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Abstract

In this paper, we show the existence of small coresets for the problems of computing
k-median and k-means clustering for points in low dimension. In other words, we show
that given a point set P in IRd, one can compute a weighted set S ⊆ P , of size
O(kε−d log n), such that one can compute the k-median/means clustering on S instead
of on P , and get an (1 + ε)-approximation.

As a result, we improve the fastest known algorithms for (1 + ε)-approximate k-
means and k-median. Our algorithms have linear running time for a fixed k and ε. In
addition, we can maintain the (1 + ε)-approximate k-median or k-means clustering of
a stream when points are being only inserted, using polylogarithmic space and update
time.

1 Introduction

Clustering is a widely used technique in Computer Science with applications to unsuper-
vised learning, classification, data mining and other fields. We study two variants of the
clustering problem in the geometric setting. The geometric k-median clustering problem is
the following: Given a set P of points in IRd, compute a set of k points in IRd such that
the sum of the distances of the points in P to their respective nearest median is minimized.
The k-means differs from the above in that instead of the sum of distances, we minimize the
sum of squares of distances. Interestingly the 1-mean is the center of mass of the points,
while the 1-median problem, also known as the Fermat-Weber problem, has no such closed
form. As such the problems have usually been studied separately from each other even in
the approximate setting. We propose techniques which can be used for finding approximate
k centers in both variants.

In the data stream model of computation, the points are read in a sequence and we desire
to compute a function, clustering in our case, on the set of points seen so far. In typical
applications, the total volume of data is very large and can not be stored in its entirety. Thus
we usually require a data-structure to maintain an aggregate of the points seen so far so as
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Problem Prev. Results Our Results

k-median
O(%n(log n) log k) [KR99] (*)

% = exp [O((1 + log 1/ε)/ε)d−1]
O

(
n + %kO(1) logO(1) n

)
[Theorem 5.5]

discrete
k-median

O(%n log n log k) [KR99]
O

(
n + %kO(1) logO(1) n

)
[Theorem 5.7]

k-means Ok(n(log n)kε−2k2d) [Mat00] (**)
O(n+kk+2ε−(2d+1)klogk+1 n logk 1

ε
)

[Theorem 6.5]

Streaming

k-median
Const factor; Any metric space
O(kpolylog) space [MCP03]

k-means and k-median
(1+ε)-approx; Points in IRd.
O(kε−d log2d+2 n) space
[Theorem 7.2]

Table 1: For our results, all the running time bounds are in expectation and the algorithms
succeed with high probability. (*) Getting this running time requires non-trivial modifica-
tions of the algorithm of Kolliopoulos and Rao [KR99]. (**) The Ok notation hides constants
that depends solely on k.

to facilitate computation of the objective function. Thus the standard complexity measures
in the data stream model are the storage cost, the update cost on seeing a new point and
the time to compute the function from the aggregated data structure.

k-median clustering. The k-median problem turned out to be nontrivial even in low
dimensions and achieving a good approximation proved to be a challenge. Motivated by
the work of Arora [Aro98], which proposed a new technique for geometric approximation
algorithms, Arora, Raghavan and Rao [ARR98] presented a O

(
nO(1/ε)+1

)
time (1 + ε)-

approximation algorithm for points in the plane. This was significantly improved by Kol-
liopoulos and Rao [KR99] who proposed an algorithm with a running time of O(%n log n log k)
for the discrete version of the problem, where the medians must belong to the input set and
% = exp [O((1 + log 1/ε)/ε)d−1]. The k-median problem has been studied extensively for
arbitrary metric spaces and is closely related to the un-capacitated facility location problem.
Charikar et al. [CGTS99] proposed the first constant factor approximation to the problem
for an arbitrary metric space using a natural linear programming relaxation of the prob-
lem followed by rounding the fractional solution. The fastest known algorithm is due to
Mettu and Plaxton [MP02] who give an algorithm which runs in O(n(k + log n)) time for
small enough k given the distances are bound by 2O(n/ log(n/k)). It was observed that if the
constraint of having exactly k-medians is relaxed, the problem becomes considerably easier
[CG99, JV99]. In particular, Indyk [Ind99] proposed a constant factor approximation algo-

rithm which produces O(k) medians in Õ(nk) time. In the streaming context, Guha et al.
[GNMO00] propose an algorithm which uses O(nε) memory to compute 21/ε approximate k-
medians. Charikar et al. [MCP03] improve the algorithm by reducing the space requirement
to O(k · polylog(n)).

k-means clustering. Inaba et al. [IKI94] observe that the number of Voronoi partitions of
k points in IRd is nkd and can be done exactly in time O(nkd+1). They also propose approxi-
mation algorithms for the 2-means clustering problem with time complexity O(nO(d)). de la
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Vega et al. [dlVKKR03] proposes a (1 + ε)-approximation algorithm, for high dimensions,
with running time O(g(k, ε)n logk n), where g(k, ε) = exp[(k3/ε8)(ln(k/ε)) ln k] (they refer to
it as `2

2 k-median clustering). Matoušek [Mat00] proposed a (1+ε)-approximation algorithm

for the geometric k-means problem with running time O
(
nε−2k2d logk n

)
.

Our Results. We propose fast algorithms for the approximate k-means and k-medians
problems. The central idea behind our algorithms is computing a weighted point set which
we call a (k, ε)-coreset. For an optimization problem, a coreset is a subset of input, such
that we can get a good approximation to the original input by solving the optimization
problem directly on the coreset. As such, to get good approximation, one needs to compute
a coreset, as small as possible from the input, and then solve the problem on the coreset
using known techniques. Coresets have been used for geometric approximation mainly in low-
dimension [AHV03, Har01a, APV02], although a similar but weaker concept was also used
in high dimensions [BHI02, BC03, HV02]. In low dimensions coresets yield approximation
algorithm with linear or near linear running time with an additional term that depends only
on the size of the coreset.

In the present case, the property we desire of the (k, ε)-coreset is that the clustering cost
of the coreset for any arbitrary set of k centers is within (1± ε) of the cost of the clustering
for the original input. To facilitate the computation of the coreset, we first show a linear time
algorithm (for k = O(n1/4)), that constructs a O(kpolylog) sized set of centers such that the
induced clustering gives a constant factor approximation to both the optimal k-means and
the optimal k-medians clustering. We believe that the technique used for this fast algorithm
is of independent interest. Note that it is faster than previous published fast algorithms for
this problem (see [MP02] and references therein), since we are willing to use more centers.
Next, we show how to construct a suitably small coreset from the set of approximate centers.
We compute the k clusterings for the coresets using weighted variants of known clustering
algorithms. Our results are summarized in Table 1.

One of the benefits of our new algorithms is that in the resulting bounds, on the running
time, the term containing ‘n’ is decoupled from the “nasty” exponential constants that
depend on k and 1/ε. Those exponential constants seems to be inherent to the clustering
techniques currently known for those problems.

