
Linear Time Algorithms for Clustering Problems
in any dimensions

Amit Kumar1, Yogish Sabharwal2, and Sandeep Sen3

1 Dept of Comp Sc & Engg, Indian Institute of Technology, New Delhi-110016, India
amitk@cse.iitd.ernet.in

2 IBM India Research Lab, Block-I, IIT Delhi, Hauz Khas, New Delhi-110016, India
ysabharwal@in.ibm.com

3 Dept of Comp Sc & Engg, Indian Institute of Technology, Kharagpur, India
ssen@cse.iitkgp.ernet.in

Abstract. We generalize the k-means algorithm presented by the au-
thors [14] and show that the resulting algorithm can solve a larger class
of clustering problems that satisfy certain properties (existence of a ran-
dom sampling procedure and tightness). We prove these properties for
the k-median and the discrete k-means clustering problems, resulting in

O(2(k/ε)O(1)
dn) time (1 + ε)-approximation algorithms for these prob-

lems. These are the first algorithms for these problems linear in the size
of the input (nd for n points in d dimensions), independent of dimensions
in the exponent, assuming k and ε to be fixed. A key ingredient of the
k-median result is a (1 + ε)-approximation algorithm for the 1-median

problem which has running time O(2(1/ε)O(1)
d). The previous best known

algorithm for this problem had linear running time.

1 Introduction

The problem of clustering a group of data items into similar groups is one of the
most widely studied problems in computer science. Clustering has applications
in a variety of areas, for example, data mining, information retrieval, image
processing, and web search ([5, 7, 16, 9]). Given the wide range of applications,
many different definitions of clustering exist in the literature ([8, 4]). Most of
these definitions begin by defining a notion of distance (similarity) between two
data items and then try to form clusters so that data items with small distance
between them get clustered together.

Often, clustering problems arise in a geometric setting, i.e., the data items
are points in a high dimensional Euclidean space. In such settings, it is natural
to define the distance between two points as the Euclidean distance between
them. Two of the most popular definitions of clustering are the k-means clus-
tering problem and the k-median clustering problem. Given a set of points P ,
the k-means clustering problems seeks to find a set K of k centers, such that∑

p∈P d(p,K)2 is minimized, whereas the k-median clustering problems seeks to
find a set K of k centers, such that

∑
p∈P d(p,K) is minimized. Note that the

points in K can be arbitrary points in the Euclidean space. Here d(p,K) refers

2

to the distance between p and the closest center in K. We can think of this as
each point in P gets assigned to the closest center. The points that get assigned
to the same center form a cluster. These problems are NP-hard for even k = 2
(when dimension is not fixed). Interestingly, the center in the optimal solution to
the 1-mean problem is the same as the center of mass of the points. Howvever,
in the case of the 1-median problem, also known as the Fermat-Weber problem,
no such closed form is known. We show that despite the lack of such a closed
form, we can obtain an approximation to the optimal 1-median in O(1) time
(independent of the number of points). There exist variations to these clustering
problems, for example, the discrete versions of these problems, where the centers
that we seek are constrained to lie on the input set of points.

1.1 Related work

A lot of research has been devoted to solving these problems exactly (see [11] and
the references therein). Even the best known algorithms for the k-median and the
k-means problem take at least Ω(nd) time. Recently, some work has been devoted
to finding (1 + ε)-approximation algorithm for these problems, where ε can be
an arbitrarily small constant. This has led to algorithms with much improved
running times. Further, if we look at the applications of these problems, they
often involve mapping subjective features to points in the Euclidean space. Since
there is an error inherent in this mapping, finding a (1+ε)-approximate solution
does not lead to a deterioration in the solution for the actual application.

The following table summarizes the recent results for the problems, in the
context of (1 + ε)-approximation algorithms. Some of these algorithms are ran-
domized with the expected runing time holding good for any input.

Problem Result Reference

1-median O(n/ε2) Indyk [12]

k-median O(nO(1/ε)+1) for d = 2 Arora [1]

O(n + %kO(1)logO(1)n) (discrete also) Har-Peled et al. [10]

where % = exp[O((1 + log1/ε)/ε)d−1]

discrete k-median O(%nlognlogk) Kolliopoulos et al. [13]

k-means O(n/εd) for k = 2 Inaba et al. [11]

O(nε−2k2dlogkn) Matousek [15]

O(g(k, ε)nlogkn) de la Vega et al. [6]
g(k, ε) = exp[(k3/ε8)(ln(k/ε)lnk]

O(n + kk+2ε−(2d+1)klogk+1nlogk 1
ε
) Har-Peled et al. [10]

O(2(k/ε)O(1)
dn) Kumar et al. [14]

3

1.2 Our contributions

In this paper, we generalize the algorithm of authors [14] to a wide range of clus-
tering problems. We define a general class of clustering problems and show that
if certain conditions are satsified, we can get linear time (1 + ε)-approximation
algorithms for these problems. We then use our general framework to get the
following results. Given a set of n points P in <d, we present

1. a randomized algorithm that generates a candidate center set of size O(21/εO(1)
),

such that at least one of the points in this set is a (1 + ε)-approximate 1-
median of P with constant probability. The running time of the algorithm is
O(21/εO(1)

d), assuming that the points are stored in a suitable data structure
such that a point can be randomly sampled in constant time. This improves
on the algorithm of Badoiu et al. [3] which generates a candidate center set
of size O(21/ε4

log n) in time O(d21/ε4
log n).

2. a randomized (1 + ε)-approximation algorithm for the 1-median problem
which runs in time O(21/εO(1)

d), assuming that the points are stored in
a suitable data structure such that a point can be randomly sampled in
constant time.

3. a randomized (1 + ε)-approximation algorithm for the k-median problem
which runs in O(2(k/ε)O(1)

nd) time.
4. a randomized (1+ε)-approximation algorithm for the discrete k-means clus-

tering which runs in O(2(k/ε)O(1)
nd) time.

