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‘A slow sort of country!’ said the Queen. ‘Now, HERE, you
see, it takes all the running YOU can do, to keep in the same
place. If you want to get somewhere else, you must run at least
twice as fast as that!’

– Through the Looking-Glass, Lewis Carroll

Abstract

Given a set of moving points in IRd, we show how to cluster them in advance, using
a small number of clusters, so that at any time this static clustering is competitive
with the optimal k-center clustering at that time. The advantage of this approach is
that it avoids updating the clustering as time passes. We also show how to maintain
this static clustering efficiently under insertions and deletions.

To implement this static clustering efficiently, we describe a simple technique for
speeding up clustering algorithms and apply it to achieve faster clustering algorithms
for several problems. In particular, we present a linear time algorithm for computing
a 2-approximation to the k-center clustering of a set of n points in IRd. This slightly
improves the algorithm of Feder and Greene, that runs in Θ(n log k) time (which is
optimal in the algebraic decision tree model).

1 Introduction

Clustering is a central problem in computer science. It is related to unsupervised learning,
classification, databases, spatial range-searching, data-mining, etc. As such, it has received
much attention in the last twenty years. There is a large literature on this topic with
numerous variants, see [BE97, DHS01].
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pages 84–93, 2001.
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Figure 1: The 2-approximate clustering changes completely, even when the change in the
positions of the moving points is relatively “small”. The clustering depicted was generated
by running the algorithm of Gonzalez [Gon85] on the two point sets. One can generate
similar examples for the optimal k-center clustering, showing that it is unstable.

k-center clustering. One of the most natural definitions of clustering is the min-max
radius clustering or k-center clustering. Here, given a set of n points in some metric space,
one wishes to find k special points, called centers, such that the maximum distance of a point
to a center is minimized. In the continuous k-center clustering, the centers can be located
everywhere in the underlying space, and in the second variant, known as the discrete k-center,
the k centers must be input points. An alternative interpretation of k-center clustering is
that we would like to cover the points by k balls, where the radius of the largest ball is
minimized. Intuitively, if such a tight clustering exists, it provides a partition of the point
set into k classes, where the points inside each class are “similar”.

There is a very simple and natural algorithm that achieves a 2-approximation for the dis-
crete k-center clustering [Gon85]: Repeatedly pick the point furthest away from the current
set of centers as the next center to be added. This algorithm can be easily implemented in
O(nk) time [Gon85], and in fact, it is also a 2-approximation for the continuous case.

Feder and Greene [FG88] showed that if the points are taken from IRd, one can compute 2-
approximation to the optimal k-center clustering in Θ(n log k), by a different implementation
of the greedy algorithm mentioned above, and this algorithm is optimal in the algebraic
decision tree model. They also showed that computing a c-approximation is NP -hard for
all c ≤ 1.822.

Clustering motion. Let P [t] be a set of n moving points in IRd, with a degree of motion µ;
namely, for a point p[t] ∈ P [t], we have p(t) = (p1(t), . . . , pd(t)), where pj(t) is a polynomial
of degree µ, and t is the time parameter, for j = 1, . . . , d. If one wishes to answer spatial
queries of the moving point set P [t], one needs to construct a data structure for that purpose.
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Most such data structures for stationary points rely on space partition schemes, and while
such partitions and clusterings are well understood for the case of stationary points, for the
case of moving points considerably less is known (see [DG98, AAE00, HV01, GGH+01, AH01]
for recent relevant results).

The difficulty in maintaining and computing such clustering is the one underlying most
kinetic data structures [BGH99]: Once the clusters are computed at a certain time, and
we let time progress, the clustering changes and deteriorates. To remain a competitive
clustering (i.e., the cluster sizes are small compared to the size of the optimal clustering),
one needs to maintain the clustering by either reclustering the points every once in a while, or
alternatively, move points from one cluster to another. The number of such “maintenance”
events dominates the overall running time of the algorithm, and usually the number of such
events is prohibitively large. For example, it is easy to verify that a kinetic clustering of n
linearly moving points must handle Ω(n2) events in the worst case to remain competitive
(up to any factor) with the optimal k-center clustering at any given time. See Figure 1.
(However, there are indications that such worst-case inputs might not be that common in
practice [BGSZ97], and that they do not happen if you use random inputs [BDIZ97].)

Our Results. We demonstrate, in Section 2, that if one is willing to compromise on the
number of clusters used, then clustering becomes considerably easier (computationally) and
it can be done quickly. Furthermore, we can trade off between the quality of the clustering
and the number of clusters used. As such, one can compute quickly a clustering with a
large number of clusters, and cluster those clusters in a second stage, as to get a reasonable
k-clustering.