Our techniques extend very naturally to the streaming model of computation. The
aggregate data-structure is just a (k, ε)-coreset of the stream seen so far. The size of the
maintained coreset is O(kε−d log n), and the overall space used is O((log2d+2 n)/εd). The
amortized time to update the data-structure on seeing a new point is O(k5 + log2(k/ε)).

As a side note, our ability to get linear time algorithms for fixed k and ε, relies on the
fact that our algorithms need to solve a batched version of the nearest neighbor problem. In
our algorithms, the number of queries is considerably larger than the number of sites, and
the distances of interest arise from clustering. Thus, a small additive error which is related
to the total price of the clustering is acceptable. In particular, one can build a data-structure
that answers nearest neighbor queries in O(1) time per query, see Appendix A. Although
this is a very restricted case, this result may nevertheless be of independent interest, as this
is the first data-structure to offer nearest neighbor queries in constant time, in a non-trivial
settings.
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The paper is organized as follows. In Section 3, we prove the existence of coresets for k-
median/means clustering. In Section 4, we describe the fast constant factor approximation
algorithm which generates more than k means/medians. In Section 5 and Section 6, we
combine the results of the two preceding sections, and present an (1 + ε)-approximation
algorithm for k-means and k-median respectively. In Section 7, we show how to use coresets
for space efficient streaming. We conclude in Section 8.

2 Preliminaries

Definition 2.1 For a point set X, and a point p, both in IRd, let d(p, X) = minx∈X ‖xp‖
denote the distance of p from X..

Definition 2.2 (Clustering) For a weighted point set P with points from IRd, with an asso-
ciated weight function w : P → Z+ and any point set C, we define νC(P ) =

∑
p∈P w(p)d(p, C)

as the price of the k-median clustering provided by C. Further let νopt(P, k) = minC⊆IRd,|C|=k νC(P )
denote the price of the optimal k-median clustering for P .

Similarly, let µC(P ) =
∑

p∈P w(p)(d(p, C))2 denote the price of the k-means clustering
of P as provided by the set of centers C. Let µopt(P, k) = minC⊆IRd,|C|=k µC(P ) denote the
price of the optimal k-means clustering of P .

We refer to Rν
opt(P, k) = νopt(P, k)/|P | as the average radius of P . And to Rµ

opt(P, k) =√
µopt(P, k)/ |P | as the average means radius of P .

Remark 2.3 We only consider positive integer weights. A regular point set P may be
considered as a weighted set with weight 1 for each point, and total weight |P |.

Definition 2.4 (Discrete Clustering) In several cases, it is convenient to consider the
centers to be restricted to lie in the original point set. In particular, let νD

opt(P, k) =
minC⊆P,|C|=k νC(P ) denote the price of the optimal discrete k-median clustering for P and let
µD

opt(P, k) = minC⊆P,|C|=k µC(P ) denote the price of the optimal discrete k-means clustering
of P .

Observation 2.5 For any point set P , we have µopt(P, k) ≤ µD
opt(P, k) ≤ 4µopt(P, k), and

νopt(P, k) ≤ νD
opt(P, k) ≤ 2νopt(P, k).

3 Coresets from Approximate Clustering

Definition 3.1 (Coreset) For a weighted point set P ⊆ IRd, a weighted set S ⊆ IRd, is a
(k, ε)-coreset of P for the k-median clustering, if for any set C of k points in IRd, we have
(1− ε)νC(P ) ≤ νC(S) ≤ (1 + ε)νC(P ).

Similarly, S is a (k, ε)-coreset of P for the k-means clustering, if for any set C of k points
in IRd, we have (1− ε)µC(P ) ≤ µC(S) ≤ (1 + ε)µC(P ).
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3.1 Coreset for k-Median

Let P be a set of n points in IRd, and A = {x1, . . . , xm} be a point set, such that νA(P ) ≤
cνopt(P, k), where c is a constant. We give a construction for a (k, ε)-coreset using A. Note
that we do not have any restriction on the size of A, which in subsequent uses will be taken
to be O(kpolylog).

3.1.1 The construction

Let Pi be the points of P having xi as their nearest neighbor in A, for i = 1, . . . ,m. Let
R = νA(P )/(cn) be a lower bound estimate of the average radius Rν

opt(P, k) = νopt(P, k)/n.
For any p ∈ Pi, we have ‖pxi‖ ≤ cnR, since ‖pxi‖ ≤ νA(P ), for i = 1, . . . ,m.

Next, we construct an appropriate exponential grid around each xi, and snap the points
of P to those grids. Let Qi,j be an axis-parallel square with side length R2j centered at xi,
for j = 0, . . . ,M , where M = d2 lg(cn)e. Next, let Vi,0 = Qi,0, and let Vi,j = Qi,j \ Qi,j−1,
for j = 1, . . . ,M . Partition Vi,j into into a grid with side length rj = εR2j/(10cd), and let
Gi denote the resulting exponential grid for Vi,0, . . . , Vi,M . Next, compute for every point
of Pi, the grid cell in Gi that contains it. For every non empty grid cell, pick an arbitrary
point of Pi inside it as a representative point for the coreset, and assign it a weight equal
to the number of points of Pi in this grid cell. Let Si denote the resulting weighted set, for
i = 1, . . . ,m, and let S = ∪iSi.

Note that |S| = O
(
(|A| log n) /εd

)
. As for computing S efficiently. Observe that all

we need is a constant factor approximation to νA(P ) (i.e., we can assign a p ∈ P to Pi

if ‖p, xi‖ ≤ 2d(p, A)). This can be done in a naive way in O(nm) time, which might
be quite sufficient in practice. Alternatively, one can use a data-structure that answers
constant approximate nearest-neighbor queries in O(log m) when used on A after O(m log m)
preprocessing [AMN+98]. Another option for computing those distances between the points
of P and the set A is using Theorem A.3 that works in O(n + mn1/4 log n) time. Thus, for
i = 1, . . . ,m, we compute a set P ′

i which consists of the points of P that xi (approximately)
serves. Next, we compute the exponential grids, and compute for each point of P ′

i its
grid cell. This takes O(1) time per point, with a careful implementation, using hashing,
the floor function and the log function. Thus, if m = O(

√
n) the overall running time is

O(n + mn1/4 log n) = O(n) and O(m log m + n log m + n) = O(n log m) otherwise.

3.1.2 Proof of Correctness

Lemma 3.2 The weighted set S is a (k, ε)-coreset for P and |S| = O
(
|A|ε−d log n

)
.

Proof: Let Y be an arbitrary set of k points in IRd. For any p ∈ P , let p′ denote the
image of p in S. The error is E = |νY (P )− νY (S)| ≤

∑
p∈P |d(p, Y )− d(p′, Y )|.