All our algorithms yield the desired result with constant probability (which
can be made as close to 1 as we wish by a constant number of repetitions).
As mentioned earlier, we generalize the result of the authors in [14] to solve a
larger class of clustering problems satisfying a set of conditions (c.f. section 2).
We then show that the k-median probelm and the discrete k-means problem fall
in this class of clustering problems. One important condition that the cluster-
ing problems must satisfy is that there should be an algorithm to generate a
candidate set of points of size independent of n, such that at least one of these
points is a close approximation to the optimal center when we desire only one
cluster. Further the running time of this algorithm should be independent of n.
Armed with such a subroutine, we show how to approximate all the centers in
the optimal solution in an iterative manner.

It is easy to see that our algorithms for the k-median and the discrete k-
means problems have better running time than the previously known algorithms
for these problems, specially when d is very large. In fact, there are the first algo-
rithms for the k-median and the discrete k-means clustering that have running
time linear in the size of the input for fixed k and ε.

For the 1-median problem, the candidate center set generation and the actual
approximation algorithm have better running time than all previously known
algorithms. The algorithms in this paper have the additional advantage of sim-
plicity inherited from generalizing the approach of Kumar et al. [14].

The remaining paper is organized as follows. In Section 2, we describe a
general approach for solving clustering problems efficiently. In the subsequent

4

sections we give applications of the general method by showing that this class of
problems includes the k-median, the k-means and the discrete k-means problems.
In section 4.3, we also describe an efficient approximation algorithm for the 1-
median problem.

2 Clustering Problems

In this section, we give a general definition of clustering problems. Our algorithms
will work on any of these problems provided certain conditions are satisfied. We
will state these conditions later in the section.

We shall define a clustering problem by two parameters – an integer k and
a real-valued cost function f(Q, x), where Q is a set of points, and x is a point
in an Euclidean space. We shall denote this clustering problem as C(f, k). The
input to C(f, k) is a set of points in a Euclidean space.

Given an instance P of n points, C(f, k) seeks to partition them into k sets,
which we shall denote as clusters. Let these clusters be C1, . . . , Ck. A solution
also finds k points, which we call centers, c1, . . . , ck. We shall say that ci is the
center of cluster Ci (or the points in Ci are assigned to ci). The objective of the
problem is to minimize the quantity

∑k
i=1 f(Ci, ci).

This is a fairly general definition. Let us see some important special cases.

– k-median : f(Q, x) =
∑

q∈Q d(q, x).
– k-means : f(Q, x) =

∑
q∈Q d(q, x)2.

We can also encompass the discrete versions of these problems, i.e., cases
where the centers have to be one of the points in P . In such problems, we can
make f(Q, x) unbounded if x /∈ Q.

As stated earlier, we shall assume that we are given a constant ε > 0, and we
are interested in finding (1 + ε)-approximation algorithms for these clustering
problems.

We now state the conditions the clustering problems should satisfy. We begin
with some definitions first. Let us fix a clustering problem C(f, k). Although we
should parameterize all our definitions by f , we avoid this because the clustering
problem will be clear from the context.

Definition 1. Given a point set P , let OPTk(P) be the cost of the optimal solu-
tion to the clustering problem C(f, k) on input P .

Definition 2. Given a constant α, we say that a point set P is (k, α)-irreducible
if OPTk−1(P) ≥ (1+150α)OPTk(P). Otherwise we say that the point set is (k, α)-
reducible.

Reducibility captures the fact that if P is (k, α)-reducible for a small constant
α, then the optimal solution for C(f, k − 1) on P is close to that for C(f, k) on
P . So if we are solving the latter problem, it is enough to solve the former one.
In fact, when solving the problem C(f, k) on the point set P , we can assume

5

that P is (k, α)-irreducible, where α = ε/1200k. Indeed, suppose this is not
the case. Let i be the highest integer such that P is (i, α)-irreducible. Then,
OPTk(P) ≤ (1 + 150kα)k−iOPTi(P) ≤ (1 + ε/4)OPTi(P). Therefore, if we can
get a (1 + ε/4)-approximation algorithm for C(f, i) on input P , then we have
a (1 + ε)-approximation algorithm for C(f, k) on P . Thus it is enough to solve
instances which are irreducible.

The first property that we want C(f, k) to satisfy is a fairly obvious one – it
is always better to assign a point in P to the nearest center. We state this more
formally as follows :

Closeness Property : Let Q and Q′ be two disjoint set of points, and let
q ∈ Q. Suppose x and x′ are two points such that d(q, x) > d(q, x′). Then
the cost function f satisfies the following property

f(Q, x) + f(Q′, x′) ≥ f(Q− {q}, x) + f(Q′ ∪ {q}, x′).
This is essentially saying that in order to find a solution, it is enough to find

the set of k centers. Once we have found the centers, the actual partitioning of
P is just the Voronoi partitioning with respect to these centers. It is easy to see
that the k-means problem and the k-median problem (both the continuous and
the discrete versions) satisfy this property.

Definition 3. Given a set of points P and a set of k points C, let OPTk(P, C)
be the cost of the optimal solution to C(f, k) on P when the set of centers is C.

We desire two more properties from C(f, k). The first property says that if we
are solving C(f, 1), then there should be a simple random sampling algorithm.
The second property says that suppose we have approximated the first i centers
of the optimal solution closely. Then we should be able to easily extract the
points in P which get assigned to these centers. We describe these properties in
more detail below :

– Random Sampling Procedure : There exists a procedure A that takes a
set of points Q ∈ <d and a parameter α as input. A first randomly samples
a set R of size

(
1
α

)O(1) points from Q. Starting from R, A produces a set

of points, which we call core(R), of size at most 2(1
α)O(1)

. A satisfies the
condition that with constant probability there is at least one point c ∈
core(R) such that OPT1(Q, {c}) ≤ (1 + α)OPT1(Q). Further the time taken

by A to produce core(R) from R is at most O(2(1
α)O(1)

· dn).
– Tightness Property : Let P be a set of points which is (k, α)-irreducible

for some constant α. Consider an optimal solution to C(f, k) on P – let
C = {c1, . . . , ck} be the centers in this solution. Suppose we have a set
of i points C ′i = {c′1, . . . , c′i}, such that OPTk(P, C ′) ≤ (1 + α/k)iOPTk(P),
where C ′ = {c′1, . . . , c′i, ci+1, . . . , ck}. Let P ′1, . . . , P

′
k be the partitioning of

P if we choose C ′ as the set of centers (in other words this is the Voronoi
partitioning of P with respect to C ′). We assume w.l.o.g. that P ′i+1 be the
largest cluster amongst P ′i+1, . . . , P

′
k. Then there exists a set of points S such

that the following conditions hold :

6

(a) S is contained in P ′1 ∪ . . . ∪ P ′i .
(b) Let x ∈ S, x′ ∈ P − S. Then, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}).
(c) P − S contains at most |P ′i+1|

αO(1) points of P ′1 ∪ . . . ∪ P ′i .