This relies on the observation that clustering a random sample results in a partial clus-
tering of almost all input points (this is well known, see [VC71, ADPR00, MOP01]). Thus,
by clustering the remaining uncovered points, we can get a clustering of the whole point set.
Furthermore, by using a point-location data structure, one can quickly find out the points
not covered by the clustering of the random sample. Putting this together results in a generic
technique for speeding up clustering. The new approach can be viewed as a reduction of
geometric clustering to the task of carrying out point-location queries quickly, together with
approximate clustering [Ind99, ADPR00, MOP01] and sampling techniques [VC71, HW87].
We provide several applications of the new technique.

This naturally raises the question of whether one can get a similar tradeoff between the
computational cost of maintaining a k-center clustering for moving points, and the number
of centers used. In particular, in Section 3, we show that, for a point set moving with
polynomial motion of degree µ, if one is allowed to use kµ+1 clusters (instead of k), then
one can compute a clustering which is (constant factor) competitive with the optimal k-
clustering of the point set at any time, where µ is the algebraic degree of motion of the
points. This clustering is static and thus not require to handle any event. We also show that
static clustering requires using kµ+1 clusters in the worst case. In Section 4, we present an
algorithm to compute this clustering in O(nk) time.

In Section 5, an algorithm for picking a “small” subset of the moving points is described.
This is done by computing a very fine clustering, and picking a representative from each
cluster. The size of this subset, known as coreset, is independent of n, and it represents
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the k-center clustering of the moving points at any time, up to a factor of 1 + ε. Namely,
instead of clustering the points, we can cluster the representative points. This implies, that
one can construct a data structure that can report the approximate clustering at any time,
and performs insertions, deletions and motion updates in poly(k, 1/ε, log n) time for all of
those operations, where poly(·) denote a fixed degree polynomial in the input parameters.
Note that this performance is quite attractive as the clustering can change completely even
if only a few points change their motion, requiring a prohibitive price if one were to just
kinetize the algorithm of Gonzalez [Gon85] naively.

Finally, in Section 6, we show how one can implement the greedy clustering algorithm
of Gonzalez [Gon85] in expected linear time, for all k = O(n1/3/ log n). (In fact, all the
expected time bounds in our paper also hold with high probability.) Our algorithm relies on
a considerably stronger computation model than Feder and Greene [FG88]. In particular,
the algorithm uses constant-time hashing, the floor function, and randomization.

Concluding remarks are given in Section 7.

2 Fast Clustering Using Point-Location

Given a set P of n points in IRd, we are interested in covering them with a set C ⊂ R of k
objects (i.e., clusters) that minimizes the target function r

(
C
)
= maxc∈C r

(
c
)
, where r

(
c
)
is a

function that quantifies the size of the cluster, and R is the set of all permissible clusters.
For example, in the case of the k-center problem, the clusters are balls, and we wish to
minimize the maximum radius of the k balls used to cover the points. Let Copt(P, k) denote
the optimal continuous k-clustering of P (i.e., the centers of the clusters can be any point of
IRd), and let ropt

(
P, k

)
= r
(
Copt(P, k)

)
denote the radius of this clustering.. Let A = (P,R)

denote the underlying clustering space. For example, for the continuous k-center clustering,
R is the set of all balls in IRd.

Definition 2.1 A set of clusters C is a partial k-clustering or just partial clustering, of a
point set P if it covers some of the points of P and |C| = k. It is a k-clustering if it covers
all the points of P .

Let c be a cluster in a partial clustering C of P . We replace c with the canonical cluster
c′; that is, the cluster that realizes min

c′∈R,c∩P⊆c′
r
(
c′
)
. For k-center clustering, the canonical

cluster of a ball c, is the smallest ball that contains P ∩ c. In the following, we will assume
that we work with canonical clusters.

In geometric settings, a cluster c′ cannot shrink any further (i.e., it is canonical) because
it is “locked” in place by a set of points of P , and in fact c′ is defined by this set of points.
(Imagine a ball that cannot shrink any further — it contains at most d + 1 points of P on
its boundary, and this is the smallest ball that contains this set of points.) Let D(c′) be this
set of points, called the defining set of c′. In the following, we assume that every defining
set defines only a constant number of different clusters. Let µ = dim(A) = maxc∈R |D(c)|
be the dimension of the space A = (P,R). (This is a restricted variant of the concept
of VC-dimension, and in fact all our arguments can be carried out using VC-dimension.
However, avoiding VC-dimension arguments slightly simplifies the presentation.) A canonical
k-clustering is a clustering of P by k clusters which are all canonical.
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Example 2.2 Consider the clustering space for the discrete k-center clustering. Here, a
canonical cluster c is defined by its center p ∈ P , and the point furthest away from the
center q ∈ P (i.e., the length of pq is the radius of c). Thus, a canonical cluster in this
setting is defined by a set of two points {p, q}. However, this set corresponds to another
canonical cluster, the one that has q as its center, and its radius is the length of pq. Observe
that the size of the defining set in the discrete case is independent of the dimension of the
underlying space IRd.