Observe that d(p, Y ) ≤ ‖pp′‖ + d(p′, Y ) and d(p′, Y ) ≤ ‖pp′‖ + d(p, Y ) by the triangle
inequality. Implying that |d(p, Y )− d(p′, Y )| ≤ ‖pp′‖. It follows that

E ≤
∑
p∈P

‖pp′‖ =
∑
p∈P,

d(p,A)≤R

‖pp′‖+
∑
p∈P,

d(p,A)>R

‖pp′‖ ≤ ε

10c
nR+

ε

10c

∑
p∈P

d(p, A) ≤ 2ε

10c
νA(P ) ≤ ενopt(P, k) ,
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since ‖pp′‖ ≤ ε
10c

d(p, A) if d(p, A) ≥ R, and ‖pp′‖ ≤ ε
10c

R, if d(p, A) ≤ R, by the construction
of the grid. This implies |νY (P )− νY (S)| ≤ ενY (P ), since νopt(P, k) ≤ νY (P ).

It is easy to see that the above algorithm can be easily extended for weighted point sets.

Theorem 3.3 Given a point set P with n points, and a point set A with m points, such
that νA(P ) ≤ cνopt(P, k), where c is a constant. Then, one can compute a weighted set S
which is a (k, ε)-coreset for P , and |S| = O

(
(|A| log n)/εd

)
. The running time is O(n) if

m = O(
√

n) and O(n log m) otherwise.
If P is weighted, with total weight W , then |S| = O

(
(|A| log W )/εd

)
.

3.2 Coreset for k-Means

The construction of the k-means coreset follows the k-median with a few minor modifications.
Let P be a set of n points in IRd, and a A be a point set A = {x1, . . . , xm}, such that
µA(P ) ≤ cµopt(P, k). Let R =

√
(µA(P )/(cn)) be a lower bound estimate of the average

mean radius Rµ
opt(P, k) =

√
µopt(P, k)/n. For any p ∈ Pi, we have ‖pxi‖ ≤

√
cnR, since

‖pxi‖2 ≤ µA(P ), for i = 1, . . . ,m.
Next, we construct an exponential grid around each point of A, as in the k-median case,

and snap the points of P to this grid, and we pick a representative point for such grid cell.
See Section 3.1.1 for details. We claim that the resulting set of representatives S is the
required coreset.

Theorem 3.4 Given a set P with n points, and a point set A with m points, such that
µA(P ) ≤ cµopt(P, k), where c is a constant. Then, can compute a weighted set S which is a
(k, ε)-coreset for P , and |S| = O

(
(m log n)/(cε)d

)
. The running time is O(n) if m = O(n1/4)

and O(n log m) otherwise.
If P is a weighted set with total weight W , then the size of the coreset is O

(
(m log W )/εd

)
.

Proof: We prove the theorem for an unweighted point set. The construction is as in
Section 3.2. As for correctness, consider an arbitrary set B of k points in IRd. The proof
is somewhat more tedious than the median case, and we give short description of it before
plunging into the details. We partition the points of P into three sets: (i) Points that are
close (i.e., ≤ R) to both B and A. The error those points contribute is small because they
contribute small terms to the summation. (ii) Points that are closer to B than to A (i.e.,
PA). The error those points contribute can be charged to an ε fraction of the summation
µA(P ). (iii) Points that are closer to A than to B (i.e., PB). The error is here charged to
the summation µB(P ). Combining those three error bounds, give us the required result.

For any p ∈ P , let p′ the image of p in S; namely, p′ is the point in the coreset S that
represents p. Now, we have

E = |µB(P )− µB(S)| ≤
∑
p∈P

∣∣d(p, B)2 − d(p′, B)2
∣∣

≤
∑
p∈P

∣∣∣(d(p, B)− d(p′, B)
)(

d(p, B) + d(p′, B)
)∣∣∣
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Let PR =
{

p ∈ P
∣∣∣d(p, B) ≤ R and d(p, A) ≤ R

}
, PA =

{
p ∈ P \ PR

∣∣∣d(p, B) ≤ d(p, A)
}

,

and let PB = P \(PR ∪ PA). By the triangle inequality, for p ∈ P , we have d(p′, B)+‖pp′‖ ≥
d(p, B) and d(p, B) + ‖pp′‖ ≥ d(p′, B). Thus, ‖pp′‖ ≥ |d(p, B)− d(p′, B)|.

Also, d(p, B) + d(p′, B) ≤ 2d(p, B) + ‖pp′‖, and thus

ER =
∑
p∈PR

∣∣(d(p, B)− d(p′, B)
)(

d(p, B) + d(p′, B)
)∣∣

≤
∑
p∈PR

‖pp′‖(2d(p, B) + ‖pp′‖) ≤
∑
p∈PR

ε

10
R

(
2R +

ε

10
R

)
≤ ε

3

∑
p∈PR

R2 ≤ ε

3
µopt(P, k),

since by definition, for p ∈ PR, we have d(p, A),d(p, B) ≤ R.
By construction ‖pp′‖ ≤ (ε/10c)d(p, A), for all p ∈ PA, as d(p, A) ≥ R. Thus,

EA =
∑
p∈PA

‖pp′‖(2d(p, B) + ‖pp′‖) ≤
∑
p∈PA

ε

10c
d(p, A)

(
2 +

ε

10c

)
d(p, A)

≤ ε

3c

∑
p∈PA

(d(p, A))2 ≤ ε

3
µopt(P, k) ≤ ε

3
µB(P ).

As for p ∈ PB, we have ‖pp′‖ ≤ ε
10c

d(p, B), since d(p, B) ≥ R, and d(p, A) ≤ d(p, B).
Implying ‖pp′‖ ≤ (ε/10c)d(p, B) and thus

EB =
∑
p∈PB

‖pp′‖(2d(p, B) + ‖pp′‖) ≤
∑
p∈PB

ε

10c
d(p, B)

(
2d(p, B) +

ε

10c
d(p, B)

)
≤

∑
p∈PB

ε

3
d(p, B)2 ≤ ε

3
µB(P ).

We conclude that E = |µB(P )− µB(S)| ≤ ER + EA + EB ≤ 3ε
3
µB(P ), which implies that

(1− ε)µB(P ) ≤ µB(S) ≤ (1 + ε)µB(P ), as required. It is easy to see that we can extend the
analysis for the case when we have weighted points.

4 Fast Constant Factor Approximation Algorithm

Let P be the given point set in IRd. We want to quickly compute a constant factor approx-
imation to the k-means clustering of P , while using more than k centers. The number of
centers output by our algorithm is O

(
k log3 n

)
. Surprisingly, the set of centers computed

by the following algorithm is a good approximation for both k-median and k-means. To be
consistent, throughout this section, we refer to k-means, although everything holds nearly
verbatim for k-median as well.

Definition 4.1 (bad points) For a point set X, define a point p ∈ P as bad with respect
to X, if the cost it pays in using a center from X is prohibitively larger than the price Copt

pays for it; more precisely d(p, X) ≥ 2d(p, Copt). A point p ∈ P which is not bad, is by
necessity, if not by choice, good. Here Copt = Copt(P, k) is a set of optimal k-means centers
realizing µopt(P, k).
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We first describe a procedure which given P , computes a small set of centers X and a large
P ′ ⊆ P such that X induces clusters P ′ well. Intuitively we want a set X and a large set of
points P ′ which are good for X.