3 A General Algorithm for Clustering

We can show that if a clustering problem C(f, k) satisfies the conditions stated in
the previous section, then there is an algorithm which with constant probability
produces a solution within (1+ε) factor of the optimal cost. Further the running

time of this algorithm is O(2(k
ε)O(1)

· dn). The techniques are very similar to the
ones used by the authors in [14]. We defer the proof to the appendix. We now
give applications to various clustering problems. We show that these clustering
problems satisfy the tightness property and admit a random sampling procedure
as described in the previous section.

4 The k-median Problem

As described earlier, the clustering problem C(f, k) is said to be the k-median
problem if f(Q, x) =

∑
q∈Q d(q, x). We now exhibit the two properties for this

problem.

4.1 Random Sampling Procedure

Badoiu et al. [3] showed that a small random sample can be a used to get a
close approximation to the optimal 1-median solution. Given a set of points P ,
let AvgMed(P) denote OPT1(P)

|P | , i.e., the average cost paid by a point towards the
optimal 1-median solution.

Lemma 1. [3] Let P be a set of points in <d, and ε be a constant between
0 and 1. Let X be a random sample of O(1/ε3log1/ε) points from P . Then
with constant probability, the following two events happen: (i) The flat span(X)
contains a point x such that OPT1(P, {x}) ≤ (1+ ε)OPT1(P). and (ii) X contains
a point y at distance at most 2AvgMed(P) from x.

We now show that if we can upper and lower bound AvgMed(P) upto constant
factors, then we can construct a small set of points such that at least one of these
is a good approximation to the optimal center for the 1-median problem on P .

Lemma 2. Let P be a set of points in <d and X be a random sample of size
O(1/ε3log1/ε) from P . Suppose we happen to know numbers a and b such that
a ≤ AvgMed(P) ≤ b. Then, we can construct a set Y of O(2(1/ε)O(1)

log(b/εa))
points such that with constant probability there is at least one point z ∈ X ∪ Y
satisfying OPT1(P, {z}) ≤ (1 + 2ε)OPT1(P). Further, the time taken to construct
Y from X is is O(2(1/ε)O(1)

d).

7

Proof. Our construction is similar to that of Badoiu et al. [3]. We can assume
that the result stated in Lemma 1 holds (because this happens with constant
probability). Let x and y be as in Lemma 1.

We will carefully construct candidate points around the points of X in
span(X) in an effort to get within close distance of x.

For each point p ∈ X, and each integer i in the range [blog ε
4ac, dlogbe] we

do the following – let t = 2i. Consider the grid Gp(t) of side length εt/(4|X|) =
O(tε4log(1/ε)) in span(X) centered at p. We add all the vertices of this grid
lying within distance at most 2t from p to our candidate set Y . This completes
the construction of Y . It is easy to see that the time taken to construct Y from
X is O(2(1/ε)O(1)

d).
We now show the existence of the desired point z ∈ X ∪ Y . Consider the

following cases:

1. d(y, x)≤εAvgMed(P) : Using triangle inequality, we see that

f(P, y) ≤ f(P, x) + |P |d(y, x) ≤ (1 + 2ε)OPT1(P).

Therefore y itself is the required point.
2. d(y, x) > εAvgMed(P) : Consider the value of i such that 2i−1≤AvgMed(P, 1)≤2i

– while constructing Y , we must have considered this value of i for all points
in X. Let t = 2i. Clearly, t/2≤AvgMed(P)≤t.
Observe that d(y, x)≤2AvgMed(P)≤2t. Therefore, by the manner in which
we have constructed Gy(t), there must be a point p ∈ Gy(t) fow which
d(p, x) ≤ εt/2 ≤ εAvgMed(P). This implies that

f(P, p) ≤ f(P, x) + |P |d(x, p) ≤ (1 + 2ε)OPT1(P).

Therefore p is the required point.

This completes the proof of the lemma.

We now show the existence of the random sampling procedure.

Theorem 1. Let P be a set of n points in <d, and let ε be a constant, 0 < ε <
1/12. There exists an algorithm which randomly samples a set R of O((1

ε)O(1))
points from P . Using this sample only, it constructs a set of points core(R) such
that with constant probability there is a point x ∈ core(R) satisfying f(P, x) ≤
(1 + O(ε))OPT1(P). Further, the time taken to construct core(R) from R is
O(2(1/ε)O(1)

d).

Proof. Consider the optimal 1-median solution for P – let c be the center in this
solution. Let T denote AvgMed(P). Consider the ball B1 of radius T/ε2 around c.
Let P ′ be the points of P contained in B1. It is easy to see that |P ′| ≥ (1−ε2)n.

Sample a point p at random from P . With constant probability, it lies in P ′.
Randomly sample a set Q of 1/ε points from P . Again, with constant probability,
these points lie in P ′. So we assume that these two events happen. Let v =∑

q∈Q d(q, p). We want to show that v is actually close to AvgMed(P).
Let B2 denote the ball of radius εT centered at p. One of the following two

cases must happen :

8

p
2B(c,T/)

B(p, T)

c

Fig. 1. Points distribution around the Median

– There are at least 2ε|P ′| points of P ′ outside B2 : In this case, with constant
probability, the sample Q contains a point outside B2. Therefore, v ≥ εT .
Also notice that any two points in B1 are at distance at most 2T/ε2 from
each other. So, v ≤ 2T |Q|/ε2. We choose a = v/ε and b = vε2

2|Q| . Notice that
b/a is O(εO(1)). We can now use the Lemma 2 to construct the desired core
set.

