In view of Lemma 3.1,
we generate all subsets of P with O(1/ε2 log 1/ε) points, and for each such subset Q, we
compute an (ε/2)-net A(Q) of Q. For each point o ∈ A(Q), we perform a translation so that
o becomes the origin, and then apply the algorithm of Lemma 3.4.

Theorem 4.2 Let P be a set of n points in IRd, m ≤ n be given, RF ≥ 0 be the smallest
value such that there is a k-flat F which is at distance at most RF from at least m of
the points in P . We can compute, in dnO(ν) time a k-flat G which is at distance at most
r(1 + ε)k+1 from at least m of the points in P , where ν = O

(
k
ε5 log(1/ε)

)
.

Proof: Let P ′ be the set of points at distance at most RF from F . We can use the
algorithm of Theorem 4.1 to compute a candidate set of nO(ν) flats that contains the required
k-flat g provided we can generate all possible subsets of P ′ with O(k/ε5 log 1/ε) points. We
simply try all possible subsets of P with O(k/ε5 log 1/ε) points, and take the best flat among
all candidates generated.

Theorem 4.3 Let P be a set of n points in IRd, and RD ≥ 0 be the smallest value such
that there are j k-flats F1, . . . ,Fj for which mini≤j dist(p,Fi) ≤ RD for any p ∈ P . We
can compute, in dnO(ν) time a set of j k-flats G1, . . . ,Gj for which mini≤j dist(p,Gi) ≤ (1 +
ε)k+1RD for any p ∈ P , where ν = O

(
j·k
ε5 log(1/ε)

)
.

Proof: Assign each point in P to the closest flat in {F1, . . . ,Fj}. Let Pi denote the set
of points assigned to Fi. We can use the algorithm of Theorem 4.1 to generate a set of
candidate k-flats Ci that is guaranteed to contain a k-flat Gi such that maxp∈Pi

dist(p,Gi) ≤
(1 + ε)k+1RF . Since we do not know all possible subsets of Pi of size O(k/ε5 log 1/ε), we
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simply try all possible subsets of P of size O(k/ε5 log 1/ε). Once we have C1, . . . , Cj, we
return the best set of j k-flats in C1 × · · · × Cj.

The arguments in the Section 3 immediately imply the following structural result.

Theorem 4.4 Let P be a set of n points in IRd and RF be the k-flat radius of P . For any
ε > 0, there is a subset Q ⊆ P of b = O(k/ε5 log 1/ε) points such that for some k-flat G in
the affine hull of Q, dist(p,G) ≤ (1 + ε)k+1RF for any p ∈ P .

It is possible to derive a reasonably efficient approximation algorithm for the k-flat center
problem from this existential result alone. Although the resulting algorithm is not as efficient
as the algorithms derived above, it is worth describing. Suppose we have guessed the right
set Q (by trying all possible subsets of P with b points). We are then left with the problem
of finding the k-flat F in the affine hull of Q that minimizes maxp∈P dist(p,F). This problem
can be written as an optimization problem in b + 1 dimensions as follows. Let us construct
an orthonormal co-ordinate system for IRd in which the first k unit vectors e1, . . . , et span
the affine hull of Q, where t ≤ b. For any point x ∈ IRd, let π(x) denote its projection
onto the affine hull of Q, and w(x) = ||x − π(x)|| denote the distance of p from the affine
hull of Q. Consider the map σ that takes a point x = (x1, . . . , xt, xt+1, . . . , xd) to the point
σ = (x1, . . . , xt, w(x)) in IRd+1. The important property is that for any flat F in the affine
hull of Q and any x ∈ IRd, the distance of F from x is equal to the distance of the “image” of
F from σ(x). We are now left with the problem of finding the best k-flat G lying in a given
hyperplane in IRb+1 that minimizes maxp∈σ(P ) dist(p,G). This is an optimization problem in
b + 1 dimensions and can be solved exactly in O(nbk) time by trying all possible extremal
solutions.

This results in an O(nbk) time algorithm for the original problem, which is worse than
the algorithms described earlier. Indeed, the running time of the previous algorithm was (es-
sentially) O(nb). This approach also extends to the problem with outliers and the projective
clustering problem.

5 Conclusions

In this paper, we presented several fast algorithms for doing (1 + ε)-approximate projective
clustering. Our algorithm relied on the ability to compute small core-sets for those projective
clustering problems. The most striking property of our algorithm is the fact that the running
time depends only polynomially on the dimension.

There are several interesting questions for further research:

• Can one come up with an algorithm for approximate k-flat clustering in high-dimensions
which would work well also in low-dimensions. Namely, it should be competitive with
the currently fastest algorithms in low dimensions [HV01]?

• The existence of core-sets of size independent of the dimension and that depends only
on the approximation quality is quite surprising. It would be interesting to extend the
family of problems for which we know the existence of such core-sets.
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• Can one use dimension reduction techniques [Mag01, JL84, Ach01] coupled with convex
programming techniques [GLS88] to get faster algorithms for the problems discussed?
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