4.1 Construction of the Set X of Centers

For k = O(n1/4), we can compute a 2-approximate k-center clustering of P in linear time
[Har01a], or alternatively, for k = Ω(n1/4), in O(n log k) time, using the algorithm of Feder
and Greene [FG88]. This is the min-max clustering where we cover P by a set of k balls
such the radius of the largest ball is minimized. Let V be the set of k centers computed,
together with the furthest point in P from those k centers.

Let L be the radius of this 2-approximate clustering. Since both those algorithms are
simulating the (slower) algorithm of Gonzalez [Gon85], we have the property that the minimal
distance between any points of V is at least L. Thus, any k-means clustering of P , must
have price at least (L/2)2, and is at most of price nL2, and as such L is a rough estimate
of µopt(P, k). In fact, this holds even if we restrict out attention only to V ; explicitly
(L/2)2 ≤ µopt(V, k) ≤ µopt(P, k) ≤ nL2.

Next, we pick a random sample Y from P of size ρ = γk log2 n, where γ is a large enough
constant whose value would follow from our analysis. Let X = Y ∪ V be the required set of
cluster centers. In the extreme case where ρ > n, we just set X to be P .

4.2 A Large Good Subset for X

4.2.1 Bad points are few

Consider the set Copt of k optimal centers for the k-means, and place a ball bi around each
point of ci ∈ Copt, such that bi contain η = n/(20k log n) points of P . If γ is large enough,
it is easy to see that with high probability, there is at least one point of X inside every ball
bi. Namely, X ∩ bi 6= ∅, for i = 1, . . . , k.

Let Pbad be the set of all bad points of P . Assume, that there is a point xi ∈ X inside bi,
for i = 1, . . . , k. Observe, that for any p ∈ P \ bi, we have ‖pxi‖ ≤ 2 ‖pci‖. In particular, if
ci is the closest center in Copt to p, we have that p is good. Thus, with high probability, the
only bad points in P are the one that lie inside the balls b1, . . . , bk. But every one of those
balls, contain at most η points of P . It follows, that with high probability, the number of
bad points in P with respect to X is at most β = k · η = n/(20 log n).

4.2.2 Keeping Away from Bad Points

Although the number of bad points is small, there is no easy way to determine the set of
bad points. We instead construct a set P ′ ensuring that the clustering cost of the bad points
in P ′ does not dominate the total cost. For every point in P , we compute its approximate
nearest neighbor in X. This can be easily done in O(n log |X| + |X| log |X|) time using

appropriate data structures [AMN+98], or in O(n + n |X|1/4 log n) time using Corollary A.4
(with D = nL). This stage takes O(n) time, if k = O(n1/4), else it takes O(n log |X| +
|X| log |X|) = O(n log(k log n)) time, as |X| ≤ n.
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In the following, to simplify the exposition, we assume that we compute exactly the
distance r(p) = d(p, X), for p ∈ P .

Next, we partition P into classes in the following way. Let P [a, b] =
{

p ∈ P
∣∣∣ a ≤ r(p) < b

}
.

Let P0 = P [0, L/(4n)], P∞ = P [2Ln,∞] and Pi = P
[
2i−1L/n, 2iL/n

]
, for i = 1, . . . ,M ,

where M = 2 dlg ne + 3. This partition of P can be done in linear time using the log and
floor function.

Let Pα be the last class in this sequence that contains more than 2β = 2(n/(20 log n))
points. Let P ′ = V ∪

⋃
i≤α Pi. We claim that P ′ is the required set. Namely, |P ′| ≥ n/2 and

µX(P ′) = O(µCopt(P
′)), where Copt = Copt(P, k) is the optimal set of centers for P .

4.2.3 Proof of Correctness

Clearly the set P ′ contains at least (n− |P∞| −M ·(2n/20 log n)) points. Since P∞ ⊆ Pbad

and |Pbad| ≤ β, hence |P ′| > n/2.
If α > 0, we have |Pα| ≥ 2β = 2(n/(20 log n)). Since P ′ is the union of all the classes

with distances smaller than the distances in Pα, it follows that the worst case scenario is
when all the bad points are in Pα. But with high probability the number of bad points is
at most β, and since the price of all the points in Pα is roughly the same, it follows that we
can charge the price of the bad points in P ′ to the good points in Pα.

Formally, let Q′ = Pα \ Pbad. For any point p ∈ P ′ ∩ Pbad and q ∈ Q′, we have
d(p, X) ≤ 2d(q, X). Further |Q′| > |Pbad|. Thus, µX(P ′ ∩ Pbad) ≤ 4µX(Q′) ≤ 16µCopt(Q

′) ≤
16µCopt(P

′). Thus,

µX(P ′) = µX(P ′ ∩ Pbad) + µX(P ′ \ Pbad) ≤ 16µCopt(P
′) + 4µCopt(P

′) = 20µCopt(P
′).

If α = 0 then for any point p ∈ P ′, we have (d(p, X))2 ≤ n(L/4n)2 ≤ L2/(4n). and thus
µX(P ′) ≤ L2/4 ≤ µCopt(V ) ≤ µCopt(P

′), since V ⊆ P ′.
In the above analysis we assumed that the nearest neighbor data structure returns the

exact nearest neighbor. If we were to use an approximate nearest neighbor instead, the
constants would slightly deteriorate.

Lemma 4.2 Given a set P of n points in IRd, and parameter k, one can compute sets P ′

and X ⊆ P such that, with high probability, |P ′| ≥ n/2, |X| = O(k log2 n), and µCopt(P
′) ≥

µX(P ′)/32, where Copt is the optimal set of k-means centers for P . The running time of the
algorithm is O(n) if k = O(n1/4), and O(n log (k log n)) otherwise.

Now, finding a constant factor k-median clustering is easy. Apply Lemma 4.2 to P ,
remove the subset found, and repeat on the remaining points. Clearly, this would re-
quire O(log n) iterations. We can extend this algorithm to the weighted case, by sampling
O(k log2 W ) points at every stage, where W is the total weight of the points. Note however,
that the number of points no longer shrink by a factor of two at every step, as such the
running time of the algorithm is slightly worse.

Theorem 4.3 (Clustering with more centers) Given a set P of n points in IRd, and
parameter k, one can compute a set X, of size O(k log3 n), such that µX(P ) ≤ 32µopt(P, k).
The running time of the algorithm is O(n) if k = O(n1/4), and O(n log (k log n)) otherwise.
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Furthermore, the set X is a good set of centers for k-median. Namely, we have that
νX(P ) ≤ 32νopt(P, k).

If the point set P is weighted, with total weight W , then the size of X becomes O(k log3 W ),
and the running time becomes O(n log2 W ).