– There are at most 2ε|P ′| points of P ′ outside B2 : Suppose d(p, c) ≤ 4εT .
In this case f(P, p) ≤ (1 + O(ε))OPT1(P) and we are done. So assume this
is not the case. Note that the number of points outside B2 is at most |P −
P ′| + 2ε|P ′| ≤ ε2n + 2ε(1 − ε2)n ≤ 3εn. Now suppose we assign all points
of P from c to p. Let us see the change in cost. The distance the points in
B2 have to travel decreases by at least d(c, p) − 2εR. The increase in the
distance for points outside B2 is at most d(c, p). So the overall decrease in
cost is at least

|B2|(d(c, p)− 2εR)− (n− |B2|)d(c, p) > 0

if we use |B2| ≥ n(1 − 3ε) and d(c, p) ≥ 4εR. This yields a contradiction
because c is the optimal center. Thus we are done in this case as well.

This proves the theorem.

Thus we have shown the existence of the random sampling procedure.

4.2 Tightness Property

We now show the existence of tightness property. We will use the same notation
as used while defining the tightness property in Section 2. We need to show the
existence of the desired set S.

9

Consider the closest pair of centers between the sets C ′\C ′i and C ′i – let these
centers be cl and c′r respectively. Let t = d(cl, c

′
r). Let S be the set of points

B(c′1, t/4) ∪ · · · ∪ B(c′i, t/4), i.e., the points which are distant at most t/4 from
C ′i = {c′1, . . . , c′i}.

Clearly, S is contained in P ′1 ∪ · · · ∪ P ′i . This shows (a). Also, for any x ∈
S, x′ ∈ P − S, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}). This proves (b).

Suppose P − S contains more than |Pl|/α points of P ′1 ∪ · · · ∪ P ′i . In that
case, these points are assigned to centers at distance at least t/4. It follows that
OPTk(P, C ′) is at least t|Pl|

4α . This implies that t|Pl| ≤ 4αOPTk(P,C ′). But then if
we assign all the points in Pl to c′r, the cost increases by at most

|Pl|t ≤ 4αOPTk(P, C ′) ≤ 4α(1+α/k)iOPTk(P) ≤ 4α(1+α/k)kOPTk(P) ≤ 12αOPTk(P).

But this contradicts the fact that P is (k, α)-irreducible. This proves the tightness
property.

4.3 Applications to the 1-median Problem

In this section, we present an algorithm for the 1-median problem. Given a set
of n points in <d, the algorithm with constant probability produces a solution
of cost at most (1 + ε) of the optimal cost for any constant ε > 0. The running
time of the algorithm is O(21/εO(1)

d), assuming that it is possible to randomly
sample a point in constant time.

Our algorithm is based on the following idea presented by Indyk [12].

Lemma 3. [12] Let X be a set of n points in <d. For a point a ∈ <d and
a subset Q ⊆ X, define SQ(a) =

∑
x∈Q d(a, x) and S(a) = SX(a). Let ε be a

constant, 0 ≤ ε ≤ 1. Suppose a and b are two points such that S(b) > (1+ε)S(a).
Then,

Pr

∑

x∈Q

d(a, x)≥
∑

x∈Q

d(b, x)

 < e−ε2|Q|/64.

We now show the existence of a fast algorithm for approximating the optimal
1-median solution.

Theorem 2. Let P be a set of n points in <d, and let ε be a constant, 0 < ε < 1.
There exists an algorithm which randomly samples a set R of O((1

ε)O(1)) points
from P . Using this sample only, it finds a point p such that f(P, x) ≤ (1 +
O(ε))OPT1(P) with constant probability (independent of ε). The time taken by
the algorithm to find such a point p from R is O(2(1/ε)O(1)

d).

Proof. We first randomly sample a set R1 of O((1
ε)O(1)) points from P and

using Theorem 1, construct a set core(R1) of O(2(1/ε)O(1)
) points such that

with constant probability, there is a point x ∈ core(R1) satisfying f(P, x) ≤
(1 + O(ε))OPT1(P).

10

Now we randomly sample a set R2 of O((1/ε)O(1)) points and find the point
p ∈ core(R1) for which SR2(p) = f(R2, p) is minimum. By Lemma 3, p is with
constant probability a (1 + O(ε))-approximate median of P .

Clearly, the time taken by the algorithm is O(2(1/ε)O(1)
d).

Also note that we can boost the success probability to an arbitrarily small
constant by selecting a large enough (yet constant) sample R.

5 k-means clustering

Recall that in this problem, f(Q, x) =
∑

q∈Q d(q, x)2. The two properties for the
k-means problem were shown by the authors in [14]. But we show briefly this for
the sake of completeness. For a set of points T , let c(T) denote their centroid.
The random sampling property follows from the following fact showed by Inaba
et al. [11].

Lemma 4. [11] Let T be a set of m points obtained by independently sampling
m points uniformly at random from a point set P . Then, for any δ > 0,

f(S, c(T)) <

(
1 +

1
δm

)
OPT1(P)

holds with probability at least 1− δ.

The proof of the tightness property is very similar to the one shown for the
k-median problem.

6 Discrete k-means Clustering

This is the same as the k-means problem with the additional constraint that the
centers must be chosen from the input point set only.

We now exhibit the two properties for this problem.

6.1 Random Sampling Procedure

We first show that given a good approximation to the center of the optimal
(continuous) 1-means problem, we can get a good approximation to the center
of the optimal discrete 1-means problem. Let us have some notation first. Let
P be a set of n points in <d. Let c be the center of the optimal solution to the
(continuous) 1-means problem on P .

Lemma 5. Let α be a constant, 0 < α < 1, and c′ be a point in <d such that∑
p∈P d(p, c′)2 ≤ (1 + α)

∑
p∈P d(p, c)2. Let x′ be the point of P closest to c′

Then OPT1(P, {x′})≤(1 + O(
√

α))OPT1(P).

11

Proof. Let x be the center of the optimal discrete 1-means solution, i.e., OPT1(P, {x}) =
OPT1(P). Let T be the average cost paid by the points of P in the optimal 1-

means solution, i.e., T =
∑

p∈P d(p,c)2

|P | .
Then OPT1(P) = |P |(T + d(c, x)2) and OPT1(P, {x′}) = |P |(T + d(c, x′)2).

