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Abstract

In this paper, we show that there exists a (k, ε)-coreset for k-median and k-means
clustering of n points in IRd, which is of size independent of n. In particular, we con-
struct a (k, ε)-coreset of size O(k2/εd) for k-median clustering, and of size O(k3/εd+1)
for k-means clustering.

1 Introduction

Clustering is a widely used technique in Computer Science with applications to unsupervised
learning, classification, data mining and other fields. We study two variants of the clustering
problem in the geometric setting. The geometric k-median clustering problem is the follow-
ing: Given a set P of n points in IRd, compute a set of k points (i.e., medians) such that
the sum of the distances of the points in P to their respective nearest median is minimized.
The k-means differs from the above in that instead of the sum of distances, we minimize the
sum of squares of distances. Interestingly the 1-mean is the center of mass of the points,
while the 1-median problem, also known as the Fermat-Weber problem, has no such closed
form. As such the problems have usually been studied separately from each other even in
the approximate setting.

The basic question underlying approximation algorithms, is what portion of the data is
necessary to compute (approximately) a certain quantity. The smaller this portion is, the
more efficient the resulting algorithm would be. A coreset is a small portion of the data, such
that running a clustering algorithm on it, generates a clustering for the whole data, which
is approximately optimal. In particular, a small coreset indicates that a problem is easy to
approximate. Furthermore, it implies that one can summarize and sketch the data efficiently.
This is useful for database applications, where one can store such sketches efficiently, and
perform efficient clustering on a database, or portions of it using the sketches.
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In particular, the size of the smallest coreset needed is a fundamental combinatorial
property of the clustering problem at hand. Among other things, coresets of size independent
of n imply “strong” fixed parameter algorithms [DF95] (i.e., algorithms with running time
O(n+poly(k, log n, 1/ε)+func(k, ε)), where poly denotes a polynomial, and func(k, ε) denotes
a function that depends only on k and ε (and the dimension d).

k-median clustering. The k-median problem is nontrivial even in low dimensions and
achieving a good approximation proved to be a challenge. Motivated by the work of Arora
[Aro98], which proposed a new technique for geometric approximation algorithms, Arora,
Raghavan and Rao [ARR98] presented a O

(
nO(1/ε)+1

)
time (1 + ε)-approximation algorithm

for points in the plane. This was significantly improved by Kolliopoulos and Rao [KR99] who
proposed an algorithm with a running time of O(%n log n log k) for the discrete version of the
problem, where the medians must belong to the input set and % = exp [O((1 + log 1/ε)/ε)d−1].
The k-median problem has been studied extensively for arbitrary metric spaces and is closely
related to the un-capacitated facility location problem. See [CGTS99, GNMO00, MP02] for
more information.

The running time of Kolliopoulos and Rao [KR99] was further improved to O
(
n + %kO(1) logO(1) n

)
by Har-Peled and Mazumdar [HM04] by using coresets. Formally, a weighted subset S ⊆ P
is a (k, ε)-coreset for the k-median problem, if for any set C of k centers in the IRd, the price
of clustering P using C, and the price of clustering S using C, is the same up to 1± ε. Har-
Peled and Mazumdar [HM04] showed that there exists a coreset of P of size O(kε−d log n),
and by computing such a coreset quickly and running the algorithm on this coreset, one gets
the aforementioned fast approximation algorithm.

k-means clustering. Inaba et al. [IKI94] observe that the number of Voronoi partitions of
k points in IRd is nkd and can be done exactly in time O(nkd+1). They also propose approxi-
mation algorithms for the 2-means clustering problem with time complexity O(nO(d)). de la
Vega et al. [dlVKKR03] proposed a (1 + ε)-approximation algorithm, for high dimensions,
with running time O(g(k, ε)dn logk n), where g(k, ε) = exp[(k3/ε8)(ln(k/ε)) ln k] (they refer
to it as `2

2 k-median clustering). This was improved to O(h(k, ε)dn) time algorithm, by

Kumar et al. [KSS04], where h(k, ε) = 2(k/ε)O(1)
(as such, this algorithm is only appropriate

when the data is high dimensional). Matoušek [Mat00] proposed a (1 + ε)-approximation

algorithm for the geometric k-means problem with running time O
(
nε−2k2d logk n

)
. Again,

using coresets, Har-Peled and Mazumdar [HM04], presented an algorithm with running time
O(n + kk+2ε−(2d+1)klogk+1 n logk 1

ε
), which is linear for fixed k and ε. Effros and Schulman

[ES03] showed that there exists a centroid set of size independent of n. A centroid set is
a set that contains at least one k-tuple, which forms (approximately) optimal centers for
k-means clustering. While the resulting algorithm is slower than the algorithm of Har-Peled
and Mazumdar it does hint to the possibility that a coreset of size independent of n should
exist for the k-means problem.