Lemma 2.3 If the dimension of A = (P,R) is µ = dim(A), then the number of partial
canonical k-clusterings of P is at most cρnµk, where n = |P |, c is a constant, and ρ = ρ(A)
is a constant that depends on the underlying space A.

Proof: The number of different defining sets of A is at most
∑µ

i=0

(
n
i

)
= O(nµ). Each

such set defines at most a constant number ρ = ρ(A) of canonical clusters (usually one, but
this constant depends on the space A, see Example 2.2). Thus, the number of canonical
clusters is U = O(ρnµ).

Thus, a canonical k-clustering is defined by k such clusters. It follows, that the number
of canonical k-clustering of P is ≤ Uk = O(nµk).

Definition 2.4 For a partial clustering C, let
⋃
C denote the region covered by the clusters

of C. For a parameter ε, a partial canonical clustering C is ε-good for P , if the number
of points of P that are not covered by C is no larger than εn. Formally, C is ε-good if
|P \

⋃
C| < εn.

The following lemma, shows that if one clusters a large enough sample of points from
P , then this clustering covers almost all the points of P . A similar observation (in slightly
different form) was originally made by [ADPR00, MOP01] (in essence, this observation can
be traced back to the work of Vapnik and Chervonenkis [VC71]), and we include it here for
the sake of completeness.

Lemma 2.5 Let S be a set of points computed by picking randomly and uniformly m points
(with repetition) from P . If

m ≥ log ρ + µk log n + β log n

ε
.

then any canonical k-clustering of S is ε-good with probability at least 1 − n−β, where µ =
dim(A), ρ = ρ(A), A = (P,R), and ε, β are parameters.

Proof: Let C be a canonical partial k-clustering of P which is not ε-good. If S contains
a point that C does not cover, then C cannot be a clustering of S. However, we have

Pr
[
S ⊆

⋃
C
]
≤
(
|P ∩

⋃
C|

|P |

)m

≤ (1− ε)m ≤ e−εm.

However, by Lemma 2.3, the number of different canonical k-clusterings of P is at most
ρnµk. Thus, the probability that any canonical partial k-clustering of P which is not ε-good
to be a clustering of S, is bounded by ρnµke−εm. In particular, if we want this probability
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Algorithm FastCluster( P, k, ε )
P - a set of n points, k - number of clusters, ε > 0 - parameter

(i) Compute a sample S ⊆ P of size O((k log n)/ε).

(ii) Compute an (approximately) optimal k-clustering C of S.

(iii) Compute P ′ = P \
⋃
C.

(iv) Compute an (approximately) optimal k-clustering C ′ of P ′.

(v) Return C ∪ C ′.

Figure 2: Doing fast clustering by using random sampling

to be smaller than n−β, then we have: log ρ + µk log n − εm ≤ −β log n. Solving for m, we
have m ≥ (log ρ + µk log n + β log n)/ε.

In the following, we are interested in problems where the clustering price is monotone;
that is, r

(
P ′, k

)
≤ r
(
P, k

)
for P ′ ⊆ P . If we wish to perform k-clustering (or approximate

k-clustering) using Lemma 2.5, and we are willing to compromise on the number of clusters
used, then we can use the algorithm FastCluster described in Figure 2. The advantage
of FastCluster is that it calls twice for a clustering algorithm, but in both cases the sets
used are small (one of size O((k log n)/ε), and the other of size εn). In fact, FastCluster
uses two subroutines: (a) Given a (small) subset of the points, compute k-clustering of them
(stages (ii) and (iv)), and (b) given a clustering, and a set of points, compute all the points
that lie outside the clustering (stage (iii)).

Definition 2.6 A point-location data structure is a data structure that receives a set C of u
clusters as input and preprocesses them in TP (u) time, so that given a point p it can decide
in O(log u) time whether a point lies inside

⋃
C.