From the definition of c′, we know that d(c, c′)2≤αT .
Notice that

d(c, x′)≤d(c, c′) + d(c′, x′)≤d(c, c′) + d(c′, x)≤2d(c, c′) + d(c, x).

We know that f(P, x) = |P |(T + d(c, x)2) and f(P, x′) = |P |(T + d(c, x′)2). So

f(P, x′)− f(P, x) = |P |(d(c, x′)2 − d(c, x)2)
≤ |P | ((2d(c, c′) + d(c, x))2 − d(c, x)2)

)

≤ 4|P | (d(c, c)2 + d(c, c′)d(c, x)
)

≤ 4|P |
(
αT +

√
αTd(c, x)

)

≤ 4|P | (αT +
√

α(T + d(c, x)2)
)

≤ O(
√

α)OPT1(P).

We now show the existence of the random sampling procedure.

Theorem 3. Let α be a constant, 0 < α < 1. There exists an algorithm which
randomly samples a set R of O

(
1
α

)
points from P . Using this sample, it finds a

singleton set core(R) such that with constant probability the point x ∈ core(R)
satisfies f(P, x) ≤ (1 + O(

√
α))OPT1(P). Further, the time taken to construct

core(R) from R is O((1
α + n)d).

Proof. Using Lemma 4, we can get a point c′ such that
∑

p∈P d(p, c′)2 ≤ (1 +
α)

∑
p∈P d(p, c)2. As mentioned in the lemma, we do this by by taking the cen-

troid of a random sample of O(1/α) points of P . This takes time O(1
α · d).

The rest follows from the previous lemma.

6.2 Tightness Property

We now show the existence of tightness property. We will use the same notation
as used while defining the tightness property in Section 2. We need to show the
existence of the desired set S.

Consider the closest pair of centers between the sets {c′1, . . . , c′i} and {ci+1, . . . , ck}
– let these centers be c′r and cl respectively. Let t = d(cl, c

′
r). Let S be the set of

points B(c′1, t/4) ∪ · · · ∪ B(c′i, t/4), i.e., the points which are distant at most t/4
from C ′i = {c′1, . . . , c′i}.

Clearly, S is contained in P ′1 ∪ · · · ∪ P ′i . This shows (a). Also, for any x ∈
S, x′ ∈ P − S, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}). This proves (b).

Suppose P − S contains more than |Pl|/α2 points of P ′1 ∪ · · · ∪ P ′i . In that
case, these points are assigned to centers at distance at least t/4. It follows that
OPTk(P, C ′) is at least t2|Pl|

16α2 . This implies that t2|Pl| ≤ 16α2OPTk(P, C ′).

12

Let ml and m′
r be the centers of the optimal (continuous) 1-means solution

of Pl and P ′r respectively. Further, let Tl and T ′r be the average cost paid by

Pl and P ′r in this optimal solution respectively, i.e., Tl =
∑

p∈Pl
d(p,ml)

2

|Pl| and

T ′r =
∑

p∈P ′r d(p,m′
r)2

|P ′r| . Observe that f(Pl, cl) = |Pl|(Tl+d(cl,ml)2) and f(Pl, c
′
r) =

|Pl|(Tl + d(c′r,ml)2). Therefore, if we assign the points in Pl from cl to c′r, the
increase in cost is

|Pl|
(
d(c′r,ml)2 − d(cl,ml)2

) ≤ |Pl|
(
(d(c′r, cl) + d(cl, ml))2 − d(cl,ml)2

)

≤ |Pl|
(
t2 + 2td(cl,ml)

)

We know that the first term above, i.e., |Pl|t2 is at most 16α2OPTk(P,C ′).
We now need to bound the second term only. We consider two cases

– t ≤ αd(cl, cm) : In this case, |Pl|·2td(cl,ml) ≤ 2αd(cl, ml)2|Pl| ≤ 2αf(Pl, cl) ≤
2αOPTk(P, C ′).

– t > αd(cl, cm) : In this case, |Pl| · 2td(cl,ml) ≤ 2t2|Pl|
α ≤ 32αOPTk(P, C ′).

Thus, in either case, the cost increases by at most

48αOPTk(P, C ′) ≤ 48α(1+α/k)iOPTk(P) ≤ 48α(1+α/k)kOPTk(P) ≤ 144αOPTk(P).

But this contradicts the fact that P is (k, α)-irreducible. This proves the tightness
property.

References

1. S. Arora, Polynomial time approximation schemes for Euclidean TSP and other
geometric problems, Proceedings of the 37th annual IEEE Symposium on FOCS,
1996, pp. 2-11.

2. S. Arora, P. Raghavan, and S. Rao, Polynomial time approximation schemes for the
Euclidean k-median problem, Proceedings of the 30th annual ACM STOC, 1998.

3. M. Badoiu, S. Har-Peled, P. Indyk, Approximate clustering via core-sets, STOC
2002, pp. 250-257.

4. M. Bern and D. Eppstein, Approximation algorithms for geometric problems, D.
S. Hauchbaum, editor, Approximating algorithms for NP-Hard problems. PWS
Publishing Company, 1997.

5. A. Broder, S. Glassman, M. Manasse, and G. Zweig, Syntactic clustering of the
Web, Proceedings of the 6th Int’l World Wide Web Conf (WWW), 1997, pp. 391-
404.

6. W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani, Approximation schemes
for clustering problems, Proceedings of the 35th Annual Symposium on Theory of
Computing, 2003, pp. 50-58.

7. S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A. Harshman,
Indexing by latent semantic analysis, Journal of the Society for Information Science,
41(6):391-407, 1990.

8. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley-Interscience,
New York, 2nd edition, 2001.

13

9. C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic and W.
Equitz, Efficient and effective querying by image content, Journal of Intelligent
Information Systems, 3(3):231-262, 1994.

10. S. Har-Peled, S. Mazumdar, Coresets for k-Means and k-Median Clustering and
their Applications, Proceedings of the 36th Annual Symposium on Theory of Com-
puting, 2004, pp. 291-300.