5 (1 + ε)-Approximation for k-Median

We now present the approximation algorithm using exactly k centers. Assume that the
input is a set of n points. We use the set of centers computed in Theorem 4.3 to compute
a constant factor coreset using the algorithm of Theorem 3.3. The resulting coreset S, has
size O(k log4 n). Next we compute a O(n) approximation to the k-median for the coreset
using the k-center (min-max) algorithm [Gon85]. Let C0 ⊆ S be the resulting set of centers.
Next we apply the local search algorithm, due to Arya et al. [AGK+01], to C0 and S,
where the set of candidate points is S. This local search algorithm, at every stage, picks
a center c from the current set of centers Ccurr, and a candidate center s ∈ S, and swaps
c out of the set of centers and s into the set of centers. Next, if the new set of centers
C ′

curr = Ccurr \{c}∪{s} provides a considerable improvement over the previous solution (i.e.,
νCcurr(S) ≤ (1−ε/k)νC′

curr
(S) where ε here is an arbitrary small constant), then we set Ccurr

to be C ′
curr. Arya et al. [AGK+01] showed that the algorithm terminates, and it provides a

constant factor approximation to νD
opt(S, k), and as hence to νopt(P, k). It is easy to verify

that it stops after O(k log n) such swaps. Every swap, in the worst case, requires considering
|S| k sets. Computing the price of clustering for every such candidate set of centers takes
O(|S| k) time. Thus, the running time of this algorithm is O

(
|S|2 k3 log n

)
= O

(
k5 log9 n

)
.

Finally, we use the new set of centers with Theorem 3.3, and get a (k, ε)-coreset for P . It
is easy to see that the algorithm works for weighted point-sets as well. Putting in the right
bounds from Theorem 4.3 and Theorem 3.3 for weighted sets, we get the following.

Lemma 5.1 (coreset) Given a set P of n points in IRd, one can compute a k-median
(k, ε)-coreset S of P , of size O

(
(k/εd) log n

)
, in time O

(
n + k5 log9 n

)
.

If P is a weighted set, with total weight W , the running time of the algorithm is O(n log2 W+
k5 log9 W ).

We would like to apply the algorithm of Kolliopoulos and Rao [KR99] to the coreset,
but unfortunately, their algorithm only works for the discrete case, when the medians are
part of the input points. Thus, the next step is to generate from the coreset, a small set of
candidate points in which we can assume all the medians lie, and use the (slightly modified)
algorithm of [KR99] on this set.

Definition 5.2 (Centroid Set) Given a set P of n points in IRd, a set D ⊆ IRd is an
(k, ε)-approximate centroid set for P , if there exists a subset C ⊆ D of size k, such that
νC(P ) ≤ (1 + ε)νopt(P, k).

Lemma 5.3 Given a set P of n points in IRd, one can compute an (k, ε)-centroid set D of
size O(k2ε−2d log2 n). The running time of this algorithm is O

(
n + k5 log9 n + k2ε−2d log2 n

)
.
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For the weighted case, the running time is O
(
n log2 W + k5 log9 W + k2ε−2d log2 W

)
, and

the centroid set is of size O(k2ε−2d log2 W ).

Proof: Compute a (k, ε/12)-coreset S using Lemma 5.1. We retain the set B of k centers,
for which νB(P ) = O(νopt(P, k)), which is computed during the construction of S. Further
let R = νB(P )/n.

Next, compute around each point of S, an exponential grid using R, as was done in
Section 3.1.1. This results in a point set D of size of O(k2ε−2d log2 n). We claim that D is
the required centroid set. The proof proceeds on similar lines as the proof of Theorem 3.3.

Indeed, let Copt be the optimal set of k medians. We snap each point of Copt to its nearest
neighbor in D, and let X be the resulting set. Arguing as in the proof of Theorem 3.3,
we have that

∣∣νX(S)− νCopt(S)
∣∣ ≤ (ε/12)νCopt(S). On the other hand, by definition of a

coreset,
∣∣νCopt(P )− νCopt(S)

∣∣ ≤ (ε/12) νCopt(P ) and |νX(P )− νX(S)| ≤ (ε/12) νX(P ). As
such, νCopt(S) ≤ (1 + ε/12)νCopt(P ) and it follows∣∣νX(S)− νCopt(S)

∣∣ ≤ (ε/12)(1 + ε/12)νCopt(P ) ≤ (ε/6)νCopt(P ).

As such,

νX(P ) ≤ 1

1− ε/12
νX(S) ≤ 2νX(S) ≤ 2

(
νCopt(S) +

ε

6
νCopt(P )

)
≤ 2

((
1 +

ε

12

)
νCopt(P ) +

ε

6
νCopt(P )

)
≤ 3νCopt(P ),

for ε < 1. We conclude that |νX(P )− νX(S)| ≤ (ε/12)νX(P ) ≤ (ε/3)νCopt(P ). Putting
things together, we have∣∣νX(P )− νCopt(P )

∣∣ ≤ |νX(P )− νX(S)|+
∣∣νX(S)− νCopt(S)

∣∣
+

∣∣νCopt(S)− νCopt(P )
∣∣

≤
(ε

3
+

ε

6
+

ε

12

)
νCopt(P ) ≤ ενCopt(P ).

We are now in the position to get a fast approximation algorithm. We generate the
centroid set, and then we modify the algorithm of Kolliopoulos and Rao so that it considers
centers only from the centroid set in its dynamic programming stage. For the weighted case,
the depth of the tree constructed in [KR99] is O(log W ) instead of O(log n). Further since
their algorithm works in expectation, we run it independently O(log(1/δ)/ε) times to get a
guarantee of (1− δ).

Theorem 5.4 ([KR99]) Given a weighted point set P with n points in IRd, with total weight
W , a centroid set D of size at most n, and a parameter δ > 0, one can compute (1 + ε)-
approximate k-median clustering of P using only centers from D. The overall running time is
O(%n(log k)(log W ) log(1/δ)), where % = exp [O((1 + log 1/ε)/ε)d−1]. The algorithm succeeds
with probability ≥ 1− δ.

The final algorithm is the following: Using the algorithms of Lemma 5.1 and Lemma 5.3
we generate a (k, ε)-coreset S and an ε-centroid set D of P , where |S| = O(kε−d log n) and
|D| = O(k2ε−2d log2 n). Next, we apply the algorithm of Theorem 5.4 on S and D.
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Theorem 5.5 ((1 + ε)-approx k-median) Given a set P of n points in IRd, and parameter
k, one can compute a (1 + ε)-approximate k-median clustering of P (in the continuous
sense) in O

(
n + k5 log9 n + %k2 log5 n

)
time, where % = exp [O((1 + log 1/ε)/ε)d−1] and c is

a constant. The algorithm outputs a set X of k points, such that νX(P ) ≤ (1 + ε)νopt(P, k).
If P is a weighted set, with total weight W , the running time of the algorithm is O(n log2 W +
k5 log9 W + %k2 log5 W ).