Our Results. In light of the aforementioned results, it is natural to ask what is the smallest
coreset one can extract, and compute approximate clustering using it. In particular, can one
compute a coreset of size independent of n?

In this paper, we answer this question positively, by showing a coreset of size O(k2/εd)
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for k-median and O(k3/εd+1) for k-means. Interestingly, unlike the previous results, while
the intuition for the two cases is similar, the proof and construction are fundamentally
different. In particular, the coreset construction for the k-means case is slightly easier than
the k-median case.

The previous construction of coresets for clustering relied on first computing a set of k
centers which were a constant factor approximation to the optimal clustering. Next, using an
exponential grid of O(log n) levels around each center, and snapping the points to this grid
resulted in the required coreset. The correctness of the above coreset follows since the price
of snapping the points to the exponential grid is smaller than ενopt(P, k), where νopt(P, k) is
the price of the optimal k-median clustering of P . In Appendix A, we show that any such
approach of computing a small set C of points such that snapping the points of P to C is
“cheap” (i.e., ≤ ενopt(P, k)) is doomed, as such a set must have size Ω(log n). To overcome
this, we need to be considerably more careful in picking C, such that the errors introduced
by the snapping cancel each other out.

To this end, we replace each exponential grid around a center point, by a set of O(1/εd−1)
lines. We now snap the points to the lines. We end up with O(k/εd−1) point sets, each one of
them is one dimensional (although the centers are not necessarily on the line). We compute
a coreset for each such line separately, and we take the union of those coresets, to form the
resulting coreset of the whole set.

To figure out how to pick our coreset on each such line, we first solve the toy problem,
of computing a coreset for a set of points on a line, where the centers are also on the line.
This is done by breaking the line into chunks of small size (this idea is somewhat similar to
the analysis of Effros and Schulman [ES03], although our analysis is considerably simpler).
We then extend it to the case where the centers are not necessarily on the line. We do this
analysis for the k-median and k-means cases separately, since the analysis is substantially
different.

Note, that we reduced the question of computing a d-dimensional coreset to a one and
two dimensional problem (since the Voronoi diagram on a line of k points in IRd, can always
be simulated by k points in two dimensions). This reduction considerably simplifies our
analysis.

The paper is organized as follows. In Section 2, we present the coreset construction for
the k-median case. In Section 3, we handle the k-means case. We conclude in Section 4.

2 Coreset for k-median

2.1 Preliminaries

For a point set X, and a point p, both in IRd, let d(p, X) = minx∈X‖xp‖ denote the distance
of p from X. For a set B of points on a line in IRd, let I(B) denote the smallest closed
segment containing all the points of B.

Weighted set. A weighted point set P is a set of points, where every point p ∈ P is
assigned a weight wp, which is a real positive number. We denote by w(P ) =

∑
p∈P wp the

total weight of the set P .
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k-median clustering. For a weighted point set P with points from IRd, with an associated
weight function w : P → IR+ and any point set C, we define νC(P ) =

∑
p∈P wp ·d(p, C) as the

price of the k-median clustering provided by C. Further let νopt(P, k) = minC⊆IRd,|C|=k νC(P )
denote the price of the optimal k-median clustering for P .

(k, ε)-coreset for k-median. For a weighted point set P ⊆ IRd, a weighted set S ⊆ IRd, is
a (k, ε)-coreset of P for the k-median clustering, if for any set C of k points in IRd, we have
(1− ε)νC(P ) ≤ νC(S) ≤ (1 + ε)νC(P ).

mean/center of mass. For a weighted point set P in IRd, let m(P ) =
∑

p∈P (wp/w(P ))p
denote the mean of P (this is also known as the center of mass of P ). We define the
cumulative error (or just the error) for a point set P in IR as Eν(P ) = νm(P ) =

∑
p∈P‖pm‖,

where m = m(P ).

2.2 One Dimension

The basic idea for the coreset construction in one dimension (here, both the points and the
centers lie in one dimension), is to break the point set into smaller sets, and use the mean
point of every subset, as the representative for the coreset. We first prove, in Lemma 2.1,
that the cumulative error of a point set bounds the error that it might contribute if we
use the median point as the coreset. In Lemma 2.2, we show that cumulative error is a
2-approximation to the optimal 1-median clustering of a point set. As such, we can use
the mean point of a point set for a coreset representative. In Lemma 2.3, we extend this
observation to several point sets. Then, in Theorem 2.4, we describe the construction and
prove that it works.

Lemma 2.1 Let P be a set of n points on an oriented line ` in IRd, and let m = m(P ). We
have:

(i)
∑

L‖mp‖ =
∑

R‖mp‖, where L (resp. R) are the points of P left (resp. right) of m on
`.