Using such a point-location data structure it is now possible to compute P ′ in stage (iii)
of FastCluster in O(n log k + TP (k)) time. Indeed, we preprocess C, the set of k clusters
computed in stage (ii), for point-location queries. This takes TP (k) time. Then, for each
point of P , we can decide in O(log k) time whether it is contained in

⋃
C.

Definition 2.7 A clustering C is a (c, m, k)-clustering of P , if C is made out of m clusters,
and C is c-competitive with the optimal k-clustering; namely, r

(
C
)
≤ c · ropt

(
P, k

)
.

Theorem 2.8 Assume that we have a clustering algorithm that, given a set of m points,
can compute a (α, φ(k), k)-clustering in TC(m) time, where α and φ(·) (the number of clus-
ters generated) depend on the algorithm at hand. Using FastCluster, one can compute a
(α, 2φ(k), k)-clustering of P in

O

(
TC

(
k log n

ε

)
+ TC(εn) + TP (φ(k)) + n log k

)
,

expected time, where ε > 0 is a parameter that can be finetuned in advance to optimize the
running time.
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The algorithm FastCluster can be viewed as two-round clustering, and it can be ex-
tended to η-rounds clustering. Indeed, we cluster a sample from the points which are not
currently covered, and remove all the points which are covered, by using a point-location
data structure, and repeat this η times. Finally, we cluster the remaining points. The
advantage of such η-round approach, is that we can use considerably smaller samples. The
disadvantage is that instead of getting (α, 2φ(k), k)-clustering we get (α, ηφ(k), k)-clustering.
We summarize the result in the following:

Theorem 2.9 Using FastCluster, one can compute a (α, ηφ(k), k)-clustering of P in

O

(
ηTC

(
k log n

ε

)
+ TC(εηn) + ηTP (φ(k)) + ηn log k

)
,

expected time, where ε > 0 and η are parameters that can be finetuned in advance to optimize
the running time.

FastCluster needs a subroutine for performing (α, φ(k), k)-clustering. However, this
can be replaced by an algorithm that extracts a single cluster which has radius smaller than
the optimal clustering, but contains at least (say) n/4k of the points. Such a subroutine
can be easily implemented using random sampling, and a brute force search over all possi-
ble canonical clusters of the sample. Using point-location data structures this results in a
greedy clustering with O(k log n) clusters, and in running time O(n log k) (ignoring terms
which are polynomial in log n and k). Although this seems to be a stronger algorithm than
FastCluster, as it requires a weaker subroutine (i.e., a subroutine to extract one heavy
cluster, instead of a subroutine for performing k-clustering), we are currently unaware of a
case where this results in a faster algorithm.

For an example of how to use Theorem 2.9, consider the following clustering problem:
We are given a set P of n points in the plane, and we would like to cover them with k
minimum max-width strips. It is known that this problem is NP-Complete to approximate
within any constant factor [MT82]. The fastest approximation algorithm currently known
is due to Agarwal and Procopiuc [AP00]. It runs in O(nk2 log4 n) time and cover the points
with O(k log k) strips of width at most six times the optimal clustering using k strips. Using
Theorem 2.8, we get the following improved result.

Lemma 2.10 Given a set of n points in the plane, one can compute a clustering of P by
O(k log k) strips of width at most ropt

(
P, k

)
, where ropt

(
P, k

)
denote the minimal width cover

of P by k strips, and k ≤ n1/6. The expected running time is O(n log k).

Proof: Note that a canonical strip is defined by 3 points of P , and the dimension of the
space (P,R) is µ = 3, where R is the set of all strips in the plane. We set ε =

√
k/n,

and use the algorithm of [AP00] with a sample of size m = O(
√

nk log n). Their algorithm
works in TC(m) = O(mk2 log4 m) time (for k2 log k ≤ m). Note that the algorithm of
[AP00] returns a clustering by O(k log k) strips of width at most 6ropt

(
P, k

)
, and by splitting

each strip into 6 equal strips, we get the required clustering by O(k log k) strips of width
at most ropt

(
P, k

)
. Given those strips, preprocessing those strips for point-location, takes

TP (k log k) = O(k2 log2 k) using standard techniques [dBvKOS00]. Overall, the algorithm
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computes a clustering by O(k log k) strips, with width at most ropt

(
P, k

)
, and the running

time is

O

(
TC

(
k log n

ε

)
+ TC(εn) + TP (k log k) + n log k

)
= O

(
k2 log2 k +

√
n/k k2 log4(n/k) + n log k

)
= O(n log k),

since k ≤ n1/6.