We can extend our techniques to handle the discrete median case efficiently as follows.

Lemma 5.6 Given a set P of n points in IRd, one can compute a discrete (k, ε)-centroid set
D ⊆ P of size O(k2ε−2d log2 n). The running time of this algorithm is O

(
n + k5 log9 n + k2ε−2d log2 n

)
if k ≤ εdn1/4 and O

(
n log n + k5 log9 n + k2ε−2d log2 n

)
otherwise.

Proof: We compute a ε/4-centroid setD, using Lemma 5.3, and let m = |D| = O(k2ε−2d log2 n).
Observe that if m > n then we set D to be P . Next, snap every point in P to its (approx-
imate) nearest neighbor in D, using Corollary A.4. This takes O(n + mn1/10 log(n)) =
O(n + k2n1/10ε−2d log3 n) = O(n) time, if k ≤ εdn1/4, and O(n log n) otherwise (then we use
the data-structure of [AMN+98] to perform the nearest neighbor queries). For every point
x ∈ D, let P (x) be the of points in P mapped to x. Pick from every set P (x) one representa-
tive point, and let U ⊆ P be the resulting set. Consider the optimal discrete center set Copt,
and consider the set X of representative points that corresponds to the points of Copt. Using
the same argumentation as in Lemma 5.3 it is easy to show that νX(P ) ≤ (1 + ε)νD

opt(P, k).

Combining Lemma 5.6 and Theorem 5.5, we get the following.

Theorem 5.7 (Discrete k-medians) One can compute an (1 + ε)-approximate discrete
k-median of a set of n points in time O

(
n + k5 log9 n + %k2 log5 n

)
, where % is the constant

from Theorem 5.4.

Proof: The proof follows from the above discussion. As for the running time bound,
it follows by considering separately the case when 1/ε2d ≤ 1/n1/10, and the case when
1/ε2d ≥ 1/n1/10, and simplifying the resulting expressions. We omit the easy but tedious
computations.

6 A (1 + ε)-Approximation Algorithm for k-Means

6.1 Constant Factor Approximation

In this section we reduce the number of centers to be exactly k. We use the set of cen-
ters computed by Theorem 4.3 to compute a constant factor coreset using the algorithm of
Theorem 3.4. The resulting coreset S, has size O(k log4 n). Next we compute a O(n) ap-
proximation to the k-means for the coreset using the k-center (min-max) algorithm [Gon85].
Let C0 ⊆ S be the resulting set of centers. Next we apply the local search algorithm, due
to Kanungo et al. [KMN+02], to C0 and S, where the set of candidate points is S. This
local search algorithm, at every stage, picks a center c from the current set of centers Ccurr,
and a candidate center s ∈ S, and swaps c out of the set of centers and c into the set of
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centers. Next, if the new set of centers C ′
curr = Ccurr \ {c} ∪ {s} provides a considerable

improvement over the previous solution (i.e., µCcurr(S) ≤ (1− ε/k)µC′
curr

(S) where ε here is
an arbitrary small constant), then we set Ccurr to be C ′

curr. Extending the analysis of Arya
et al. [AGK+01], for the k-means algorithm, Kanungo et al. [KMN+02] showed that the
algorithm terminates, and it provides a constant factor approximation to µD

opt(S, k), and as
hence to µopt(P, k). It is easy to verify that it stops after O(k log n) such swaps. Every swap,
in the worst case, requires considering |S| k sets. Computing the price of clustering for every
such candidate set of centers takes O(|S| k) time. Thus, the running time of this algorithm
is O

(
|S|2 k3 log n

)
= O

(
k5 log9 n

)
.

Theorem 6.1 Given a point set P in IRd and parameter k, one can compute a set X ⊆ P
of size k, such that µX(P ) = O(µopt(P, k)). The algorithm succeeds with high probability.
The running time is O(n + k5 log9 n) time.

If P is weighted, with total weight W , then the algorithm runs in time O(n + k5 log4 n
log5 W ).

6.2 The (1 + ε)-Approximation

Combining Theorem 6.1 and Theorem 3.4, we get the following result for coresets.

Theorem 6.2 (coreset) Given a set P of n points in IRd, one can compute a k-means
(k, ε)-coreset S of P , of size O

(
(k/εd) log n

)
, in time O

(
n + k5 log9 n

)
.

If P is weighted, with total weight W , then the coreset is of size O
(
(k/εd) log W

)
, and

the running time is O(n log2 W + k5 log9 W ).

Proof: We first compute a set A which provides a constant factor approximation to the
optimal k-means clustering of P , using Theorem 6.1. Next, we feed A into the algorithm
Theorem 3.4, and get a (1 + ε)-coreset for P , of size O((k/εd) log W ).

We now use techniques from Matoušek [Mat00] to compute the (1 + ε)-approximate
k-means clustering on the coreset.

Definition 6.3 (Centroid Set) Given a set P of n points in IRd, a set T ⊆ IRd is an ε-
approximate centroid set for P , if there exists a subset C ⊆ T of size k, such that µC(P ) ≤
(1 + ε)µopt(P, k).

Matoušek showed that there exists an ε-approximate centroid set of size O(nε−d log(1/ε)).
Interestingly enough, his construction is weight insensitive. In particular, using an (k, ε/2)-
coreset S in his construction, results in a ε-approximate centroid set of size O

(
|S| ε−d log(1/ε)

)
.

Lemma 6.4 For a weighted point set P in IRd, with total weight W , there exists an ε-
approximate centroid set of size O(kε−2d log W log (1/ε)).

The algorithm to compute the (1 + ε)-approximation now follows naturally. We first
compute a coreset S of P of size O

(
(k/εd) log W

)
using the algorithm of Theorem 6.2. Next,

we compute in O
(
|S| log |S|+ |S| e−d log 1

ε

)
time a ε-approximate centroid set U for S, using

the algorithm from [Mat00]. We have |U | = O(kε−2d log W log (1/ε)). Next we enumerate
all k-tuples in U , and compute the k-means clustering price of each candidate center set
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(using S). This takes O
(
|U |k · k |S|

)
time. And clearly, the best tuple provides the required

approximation.

Theorem 6.5 (k-means clustering) Given a point set P in IRd with n points, one can
compute (1 + ε)-approximate k-means clustering of P in time

O
(
n + k5 log9 n + kk+2ε−(2d+1)klogk+1 n logk(1/ε)

)
.

For a weighted set, with total weight W , the running time is

O
(
n log2 W + k5 log4 n log5 W + kk+2ε−(2d+1)k logk+1 W logk(1/ε)

)
.

7 Streaming

A consequence of our ability to compute quickly a (k, ε)-coreset for a point set, is that we
can maintain the coreset under insertions quickly.