(ii) For a point q ∈ ` such that q /∈ I(P ), we have that νq(P ) = n‖qm‖.
(iii) For any set of points C ⊆ IRd, we have |νC(P )− νC(S)| ≤ Eν(P ), where S is a coreset

made out of the single point m with weight |P |.

Proof: (i) Rotate space, such that ` becomes the x-axis. Then we have
∑

p∈P,xp<xm
(xm−

xp) =
∑

p∈P,xp≥xm
(xp − xm), since m is the mean point of P ⊆ `, where xp denotes the

x-coordinate of a point p ∈ IRd. Now,
∑

p∈L‖mp‖ =
∑

p∈L(xm − xp) =
∑

p∈R(xp − xm) =∑
p∈R‖mp‖.
(ii) Assume that xq < xm, and then we have

νq(P ) =
∑
p∈P

‖pq‖ =
∑

p∈P,xp<xm

(‖qm‖ −‖pm‖) +
∑

p∈P,xp>xm

(‖qm‖+‖pm‖)

= n‖qm‖+

 ∑
p∈P,xp<m

−‖pm‖+
∑

p∈P,xp>m

‖pm‖

 = n‖qm‖ ,
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by the first claim. The case xq > xm follows by symmetry.

(iii) We have |νC(P )− νC(S)| =

∣∣∣∣∣∑
p∈P

(d(p, C)− d(m, C))

∣∣∣∣∣ ≤ ∑
p∈P

‖pm‖ = Eν(P ), since

d(q, C)−‖pq‖ ≤ d(p, C) ≤ d(q, C) +‖pq‖, for any p, q ∈ IRd.

Lemma 2.2 Let P ⊆ IR be a set of n points. Then Eν(P ) ≤ 2νopt(P, 1).

Proof: Let ξ be a median point of P and m = m(P ). The optimal clustering νopt(P, 1) is
achieved at a median point ξ = Median(P ). Thus,

Eν(P ) = νm(P ) =
∑
p∈P

‖pm‖ =
∑
p∈P

∣∣∣∣∣p− 1

n

∑
q∈P

q

∣∣∣∣∣ =
∑
p∈P

∣∣∣∣∣ 1n∑
q∈P

p− 1

n

∑
q∈P

q

∣∣∣∣∣
≤

∑
p,q∈P

1

n
‖pq‖ ≤

∑
p,q∈P

1

n
(‖pξ‖+‖qξ‖) = 2

∑
p∈P

‖pξ‖ = 2νopt(P, 1).

Lemma 2.3 Let P be a set of points in IR. And let P1, · · · , Pk be a partition of P into k
sets. Then νopt(P, 1) ≥(Eν(P1) + Eν(P2) + · · ·+ Eν(Pk)) /2, where Eν(Pi) = νm(Pi)(Pi).

Proof: Let ξ = Median(P ) and

νopt(P, 1) =
∑
p∈P

‖pξ‖ =
∑
p∈P1

‖pξ‖+
∑
p∈P2

‖pξ‖+ · · ·+
∑
p∈Pk

‖pξ‖

≥ νopt(P1, 1) + νopt(P2, 1) + · · · ν(Pk, 1)

≥ 1

2
(Eν(P1) + Eν(P2) + · · ·+ Eν(Pk)) ,

by Lemma 2.2.

Theorem 2.4 Let P be a point set in IR, k and ε > 0 parameters. Then, there exists a
(k, ε)-coreset S of P of size O(k/ε).

Proof: Assume that we have an approximation V , such that νopt(P, k) ≤ V ≤ cνopt(P, k),
where c is a constant (this can be done efficiently in linear time for small k [HM04]). We
scan the points from left to right and group them into batches with cumulative error equal
to φ = ε

10ck
V . This is done by allowing the first and last point in the batch to be a fraction

of a point of P (i.e., a point of P might appear in two consecutive batches, as two points
with total weight one). The last batch is of weight ≤ φ. Observe that φ ≥ ε

10ck
νopt(P, k).

Let B = {B1, . . . , Bu} denote the resulting batches.
It is now straightforward to verify that |B| = O(k/ε). Indeed, let Copt be the set of k

medians realizing νopt(P, k). Since P is a one dimensional point set, there are at most k− 1
batches that are being served by more than one center in Copt. For any other batches B ∈ B,
it is being served by a single center of Copt. Thus, we have νCopt(B) ≥ Eν(B)/2 = φ/2, by
Lemma 2.2. Thus, the number of batches is bounded by O(k + νopt(P, k)/φ) = O(k/ε).