11. M. Inaba, N. Katoh and H. Imai, Applications of Weighted Voronoi Diagrams and
Randomization to Variance-Based k-Clustering, Proceedings of the 10th Annual
ACM Symposium on Computational Geometry, 1994, pp. 332-339.

12. P. Indyk, High Dimensional Computational Geometry, Ph.D. Thesis, Department
of Computer Science, Stanford University, September 2004.

13. S. Kolliopoulos, and S. Rao, A nearly linear time approximation scheme for the
Euclidean k-medians problem, Proceedings of the 7th European Symposium on
Algorithms, volume 1643 of Lecture Notes in Computer Science, 1999, pp. 362-
371.

14. A. Kumar, Y. Sabharwal, S. Sen, A simple linear time (1+ ε)-approximation algo-
rithm for k-means clustering in any dimensions, Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science 2004, pp. 454-462.

15. J. Matousek, On approximate geometric k-clustering, Discrete and Computational
Geometry, 24, 2000, pp. 61-84.

16. M. J. Swain, and D. H. Ballard, Color indexing, International Journal of Computer
Vision, 7:11-32, 1991.

14 APPENDIX

APPENDIX

7 Proofs for the General Algorithm for Clustering

In this section, we provide proofs for our general algorithm for the clustering
problems we defined.

Fix a clustering problem C(f, k). Fix an instance consisting of a set P of n
points in <d. Suppose we are given a constant ε > 0. We would like to construct
a solution for the clustering problem whose cost is within (1 + ε) of the optimal
cost.

Suppose P ′ is a subset of P and we want to get a good approximation to the
optimal 1-center for the point set P ′. Following the Random Sampling Procedure
for the clustering problem, we would like to sample from P ′. But the problem is
that P ′ is not explicitly given to us. The following lemma states that if the size
of P ′ is close to that of P , then we can sample a slightly larger set of points from
P and hopefully this sample would contain enough random samples from P ′. Let
us define things more formally first. Let P be a set of points and P ′ be a subset
of P such that |P ′| ≥ β|P |, where β is a constant between 0 and 1. Suppose
that we require a sample of λ = O((1/α)O(1)) points from P ′ to generate the
candidate center set. Suppose we take a sample S of size O(4

βλ) from P . Now we
consider all possible subsets of size λ of S. For each of these subsets S′, we can
generate a candidate centre set for the 1-center for the clustering problem using
the Random Sampling Procedure and consider each one of these as a potential
1-center for the clustering problem instance on P ′. The following lemma shows
that one of these subsets must give a close enough approximation to the optimal
1-center solution for P ′.

Lemma 6. (Superset Sampling Lemma) Let CEN (S′) be the centre set generated
using the Random Sampling Procedure on sampled subset S′. Then, the following
event happens with constant probability

min
c′∈CEN (S′):S′⊂S,|S′|=λ

f(P ′, c′) ≤ (1 + ε)OPT1(P ′).

Proof. With constant probability, S contains at least λ points from P ′, the
required sample size. The rest follows from the Random Sampling Procedure for
the clustering problem.

We first present a brief outline of the algorithm.

7.1 Outline

We can assume that the solution is irreducible, i.e., removing one of the centers
does not create a solution which has cost within a small factor of the optimal
solution.

We start with k optimal (unknown) centers. In each iteration, we will consider
the optimal clustering formed by i currently known centers and k − i optimal

APPENDIX 15

Algorithm k-clustering(P, k, ε)
Inputs : Point set P , number of clusters k, approximation ratio ε.
Output : k-clustering of P .

1. For i = 1 to k do
Obtain the clustering Irred-k-clustering(P, i, i, φ, ε/1200k, 0).

2. Return the clustering which has minimum cost.

Fig. 2. The k-clustering Algorithm

(unknown) centers. Call this the optimal clustering of the current iteration.
Our goal will be to approximate the next largest cluster, so that the resulting
clustering is an approximation to the optimal clustering of the current iteration.
We will bound the overall approximation factor to within a factor of (1 + ε) of
the optimal clustering.

Suppose we have found centers c′1, . . . , c
′
i. Suppose t is the distance between

the closest pair of centers {c′1, . . . , c′i} and the unknown centers of the optimal
clustering {ci+1, . . . , ck}. We can show that the points at distant at most t/4
from {c′1, . . . , c′i} get assigned to c1, . . . , ci by the optimal solution induced by
these k centers. So, we can delete these points. wlog, we assume that the largest
cluster from amongst those centered around the unknown clusters {ci+1, . . . , ck}
is centered around ci+1. Let P ′i+1 be this clustering. Now we can show that
among the remaining points, the size of P ′i+1 is significant. Therefore, we can
use random sampling to obtain a center c′i+1 which is a pretty good estimate of
ci+1. Of course we do not know the value of t, and so a naive implementation of
this idea gives an O(n(log n)k) time algorithm.

But now we want to modify it to a linear time algorithm. This is where
the algorithm gets more involved. As mentioned above, we can not guess the
parameter t. So we try to guess the size of the point set obtained by removing
the balls of radius t/4 around {c1, . . . , ci}. So we work with the remaining point
set with the hope that the time taken for this remaining point set will also
be small and so the overall time will be linear. Now, we describe the actual
clustering algorithm.

7.2 The Algorithm

The algorithm is described in Figures 2 and 3. Figure 2 is the main algorithm.
The inputs are the point set P , k and an approximation factor ε. Let α denote
ε/1200k. The algorithm k-clustering(P, k, ε) tries to find the highest i such
that P is (i, α)-irreducible. Essentially we are saying that it is enough to find i
centers only. Since we do not know this value of i, the algorithm tries all possible
values of i.

16 APPENDIX

Algorithm Irred-k-clustering(Q, m, k, C, α, Sum)
Inputs : Q: Remaining point set, m: number of cluster centers yet to

be found, k: total number of clusters,
C: set of k −m cluster centers found so far,
α: approximation factor, Sum: the cost of assigning points in P −Q
to the centers in C

Output : The clustering of the points in Q in k clusters.

1. If m = 0
Assign the points in Q to the nearest centers in C.
Sum = Sum + The clustering cost of Q.
Return the clustering.