Observation 7.1 (i) If C1 and C2 are the (k, ε)-coresets for disjoint sets P1 and P2 respec-
tively, then C1 ∪ C2 is a (k, ε)-coreset for P1 ∪ P2.

(ii) If C1 is (k, ε)-coreset for C2, and C2 is a (k, δ)-coreset for C3, then C1 is a (k, ε+ δ)-
coreset for C3.

The above observation allows us to use Bentley and Saxe’s technique [BS80] as follows.
Let P = (p1, p2, . . . , pn) be the sequence of points seen so far. We partition P into sets
P0, P1, P2, . . . , Pt such that each either Pi empty or |Pi| = 2iM , for i > 0 and M = O(k/εd).
We refer to i as the rank of i.

Define ρj = ε/(c(j + 1)2) where c is a large enough constant, and 1 + δj =
∏j

l=0(1 + ρl),
for j = 1, . . . , dlg ne. We store a (k, δj)-coreset Qj for each Pj. It is easy to verify that
1 + δj ≤ 1 + ε/2 for j = 1, . . . , dlg ne and sufficiently large c. Thus the union of the Qis is a
(k, ε/2)-coreset for P .

On encountering a new point pu, the update is done in the following way: We add pu to
P0. If P0 has less than M elements, then we are done. Note that for P0 its corresponding
coreset Q0 is just itself. Otherwise, we set Q′

1 = P0, and we empty Q0. If Q1 is present,
we compute a (k, ρ2) coreset to Q1 ∪ Q′

1 and call it Q′
2, and remove the sets Q1 and Q′

1.
We continue the process until we reach a stage r where Qr did not exist. We set Q′

r to be
Qr. Namely, we repeatedly merge sets of the same rank, reduce their size using the coreset
computation, and promote the resulting set to the next rank. The construction ensures that
Qr is a (k, δr) coreset for a corresponding subset of P of size 2rM . It is now easy to verify,
that Qr is a (k,

∏j
l=0(1 + ρl)− 1)-coreset for the corresponding points of P .

We further modify the construction, by computing a (k, ε/6)-coreset Ri for Qi, whenever
we compute Qi. The time to do this is dominated by the time to compute Qi. Clearly, ∪Ri

is a (k, ε)-coreset for P at any point in time, and |∪Ri| = O(kε−d log2 n).
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Streaming k-means In this case, the Qis are coresets for k-means clustering. Since Qi has
a total weight equal to 2iM (if it is not empty) and it is generated as a (1+ρi) approximation,

by Theorem 6.2, we have that |Qi| = O
(
kε−d(i + 1)2d (i + log M)

)
. Thus the total storage

requirement is O
((

k log2d+2 n
)
/εd

)
.

Specifically, a (k, ρj) approximation of a subset Pj of rank j is constructed after every
2jM insertions, therefore using Theorem 6.2 the amortized time spent for an update is

dlog (n/M)e∑
i=0

1

2iM
O

(
|Qi| log2 |Pi|+ k5 log9 |Pi|

)
=

dlog (n/M)e∑
i=0

1

2iM
O

((
k

εd
i2d(i + log M)2 + k5(i + log M)9

))
= O

(
log2(k/ε) + k5

)
.

Further, we can generate an approximate k-means clustering from the (k, ε)-coresets, by
using the algorithm of Theorem 6.5 on ∪iRi, with W = n. The resulting running time is
O(k5 log9 n + kk+2ε−(2d+1)klogk+1 n logk(1/ε)).

Streaming k-medians We use the algorithm of Lemma 5.1 for the coreset construction.
Further we use Theorem 5.5 to compute an (1 + ε)-approximation to the k-median from the
current coreset. The above discussion can be summarized as follows.

Theorem 7.2 Given a stream P of n points in IRd and ε > 0, one can maintain a (k, ε)-
coresets for k-median and k-means efficiently and use the coresets to compute a (1 + ε)-
approximate k-means/median for the stream seen so far. The relevant complexities are:

• Space to store the information: O
(
kε−d log2d+2 n

)
.

• Size and time to extract coreset of the current set: O(kε−d log2 n).

• Amortized update time: O
(
log2(k/ε) + k5

)
.

• Time to extract (1 + ε)-approximate k-means clustering:
O

(
k5 log9 n + kk+2ε−(2d+1)klogk+1 n logk(1/ε)

)
.

• Time to extract (1 + ε)-approximate k-median clustering:
O

(
%k log7 n

)
, where % = exp [O((1 + log 1/ε)/ε)d−1].

Interestingly, once an optimization problem has a coreset, the coreset can be maintained
under both insertions and deletions, using linear space. The following result follows in a
plug and play fashion from [AHV03, Theorem 5.1], and we omit the details.

Theorem 7.3 Given a point set P in IRd, one can maintain a (k, ε)-coreset of P for k-
median/means, using linear space, and in time O(kε−d logd+2 n log k log n

ε
+ k5 log10 n) per

insertion/deletions.
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8 Conclusions

In this paper, we showed the existence of small coresets for the k-means and k-median
clustering. At this point, there are numerous problems for further research. In particular:

1. Can the running time of approximate k-means clustering be improved to be similar to
the k-median bounds? Can one do FPTAS for k-median and k-means (in both k and
1/ε)? Currently, we can only compute the (k, ε)-coreset in fully polynomial time, but
not extracting the approximation itself from it.

2. Can the log n in the bound on the size of the coreset be removed?

3. Does a coreset exist for the problem of k-median and k-means in high dimensions?
There are some partial relevant results [BHI02].

4. Can one do efficiently (1 + ε)-approximate streaming for the discrete k-median case?

5. Recently, Piotr Indyk [Ind03] showed how to maintain a (1 + ε)-approximation to k-
median under insertion and deletions (the number of centers he is using is roughly
O(k log2 ∆) where ∆ is the spread of the point set). It would be interesting to see if
one can extend our techniques to maintain coresets also under deletions. It is clear that
there is a linear lower bound on the amount of space needed, if one assume nothing.
As such, it would be interesting to figure out what are the minimal assumptions for
which one can maintain (k, ε)-coreset under insertions and deletions.
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A Fuzzy Nearest-Neighbor Search in Constant Time

Let X be a set of m points in IRd, such that we want to answer ε-approximate nearest
neighbor queries on X. However, if the distance of the query point q to its nearest neighbor
in X is smaller than δ, then it is legal to return any point of X in distance smaller than δ
from q. Similarly, if a point is in distance larger than ∆ from any point of X, we can return
any point of X. Namely, we want to do nearest neighbor search on X, when we care only
for an accurate answer if the distance is in the range [δ, ∆].
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Definition A.1 Given a point set X and parameters δ, ∆ and ε, a data structure D answers
(δ, ∆, ε)-fuzzy nearest neighbor queries, if for an arbitrary query q, it returns a point x ∈ X
such that

1. If d(q, X) > ∆ then x is an arbitrary point of X.

2. If d(q, X) < δ then x is an arbitrary point of X in distance smaller than δ from q.

3. Otherwise, ‖qx‖ ≤ (1 + ε)d(q, X).

In the following, let ρ = ∆/δ and assume that 1/ε = O(ρ). First, we construct a grid
G∆ of size length ∆, using hashing and the floor function, we throw the points of X into
their relevant cells in G∆. We construct a NN data structure for every non-empty cell in
G∆. Given a query point q, we will compute its cell c in the grid G∆, and perform NN
queries in the data-structure associated with c, and the data-structures associated with all
its neighboring cells, returning the best candidate generated. This would imply O(3d) queries
into the cell-level NN data-structure.