Next, for the coreset construction, we set m(Bi) to be the representative point for Bi with
weight |Bi|. Let S be the resulting coreset. We claim that this is a (k, ε)-coreset. Indeed,
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Figure 1: Case (i) of Lemma 2.5

consider any point set C = {x1, x2, . . . xk}. For a point xi ∈ C, let Ii denote the interval on
the real line that it serves. For a batch B, let I(B) denote the smallest interval containing
B. If a batch B ⊆ Ii, and xi /∈ I(B), then by Lemma 2.1, we have νxi

(B) = |B| · ‖m(B)xi‖.
Namely, the contribution of the points of B to νC(P ) and νC(S) are identical.

Thus, the only batches that might contribute to the error, are the ones that contain an
endpoint of I1, . . . , Ik (there are most k−1 such batches), and batches that contain a point of
C in their interior (there are at most k such batches). By Lemma 2.1 (iii), every such batch
B contributes at most Eν(B) to the overall error. Let B′

1, . . . , B
′
2k−1 be those “problematic”

batches. We have that

|νC(P )− νC(S)| ≤
2k−1∑
i=1

Eν(B
′
i) ≤ (2k − 1) · φ ≤ ενopt(P, k).

2.3 Extending to higher Dimension

We need the following technical lemma.

Lemma 2.5 Let c = (0, α) be a point in the plane, let L and R be two weighted sets of points
on the positive portion of the x-axis such that all the points of L have smaller x-axis value
than the points of R, and let l and r be two points on the x-axis such that νl(L) = νr(R).
Furthermore, let SL = {(l, w(L))} and SR = {(r, w(R))}, be the respective coresets. Also,
let E = νc(L) + νc(R)− νc(SL)− νc(SR) be the error caused by using the coresets SL and SR

instead of the sets L and R, respectively, in relation to the center c. Then
(i) If xl ≤ xl′ ≤ xr′ ≤ xr, for all l′ ∈ L and r′ ∈ R, then E ≤ 0. See Figure 1.
(ii) If xl′ ≤ xl ≤ xr ≤ xr′, for all l′ ∈ L and r′ ∈ R, then E ≥ 0.

Proof: (i) For two points, p, q on the x-axis, such that xp ≤ xq, let e(p, q) =‖qc‖ −‖pc‖.
In particular, for any four points a, b, c, d on the x-axis, such that xa ≤ xb ≤ xc ≤ xd, we
have e(a, b)/‖ab‖ ≤ e(c, d)/‖cd‖. This follows since the function f(x) = ‖c− (x, 0)‖ is a
convex function with positive second derivative, as can be easily verified. In particular, for
any a ≤ b we have f ′(a) ≤ e(a, b)/‖ab‖ ≤ f ′(b). Thus, for a point z on the real line between
R and L, we have

E = νc(L) + νc(R)− νc(SL)− νc(SR) =
∑
p∈L

wp(‖cp‖ −‖c l‖) +
∑
p∈R

wp(‖cp‖ −‖c r‖)

=
∑
p∈L

wpe(l, p)−
∑
p∈R

wpe(p, r) =
∑
p∈L

wp‖pl‖
e(l, p)

‖pl‖
−
∑
p∈R

wp‖rp‖
e(p, r)

‖rp‖

≤
∑
p∈L

wp‖pl‖ f ′(z)−
∑
p∈R

wp‖rp‖ f ′(z) = f ′(z)(νl(L)− νr(R)) = 0.
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Figure 2: Computing the coreset.

since e(l, p)/‖pl‖ ≤ f ′(z) ≤ e(q, r)/‖qr‖ for any p ∈ L and q ∈ R.
The second claim follows by similar argumentation.

2.3.1 Construction

The following lemma states the existence of a ε-net for the sphere. See [Mat02] for details.

Lemma 2.6 There exists a set of points Q on a sphere of unit radius in d-dimensions
centered at the origin with the following properties: (i) Q has O(ε−(d−1)) points, and (ii) ∀p
that lie on the unit radius ball, ∃q ∈ Q such that ‖pq‖ ≤ ε. Furthermore, Q can be computed
in O(ε−(d−1)) time.

We compute a set C = {c1, . . . , ck} of centers which is a c-approximation to νopt(P, k);
namely, νC(P ) ≤ cνopt(P, k), where c is a constant. Now, we divide the set of points P into
k sets based on which point in C is nearest to them. This gives us a partition of P into k
subsets P1, P2, . . . Pk where Pi is closest to ci ∈ C. Around each of the points ci ∈ C we place
a fan Li of lines passing through it. This is done by taking a unit sphere centered at ci, and
placing an ε/(3c)-net Nci

on this sphere, using Lemma 2.6. For every p ∈ Nci
, we generate

the line spanning the segment cip.
For each point of p ∈ Pi, let `p be its closest line in Li, and let p′ be the projection of

p into `p. Let the new set of snapped points be P ′. Next, we compute a coreset for each of
the lines using the one dimensional method. Namely, we scan every line `, and break the
point set, P`, along it into batches, such that for each batch B (except the last one), we
have Eν(B) = A`/(20cεk), where A` is a c-approximation to νopt(P`, k) (again, allowing a
boundary point to appear in two batches with a fractional weight). See Figure 2. (In the
following, for the sake of simplicity of exposition, we ignore the fact that a batch contains
weighted points. This is a minor technicality, and it can be easily handled.)