2. (a) Sample a set S of size O((k/α)O(1)) from Q.
(b) For each set subset S′ of S of size λ do

Compute the candidate centre set from S′.
For each center, c, in the candidate center set, obtain the
clustering Irred-k-clustering(Q, m− 1, k, C ∪ {c}, α, Sum).

3. (a) Consider the points in Q in ascending order of distance from C.
(b) Let U be the first |Q|/2 points in this sequence.
(c) Assign the points in U to the nearest centers in C.
(d) Sum = Sum + The clustering cost of U .
(e) Compute the clustering Irred-k-clustering(Q− U, m, k, C, α, Sum).

4. Return the clustering which has minimum cost.

Fig. 3. The irreducible k-clustering algorithm

We now describe the algorithm Irred-k-clustering(Q,m, k,C, α, Sum). We
have found a set C of k − m centers already. The points in P − Q have been
assigned to C. We need to assign the remaining points in Q. The case m = 0 is
clear. In step 2, we try to find a new center by the Random Sampling Procedure
for the clustering problem. This will work provided a good fraction of the points
in Q do not get assigned to C. If this is not the case then in step 3, we assign
half of the points in Q to C and call the algorithm recursively with this reduced
point set. For the base case, when |C| = 0, as P1 is the largest cluster, we require
to sample only O(kλ) points. This is tackled in Step 2. Step 3 is not performed
in this case, as there are no centers.

7.3 Analysis and Proof of Correctness

It can be shown using techniques similar to those in [14] that if we have the Ran-
dom Sampling Procedure described above, then we can get a (1+ε)-approximation
algorithm for the clustering problem with constant probability. Further the run-
ning time of the algorithm is O(2(k

ε)O(1)
dn).

APPENDIX 17

Theorem 4. Suppose a point set P is (k, α)-irreducible. Then the algorithm
Irred-k-Clustering(P, k, k, ∅, α, 0) returns a solution to the clustering problem
C(f, k) on input P of cost at most (1 + α)OPTk(P) with probability γk, where γ
is a constant.

Proof. Consider an optimal solution to C(f, k) on input P . Let the centers be
K = {c1, . . . , ck} and let these partition the point set P into clusters P1, . . . , Pk

respectively. The only source of randomization in our algorithm is the invocations
to the superset sampling lemma (Lemma 6). Recall that the desired event in
the superset sampling lemma happens with constant probability. For ease of
exposition, we shall assume that this desired event in fact always happens when
we invoke this lemma. At the end of this proof, we will compute the actual
probability with which our algorithm succeeds. Thus, unless otherwise stated, we
assume that the desired event in the superset sampling lemma always happens.

Observe that when we call Irred-k-Clustering with input (P, k, k, ∅, α, 0), it
gets called recursively again several times (although with different parameters).
Let W be the set of all calls to Irred-k-Clustering when we start it with input
(P, k, k, ∅, α, 0). Let Wi be those calls in W in which the parameter C (i.e., the
set of centers already found) has size i.

For all values of i, our algorithm shall maintain the following invariant :

Invariant : The set Wi contains a call in which the list of parameters
(Q,m, k,C, α, Sum) has the following properties :
(1) If the optimal solution, K, is (k, α)-irreducible and C ′i = {c′1, . . . , c′i} is a

set of i known centers then there exists a set C ′′i = {ci+1, . . . , ck} of k− i
unknown centers, C ′′i ⊆ K, such that OPTk(P,C ′) ≤ (1 + α/k)iOPTk(P),
where C ′ = C ′i ∪ C ′′i .

(2) Let P ′1, . . . , P
′
k be the partitioning of P if we choose C ′ as the set of

centers (in other words this is the Voronoi partitioning of P with respect
to C ′), where C ′ is as defined above. Then the set P −Q is a subset of
P ′1 ∪ · · · ∪ P ′i .

Clearly, if we show that the invariant holds for i = k, then we are done. It
holds trivially for i = 0. Suppose the invariant holds for some fixed i. We shall
show that the invariant holds for (i + 1) as well.

Since the invariant holds for i, there exist parameter lists in Wi which sat-
isfy the invariant mentioned above. Among such parameter lists, choose a list
(Q,m, k, C, α, Sum) for which |Q| is smallest.

We assume w.l.o.g. that P ′i+1 be the largest cluster amongst P ′i+1 ∪ · · · ∪ P ′k.
Since the conditions of the Tightness Property are met, therefore there exists a
set S contained in P ′1 ∪ · · · ∪ P ′i such that P − S contains at most |P ′i+1|/αO(1)

points of P ′1 ∪ · · · ∪ P ′i .
Recall that we are looking at the parameter list (Q,m, k, C, α, Sum) which

satisfies the invariant for i. Let P ′ denote P − S.

Claim. P ′i+1 ∪ · · · ∪ P ′k is contained in P ′ ∩Q.

18 APPENDIX

Proof. We already know that S is contained in P ′1 ∪ · · · ∪ P ′i . Therefore, P ′i+1 ∪
· · · ∪ P ′k is contained in P ′.

Suppose that the claim is not true. Then there exists a point x ∈ P ′i+1 ∪
· · · ∪ P ′k such that x ∈ P − Q. This means that x was eliminated in a previous
iteration. Let that iteration be j < i. Then there exist centers c′1, . . . , c

′
j ∈ C ′i,

such that in iteration j, d(x, {c′1, . . . , c′j})≤d(x, {ci+1, . . . , ck}). This implies that
d(x, C ′i)≤d(c, C ′′i). This contradicts that x ∈ P ′i+1 ∪ · · · ∪ P ′k by the closeness
property of the clustering problem.

Claim. |P ′i+1| ≥ αO(1)

k |P ′|.

Proof. There are at most |P ′i+1|/αO(1) elements of P ′1∪ . . .∪P ′i in P ′. Therefore,
since P ′i+1, . . . , P

′
k are the clusters associated with the centers in C ′′i and P ′i+1 is

the largest of these clusters, we have |P ′| ≤ |P ′i+1|/αO(1) + |P ′i+1|+ . . . + |P ′k| ≤
|P ′i+1|/αO(1) + k|P ′i+1| ≤ k

αO(1) |P ′i+1|.