Consider Y to be the points of X stored in a cell c of G∆. We first filter Y so that there
are no points in Y that are too close to each other. Namely, let G be the grid of side length
δε/(10d). Again, map the points of Y into this grid G, in linear time. Next, scan over the
nonempty cells of G, pick a representative point of Y from such a cell, and add it to the
output point set Z. However, we do not add a representative point x to Z, if there is a
neighboring cell to cx, which already has a representative point in Z, where cx is the cell in
G containing x. Clearly, the resulting set Z ⊆ Y is well spaced, in the sense that there is no
pair of points of Z that are in distance smaller than δε/(10d) from each other. As such, the
result of a (δ, ∆, ε)-fuzzy NN query on Z is a valid answer for a equivalent fuzzy NN query
done on Y , as can be easily verified. This filtering process can be implemented in linear
time.

The point set Z has a bounded stretch; namely, the ratio between the diameter of Z
and the distance of the closet pair is bounded by ∆/(δε/(10d)) = O(ρ2). As such, we can
use a data structure on Z for nearest neighbors on point set with bounded stretch [Har01b,
Section 4.1]. This results in a quadtree T of depth O(log(ρ)) ≤ c log ρ, where c is constant.
Answering NN queries, is now done by doing a point-location query in T , and finding the
leaf of T that contains the query point q, as every leaf v in T store a point of Z which is a
(1+ε)-approximate nearest neighbor for all the points in cv, where cv is the region associated
with v. The construction time of T is O(|Z| ε−d log ρ), and this also bound the size of T .

Doing the point-location query in T in the naive way, takes O(depth(T )) = O(log ρ)
time. However, there is a standard technique to speed up the nearest neighbor query in this
case to O(log depth(T )) [AEIS99]. Indeed, observe that one can compute for every node in
T a unique label, and furthermore given a query point q = (x, y) (we use a 2d example to
simplify the exposition) and a depth i, we can compute in constant time the label of the
node of the quadtree T of depth i that the point-location query for q would go through. To
see that, consider the quadtree as being constructed on the unit square [0, 1]2, and observe
that if we take the first i bits in the binary representation of x and y, denoted by xi and yi

respectively, then the tuple (xi, yi, i) uniquely define the required node, and the tuple can
be computed in constant time using bit manipulation operators.
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As such, we hash all the nodes in T with their unique tuple id into a hash table. Given
a query point q, we can now perform a binary search along the path of q in T , to find the
node where this path “falls of” T . This takes O(log depth(T )) time.

One can do even better. Indeed, we remind the reader that the depth of T is c log ρ,
where c is a constant. Let α = d(log ρ)/(20dr)e ≤ (log ρ)/(10dr), where r is an arbitrary
integer parameter. If a leaf v in T is of depth u, we continue to split and refine it till all the
resulting leaves of v lie in level αdu/αe in T . This would blow up the size of the quadtree
by a factor of O((2d)α) = O(ρ1/r). Furthermore, by the end of this process, the resulting
quadtree has leaves only on levels with depth which is an integer multiple of α. In particular,
there are only O(r) levels in the resulting quadtree T ′ which contain leaves.

As such, one can apply the same hashing technique described above to T ′, but only for
the levels that contains leaves. Now, since we do a binary search over O(r) possibilities,
and every probe into the hash table takes constant time, it follows that a NN query takes
O(log r) time.

We summarize the result in the following theorem.

Theorem A.2 Given a point set X with m points, and parameters δ, ∆ and ε > 0, then
one can preprocess X in O(mρ1/rε−d log(ρ/ε)) time, such that one can answer (δ, ∆, ε)-fuzzy
nearest neighbor queries on X in O(log r) time. Here ρ = ∆/δ and r is an arbitrary integer
number fixed in advance.

Theorem A.3 Given a point set X of size m, and a point set P of size n both in IRd, one
can compute in O(n + mn1/4ε−d log(n/ε)) time, for every point p ∈ P , a point xp ∈ X, such
that ‖pxp‖ ≤ (1 + ε)d(p, X) + τ/n3, where τ = maxp∈P d(p, X).

Proof: The idea is to quickly estimate τ , and then use Theorem A.2. To estimate τ ,
we use a similar algorithm to the closet-pair algorithm of Golin et al. [GRSS95]. Indeed,
randomly permute the points of P , let p1, . . . , pn be the points in permuted order, and let li
be the current estimate of ri, where ri = maxi

j=1 d(pi, X) is the maximum distance between
p1, . . . , pi and X. Let Gi be a grid of side length li, where all the cells contains points of X, or
their neighbors are marked. For pi+1 we check if it contained inside one of the marked cells.
If so, we do not update the current estimate, and set li+1 = li and Gi+1 = Gi. Otherwise,
we scan the points of X, and we set li+1 = 2

√
dd(pi+1, X), and we recompute the grid Gi+1.

It is easy to verify that ri+1 ≤ li+1 in such a case, and ri+1 ≤ 2
√

dli+1 if we do not rebuild
the grid.

Thus, by the end of this process, we get ln, for which ln/(2
√

d) ≤ τ ≤ 2
√

dln, as required.
As for the expected running time, note that if we rebuild the grid and compute d(pi+1, X)
explicitly, this takes O(k) time. Clearly, if we rebuild the grid at stage i, and the next time
at stage j > i, it must be that ri ≤ li < rj ≤ lj. However, in expectation, the number
of different values in the series r1, r2, . . . , rn is

∑n
i=1 1/i = O(log n). Thus, the expected

running time of this algorithm is O(n + k log n), as checking whether a point is in a marked
cell, takes O(1) time by using hashing.

We know that ln/(2
√

d) ≤ τ ≤ 2
√

dln. Set δ = ln/(4d
2n5), ∆ = 2

√
dln and build the

(δ, ∆, ε)-fuzzy nearest neighbor data-structure of Theorem A.2 for X. We can now answer
the nearest neighbor queries for the points of P in O(1) per query.
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Corollary A.4 Given a point set X of size m, a point set P of size n both in IRd, and a
parameter D, one can compute in O(n + mn1/10ε−d log(n/ε)) time, for every point p ∈ P a
a point xp ∈ P , such that:

• If d(p, X) > D then xp is an arbitrary point in X.

• If d(p, X) ≤ D then ‖pxp‖ ≤ (1 + ε)d(p, X) + D/n4.
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