Hence, we get O(k/ε) points selected in the coreset on each of the lines through ci, and
O(k/εd) coreset points for Pi. Thus, the total number of points in the coreset S is O(k2/εd).
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2.3.2 Correctness

Observation 2.7 Let p be a point of P , and let xi be its nearest point in C, let p′ be the
corresponding point in P ′. We have ‖pp′‖ ≤‖pxi‖ ε/(3c).

Lemma 2.8 Let P be a set of points on a line `, and let S` be the coreset constructed for
it. Also, let C be a set of k points in IRd. Then |νC(P )− νC(S`)| ≤ (ε/3)νopt(P, k).

Proof: The proof follows the one dimensional case (i.e., Theorem 2.4), although the
analysis is somewhat more involved. We rotate and translate all the points so that the line
` coincides with the x-axis. Let C = {c1, . . . , ck}, and let c′1, . . . , c

′
k denote the projection of

c1, . . . , ck into `, respectively.
Next, we partition the line into k intervals I1, . . . , Ik, such that Ii is the portion of `

closer to ci than any other point of C (note that the points of C are not necessarily on `).
The every point in the coreset S` corresponds to a subset (i.e., batch) of P . By construc-

tion, all the batches have the same cumulative error (except the last batch, which might
have smaller cumulative error). In particular, for any batch B we have that the cumulative
error Eν(B) ≤ (ε/20k)νopt(P, k).

Let B̂ be the set of all batches B, which are served by more than one center of C, or
alternatively, the interval I(B) contains the projection of a center point of C to `. We also

add the last batch on ` to B̂. Clearly,
∣∣∣B̂∣∣∣ ≤ 2k. Let U = ∪B∈ bBB be the points of P in B̂,

and let SU ⊆ S` be the corresponding coreset. It follows that the total error contributed by
the points of U is

E∗ = |νC(U)− νC(SU)| ≤
∑
B∈ bB

Eν(B) ≤ 2k
ε

20k
νopt(P, k) ≤ ε

10
νopt(P, k),

by Lemma 2.1 (iii).
Let us fix a center c ∈ C, and let I be its Voronoi cell on `. Next, consider the set R (resp.

L) of the batches to the right (resp. left) of c′ that lie in its interval I. Let B1, B2, . . . , Bt

denote the batches of R sorted from left to right. Furthermore, let Li and Ri be the set of
points of Bi, to the left and right of the mean m(Bi), respectively, for i = 1, . . . , t. Finally,
let S i

l and S i
r denote the coresets formed by placing a point at m(Bi) with weight w(Li) and

w(Ri), respectively. Let S i = S i
l ∪ S i

r be the one point coreset placed at m(Bi) with weight
w(Li) + w(Ri). Let SR denote the resulting coreset for all the batches in R. Let PR denote
the points in R. By Lemma 2.5 (ii), we have that

νc(B
i)− νc(S i) = νc(L

i)− νc(S i
l ) + νc(R

i)− νc(S i
r) ≥ 0.

Thus, the error contributed by the coreset of R is E = νc(PR)−νc(SR) =
∑t

i=1(νc(B
i)− νc(S i)) ≥

0. On the other hand, by Lemma 2.5 (i), we have

E ′ =
t−1∑
i=1

(
νc(R

i)− νc(S i
r) + νc(L

i+1)− νc(S i+1
l )

)
≤ 0.

Thus,

0 ≤ E = E ′ + νc(L
1)− νc(S1

l ) + νc(R
t)− νc(St

r) ≤ Eν(B
1) + Eν(B

t) = 2(ε/20k)νopt(P, k).
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Namely, the total error induced by using the coreset for batches in R is bounded by 2(ε/20k)νopt(P, k).
By symmetry, the same hold of the batches in L. Thus, the total error induced by such
batches is k · 2 · 2(ε/20k)νopt(P, k) ≤ (ε/5)νopt(P, k). Thus, we have

|νC(P )− νC(S`)| ≤ (ε/5)νopt(P, k) + (ε/10)νopt(P, k) ≤ (ε/3)νopt(P, k)

as desired.

Theorem 2.9 Let P be a point set of n points in IRd, and let S be the coreset constructed
for it in Section 2.3.1. Then S is a weighted set of size O(k2/εd) and it is a (k, ε)-coreset of
P for the k-median clustering.