It follows that |P ′i+1| ≥ αO(1)

k |P ′∩Q|. So, if we knew P ′, then using Lemma 6,
we can get a point c′i+1 which is a (1 + α/k) approximation to ci+1 (as the 1-
center of the cluster P ′i+1) by sampling O((k/α)O(1)) points from P ′ ∩ Q, and
generating the candidate center set of size O(2(k/α)O(1)

) as described by the
Random Sampling Procedure. But of course we do not know P ′.

Lemma 7. |P ′ ∩Q| ≥ |Q|/2.

Proof. Suppose not, i.e., |P ′ ∩Q| ≤ |Q|/2.

Claim. Consider the points in Q sorted in ascending order of the distance from
C. Let U be the first |Q|/2 points in this order. Then U does not contain a point
of P ′ ∩Q.

Proof. Follows from condition (b) of the Tightness Property for the clustering
problem.

So, if U is as defined in the claim above, then P ′ ∩Q is a subset of Q−U . Since
P ′i+1∪· · ·∪P ′k is contained in P ′∩Q (because of Claim 7.3 and the fact that Q is in
the parameter list which satisfies the invariant for i), it follows that P ′i+1∪· · ·∪P ′k
is a subset of Q − U . Thus, the parameter list (Q − U,C, k,m, α, Sum) which
is formed in Step(e) of the algorithm satisfies the invariant for i as well, i.e., it
is in Ci. But this violates the fact that (Q,C, k, m, α, Sum) was the parameter
list satisfying the invariant for i in Ci for which |Q| is smallest. This proves the
lemma.

The lemma above implies that |P ′ ∩Q| ≥ |Q|/2. Combined with Claim 7.3, we
get |P ′i+1| ≥ αO(1)|Q|

4k . The superset sampling lemma combined with the claim
above imply that by sampling O((k/α)O(1)) points from Q and generating the
candidate center set as described by the Random Sampling Procedure for the
clustering problem, we shall get a point c′i+1 such that f(P ′i+1, c

′
i+1) ≤ (1 +

APPENDIX 19

α/k)f(P ′i+1, ci+1), where ci+1∈C ′′i is the center of P ′i+1 in the optimal clustering
induced by C ′. This is the case handled by the step 2(b) in the algorithm Irred-
k-Clustering. In this case the algorithm is called again with parameters (Q,m−
1, k, C∪{c′i+1}, α, Sum). It is easy to see now that this parameter list satisfies the
invariant for i + 1. The set of known centers C ′i+1 for the next iteration is C ′i ∪
{c′i+1} and the set of unknown centers C ′′i+1 is C ′′i \{ci+1}. Since f(P ′i+1, c

′
i+1) ≤

(1+α/k)f(P ′i+1, ci+1) and the clustering problem satisfies the closeness property,
it follows that F(P, C ′i+1∪C ′′i+1)≤(1+α/k)F(P, C ′)≤(1+α/k)i+1OPTk(P). Thus
we have shown that the invariant holds for all values of i.

As we mentioned earlier, a parameter list (Q,m, k, C, α, Sum) which satisfies
the invariant for i = k has the desired centers in C.

It is easy to verify that the cost reported by the algorithm F satisfies

OPTk(P)≤F≤(1 + α/k)kOPTk(P)≤(1 + 2α)OPTk(P)≤(1 + ε/4)OPTk(P).

This proves the correctness of our algorithm. We just need to calculate the
probability with which the algorithm is called with such a parameter list.

Note that the only source of randomness in Irred-k-Clustering is in the
Step 2(a). The sampling gives the desired result with constant probability (ac-
cording to Lemma 6). Further each time we execute Step 2, we decrease m by 1.
So, in any sequence of successive recursive calls, there can be at most k invoca-
tions of Step 2. Now, we have just shown that there is a parameter list in Wk for
which C contains a set of centers close to the optimal clusters. Let us look at the
sequence of recursive calls which have resulted in this parameter list. In these
sequence of calls, as we mentioned above, there are k invocations of the random
sampling. Each of these work correctly with constant probability. Therefore, the
probability that we actually see this parameter list during the execution of this
algorithm is γk for some constant γ.

Now we establish the running time of our algorithm.

Theorem 5. The algorithm Irred-k-Clustering when called with parameters
(P, k, k, ∅, α, 0) runs in time O(2(k/α)O(1)

dn), where n = |P |.
Proof. Let T (n,m) be the running time of our algorithm on input (Q,m, k, C, α, Sum)
where n = |Q|. Then in Step 2(b), we have u(k, α) subsets of the sample, where
u(k, α) = O(2(k/α)O(1)

). Computation of the candidate center set from any set
S′ in Step 2(b) takes O(2(k/α)O(1) · nd) time. Steps 3(a)-(d) take O(nd) time.
Therefore we get the recurrence

T (n,m) = O(u(k, α))T (n,m− 1) + T (n/2,m) + O(u(k, α) · nd).

It is not difficult to show from this that T (n, k) is O(2(k/α)O(1)
dn).

We can now state our main theorem.

Theorem 6. A (1 + ε)-approximate solution to a clustering problem satisfying
the conditions specified in the previous section for a point set P in <d can be
found in time O(2(k/ε)O(1)

dn), with constant probability.

20 APPENDIX

Proof. We can run the algorithm Irred-k-Clustering ck times for some con-
stant c to ensure that it yields the desired result with constant probability. This
still keeps the running time O(2(k/α)O(1)

dn). So let us assume this algorithm
gives the desired solution with constant probability.

Notice that the running time of our main algorithm in Figure 2 is also
O(2(k/α)O(1)

dn). We just have to show that it is correct.
Let i be the highest index for which P is (i, α)-irreducible. So, it follows that

OPTi(P) ≤ (1+150kα)OPTi+1(P) ≤ · · · ≤ (1+150kα)k−iOPTk(P) ≤ (1+ε/4)OPTk(P).

Further, we know that the algorithm Irred-k-Clustering on input (P, i, i, ∅, α, 0)
yields a set of i centers C for which F(P,C) ≤ (1 + ε/4)OPTi(P). Therefore, we
get a solution of cost at most (1 + ε/4)(1 + ε/4)OPTk(P) ≤ (1 + ε)OPTk(P). This
proves the theorem.