Proof: By Lemma 2.8 we know that the error between the distance of any set C of
size k and the snapped points P ′ on the fans can be well approximated using the coreset.
Furthermore, the error introduced by the snapping is bounded by

E =
∑
p∈P

‖pp′‖ ≤
k∑

i=1

(∑
p∈Pi

(ε/3c)‖pxi‖

)
≤ ε

3
νopt(P, k),

by Observation 2.7.
So, |νC(P )− νC(P ′)| ≤

∑
p∈P‖pp′‖ ≤ ε

3
νopt(P, k). Thus, for any set C of k points, we

have

|νC(P )− νC(S)| = |νC(P )− νC(P ′)|+ |νC(P ′)− νC(S)|
≤ (ε/3)νopt(P, k) + (ε/3)νopt(P

′, k)

≤ (ε/3)νopt(P, k) + (ε/3)νopt(P, k)(1 + ε/3) ≤ ενopt(P, k),

by Lemma 2.8.

3 Coreset for k-means

3.1 Preliminaries

k-mean clustering. Let µC(P ) =
∑

p∈P wp · (d(p, C))2 denote the price of the k-means
clustering of P as provided by the set of centers C. Let µopt(P, k) = minC⊆IRd,|C|=k µC(P )
denote the price of the optimal k-means clustering of P . In the following, we will abuse
notation, and for x ∈ IRd, we will denote by νx(P ) and µx(P ) the quantities ν{x}(P ) and
µ{x}(P ), respectively.

(k, ε)-coreset for k-mean. Similarly, S is a (k, ε)-coreset of P for the k-means clustering,
if for any set C of k points in IRd, we have (1− ε)µC(P ) ≤ µC(S) ≤ (1 + ε)µC(P ).

Centroid Set. Given a set P of n points in IRd, a set D ⊆ IRd is an (k, ε)-approximate
centroid set for P , if there exists a subset C ⊆ D of size k, such that νC(P ) ≤ (1+ε)νopt(P, k).

Definition 3.1 For a point set P , the error of P is Ê(P ) =
∑

p∈P‖pm‖2, where m = m(P ).

9



3.2 The 1D case

3.2.1 Construction

Let P be a given set of n points on the real line. We consider the points from left to right
and group them into batches, such that a batch B has Ê(B) ≤ ξ, and for two consecutive

batches B and B′ we have Ê(B ∪ B′) ≥ ξ, where ξ ≤ ε2

100k2 µopt(P, k). As in the k-median
case, the number of batches is O(k2/ε2). Let B(P ) denote the resulting set of batches.

Lemma 3.2 Let B be a set points on a line. There exist two weighted points (q1, w1) and
(q2, w2) both lying completely within I(B), such that

• w1 + w2 = |B|,

• q1w1+q2w2

w1+w2
= m, where m = m(P ),

• and w1‖q1m‖2 + w2‖q2m‖2 =
∑

p∈B‖pm‖2.

Let T(B) = {(q1, w1), (q2, w2)} denote this coreset.

Proof: We will construct these weighted points through a sequence of steps. Let the leftmost
point in B be pl and the rightmost point be pr.

• For every point p ∈ B to the right of m, we add a point at the rightmost extreme of B
with weight ‖pm‖

‖prm‖ . Clearly, ‖pm‖
‖prm‖‖prm‖2 ≥‖pm‖2. Similarly for every point p ∈ B to

the left of m we add a point at the leftmost extreme of B with weight ‖pm‖
‖plm‖ . This results

into weighted points pl, pr. Furthermore, we have m(pl, pr) = m, Ê({pl, pr}) ≥ Ê(B),
and wpl

+ wpr ≤ |B|.

• Now, we scale up the weights so that wpl
+ wpr = n. Note that this does not change

the mean, and only increases Ê({pl, pr}).

• Finally, consider the scaled set C(t) = {(pl · t + (1− t)m, wpl
), (pr · t + (1− t)m, wpr)}.

Clearly, C(t) for t ∈ [0, 1] has m(C(t)) = m. Furthermore, C(1) is just the current
two weighed points, and C(0) is just one point at m. Thus, pick t∗ ∈ [0, 1], such that

Ê(C(t∗)) = Ê(B). This is possible, since Ê(C(1)) ≥ Ê(B).

Clearly, C(t∗) is the required coreset.

Let S(P ) = ∪B∈B(P )T(B) be the constructed coreset for P .

3.2.2 Correctness

The following claim is well known [KMN+02, HS04].

Lemma 3.3 Let B be a set of points in IRd, then for any q ∈ IRd, we have µq(B) =

|B|‖qm‖2 + Ê(B),

Lemma 3.4 Let B be a set of points in IRd, and let T = T(B), and q any point in IRd. Then
µq(B) = µq(T).

10



Proof: We have µq(B) = |B|‖qm‖2+ Ê(B), and µq(T) = w(T)‖qm(T)‖+ Ê(T) = |B|‖qm‖2+

Ê(B), by Lemma 3.2. Thus, µq(B) = µq(T).

Theorem 3.5 Let P be a set of n points in IRd, such that the points of P all lie on a line
`, and let S be the coreset constructed for it in Section 3.2.1. Then S is a (k, ε/3)-coreset
for k-means clustering of P , for any set of k centers in IRd.

Proof: The proof is similar to the k-median case. We first rotate space, such that ` is
on the x-axis. Let C = {c1, . . . , ck} be a set of k centers, µC = µC(P ) and µ′

C = µC(S). Let
I1, . . . , Ik be a partition of the line into intervals, such that Ii is the loci of points closest to
ci out of all the centers in C, for i = 1, . . . , k. The batches of B(P ), and their corresponding
coreset points, that lie completely within Ii, do not contribute to the overall error |µC − µ′

C|
by Lemma 3.4.

Thus, the only problematic batches, are the one that contain an endpoint of I1, . . . , Ik.
There are at most k − 1 such batches. Let B be one such batch. Assume that the interval
I(B) intersects I1, . . . , It, and let Vi = Ii ∩ B, for i = 1, . . . , t. Let m = m(B) and let
SB = T(B). We partition SB into portions corresponding the sets V1, . . . , Vt. Formally, Si is
a set of the two points of SB, re-weighted such that w(Si) = |Vi|, for i = 1, . . . , t. We have,
by Lemma 3.3, that

µC(SB) =
∑

i

µC(Si) ≤
∑

i

µci
(Si) =

∑
i

(
Ê(Si) + |Vi|‖cim‖2

)
=

∑
i

(
Ê(Si) +

∑
p∈Vi

‖cim‖2

)
= Ê(SB) +

(∑
i

∑
p∈Vi

‖cim‖2

)
.

Let Pi =
{

p ∈ Vi

∣∣∣‖cip‖2 −‖pm‖2 ≥ 0
}

and Ni = Vi \ Pi. Since ‖cip‖ −‖pm‖ ≤ ‖cim‖,
we have ∑

i

∑
p∈Vi

‖cim‖2 ≥
∑

i

∑
p∈Pi

(‖cip‖ −‖pm‖)2

≥
∑

i

∑
p∈Pi

(‖cip‖ −‖pm‖)2 +
∑

i

∑
p∈Ni

(
‖cip‖2 −‖pm‖2)

≥
∑

i

∑
p∈Vi

‖cip‖2 − 2
∑

i

∑
p∈Vi

‖cip‖ ·‖pm‖ −
∑

i

∑
p∈Vi

‖pm‖2

≥ µC(B)− 2
∑

i

∑
p∈Vi

‖cip‖ ·‖pm‖ − Ê(B).

We also have ‖cip‖+‖pm‖ ≥‖cim‖ and so,∑
i

∑
p∈Vi

‖cim‖2 ≤
∑

i

∑
p∈Vi

(‖cip‖+‖pm‖)2 ≤ µC(B) + 2
∑

i

∑
p∈Vi

‖cip‖ ·‖pm‖+ Ê(B).

We conclude that

∣∣∣∣∣∑
i

∑
p∈Vi

‖cim‖2 − µC(B)

∣∣∣∣∣ ≤ 2
∑

i

∑
p∈Vi

‖cip‖ ·‖pm‖+ Ê(B).
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This gives us,

|µC(SB)− µC(B)| ≤ 2
∑

i

∑
p∈Vi

‖cip‖ ·‖pm‖+ 2Ê(B)

≤ 2Ê(B) + 2

√∑
i

∑
p∈Vi

‖cip‖2

√∑
i

∑
p∈Vi

‖pm‖2

≤ 2Ê(B) + 2
√

µC(B)

√
Ê(B),

by the Cauchy-Swartz inequality. By construction Ê(B) ≤ (ε2/100k2)µopt(P, k). Thus,

|µC(SB)− µC(B)| ≤ 2
ε2

100k2
µopt(P, k) + 2

ε

10k

√
µC(B)µopt(P, k)

≤ 2
ε2

100k2
µopt(P, k) + 2

ε

10k
· µC(B) + µopt(P, k)

2

≤ ε

5k
µopt(P, k) +

ε

10k
µC(B).

Since there are k − 1 border batches, we conclude that

|µC(S)− µC(P )| ≤ ε

5
µopt(P, k) +

ε

10
µC(P ) ≤ ε

3
µC(P ),

as required.

3.3 Extending to higher dimension

Again we use a similar approach to the one we used for k-means. We calculate an approxi-
mation µopt(P, k) ≤ A ≤ cµopt(P, k), where c > 1 is a constant. Then we partition the point
set P into sets P1, P2, . . . Pk with Pi consisting of points in the area of control of ci ∈ A.
Then we draw O( 1

εd−1 ) lines through each of the centers of A as before and snap the points
of Pi onto the closest line around ci. We compute a coreset for every line using the algorithm
of Section 3.2.1. This gives us O(k2

ε2 ) points selected for the coreset on every line, thus the

total size of the resulting coreset S is O( k3

εd+1 ).
The resulting set is the required coreset. The proof is an easy extension of the one

dimensional case. Indeed, the snapping into the lines introduces a multiplicative error smaller
than ε/3. The coreset construction introduces an error of similar magnitude, by Theorem 3.5.
Since this is a straightforward extension of our previous discussion, we omit any further
details.

Theorem 3.6 Given a set P of n points in IRd, one can compute a (k, ε)-coreset for P for
k-means clustering of size O(k3/εd+1).

Matoušek showed that there exists an ε-approximate centroid set of size O(nε−d log(1/ε)).
Interestingly enough, his construction is weight insensitive. In particular, using a (k, ε/2)-
coreset S in his construction, results in a ε-approximate centroid set of size O

(
|S| ε−d log(1/ε)

)
.
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Theorem 3.7 Given a set P of n points in IRd, one can compute a (k, ε)-centroid set for
P for k-means clustering of size O(k3/ε2d+1 log(1/ε)).

Theorem 3.7 slightly improves (as far as the dependency of k is concerned) over the
result of Effros and Schulman [ES03] that showed that there exists a centroid set of size
O
(
ε−d−1(k4 + k2ε−2)

)
. We conjecture that the dependency on ε in the bound on the coreset

size in Theorem 3.7 can be further improved.

4 Conclusions

In this paper, we showed the existence of small coresets for the k-means and k-median
clustering in IRd, with size independent of n. We believe that this result is quite surprising.

Note, that we had ignored computational issues in this paper. Our techniques do not yield
any significant improvement in performance over the approximation algorithms of Har-Peled
and Mazumdar [HM04]. As mentioned in the introduction, the results in this papers imply
algorithms with running time O(n + poly(k, log n, 1/ε) + func(k, ε)), where poly denotes
a polynomial, and func(k, ε) denotes a function that depends only on k and ε (and the
dimension d). This however, improves over the results of Har-Peled and Mazumdar [HM04]
only for very narrow interval of values of k in the k-means case.

At this point, there are numerous problems for further research. In particular:

1. Can the running time of approximate k-means clustering be improved to be similar to
the k-median bounds? Can one do FPTAS for k-median and k-means (in both k and
1/ε)? Currently, we can only compute the (k, ε)-coreset in fully polynomial time, but
cannot extract the approximation itself from it.

2. Does a coreset exist for the problem of k-median and k-means in high dimensions?
There are some partial relevant results [BHI02].

3. Can one improve the bounds on the size of the coresets for k-median and k-mean
clustering?
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[Mat00] J. Matoušek. On approximate geometric k-clustering. Discrete Comput. Geom.,
24:61–84, 2000.
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A Lower Bound on Coreset if Bounding Snapping Er-

ror

Let P be a set of n points in IRd. The previous construction of coresets for k-means and
k-median clustering by Har-Peled and Mazumdar [HM04], worked by finding a set S, such
that νS(P ) ≤ ενopt(P, k). This property by itself is sufficient to guarantee that S is (k, ε)-
coreset for P . Surprisingly, the following theorem shows that, in the worst case, any set with
this property must be large (i.e., size dependent on n).

Theorem A.1 There exists a set P of n points in IR, such that for any set S, if νS(P ) ≤
ενopt(P, 1) then, |S| is Ω( log n

ε
).

Proof: Consider the points n in P placed on the real line in the following way. There are
n/2i points placed uniformly in the intervals Ii = (−2i+1,−2i)∪(2i, 2i+1) for i = 1, 2, . . . log n.
Now, let S be any weighted coreset for the points of P . Let si denote the number of points
in S ∩ Ii. It is easy to see that the contribution of the points in Ii towards E is minimized
when the points of S ∩Ii are uniformly distributed in Ii and in this case the contribution is
≥ n/(4si). Also the origin is a median in this case and νopt(P, 1) ≤ 2n log n. Hence,

1

4

log n∑
i=1

n

si

≤ E ≤ ενopt(P, 1) ≤ ε2n log n.

This gives us,
log n∑
i=1

1

si

≤ 8ε log n,

implying that

|S| =
log n∑
i=1

si ≥
log n

8ε
.

This testifies that our more involved analysis (i.e., Theorem 2.9) to get a better coreset
of size independent of n is indeed necessary. In particular, our improved coreset construction
works since it guarantees that the errors introduced by snapping the points to the coreset
cancel themselves out when considering any set of k medians.
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