3 Static Clustering of Moving Points

For a moving point set P in IRd, let ropt

(
P [t], k

)
denote the radius of the optimal (continuous)

k-center clustering of P [t], where P [t] is the set of points of P at time t. Formally,

ropt

(
P [t], k

)
= min

P [t]⊆
⋃
C

C∈Bk

r
(
C
)
,

where B is the set of all balls in IRd, and r
(
C
)
= max

c∈C
r
(
c
)
.

In the following, we omit P and k when they can be understood from context. Let
tmin = tmin(P, k) be the time when ropt(t, k) is minimized, and let rmin = rmin(P, k) =
ropt

(
P [tmin], k

)
. In the following, we assume that the points of P [t] are moving according to

a polynomial motion of degree µ. Namely, the position of a point p[t] ∈ P [t] is defined at
time t to be (p1(t), . . . , pd(t)), where p1(·), . . . , pd(·) are polynomials of degree at most µ.

Definition 3.1 Let P be a moving point set as above. A partition of P into m sets U =
{U1, . . . , Um} is a (c, m, k)-static clustering if

r
(
U [t]

)
= max

i
r
(
Ui[t]

)
≤ c · ropt

(
P [t], k

)
,

for any t ∈ IR, where r
(
Ui[t]

)
is the radius of the smallest ball that contains the points of

Ui[t].

In this section, we prove the existence of a small (c, m, k)-static clustering for points with
a bounded degree motion, where c and m depend on the dimension and the degree of motion
of the points. To appreciate the above result, note that the motion of the points changes
the distances between the points continuously. Points which are at certain time far, become
close, and far again. And although the motion is not chaotic, the underlying structure of the
optimal clustering of the moving points is unstable, changing discretely (and considerably)
even if points move only a short distance. See Figure 1.

We map each moving point p[t] = (p1(t), . . . , pd(t)) to a curve γ =
⋃

t(p1(t), . . . , pd(t), t)
in d + 1 dimensions, so that the first d coordinates of the intersection point of γ with
the axis-parallel hyperplane xd+1 = t is the point p[t]. Abusing notations, we will refer
interchangeably to P as a set of curves in IRd+1 or as a set of moving points in IRd.

In the following, we are going to apply a sequence of transformations to each point of P .
As we transform a point, we remember its index in the original set.
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Lemma 3.2 Let P ′ be a set of curves, resulting by translating each curve of P horizontally
by a vector of length ≤ δ = ρ rmin(P, k), where ρ ≤ 1. Then, for any (c, m, k)-static clustering
of P ′ the corresponding clustering of P is ((1 + c)ρ + c, m, k)-static clustering.

Proof: Let U ′ = {U ′
1, . . . , U

′
m} be a (c, m, k)-static clustering of P ′, and let U = {U1, . . . , Um}

be the corresponding clustering of P . We have by definition that

r
(
U ′[t]

)
= max

U ′∈U ′
r
(
U ′[t]

)
≤ cropt

(
P ′[t], k

)
.

Thus,

r
(
U [t]

)
≤ r

(
U ′[t]

)
+ δ ≤ c · ropt

(
P ′[t], k

)
+ δ ≤ c

(
ropt

(
P [t], k

)
+ δ
)

+ δ

= c · ropt

(
P [t], k

)
+ (c + 1)δ ≤ c · ropt

(
P [t], k

)
+ (c + 1)ρ · ropt

(
P [t], k

)
≤ ((1 + c)ρ + c)ropt

(
P [t], k

)
.

Definition 3.3 For a ball B in IRd and x ∈ IR, we refer to the set B × {x} ⊆ IRd+1 as a
horizontal disk. For a moving point set P in IRd, a set D of horizontal disks D1, . . . ,Dm in
IRd+1 is a (c, m, k)-stabbing of P , if each of the curves of P passes through one of the disks
of D, and r

(
D
)
= maxD∈D r

(
D
)
≤ c rmin(P, k).

Similarly, a set of points X ⊆ IRd+1 stabs P if each curve of P contains at least one point
of X.

Example 3.4 For a moving point set P , let D = {D1, . . . , Dk} denote the set of k horizontal
d-dimensional disks in IRd realizing the optimal k-clustering of P at time tmin(P, k). Clearly,
D is a (1, k, k)-stabbing of P .

Lemma 3.5 Let P be a set of moving points in IRd, where the algebraic degree of motion
is µ, and let D be a (ρ, m, k)-stabbing of P . Then, one can translate each curve of P
horizontally by a vector of length at most δ = ρ rmin(P ), and ropt

(
P [t], k

)
≤ ropt

(
P ′[t], k

)
+δ ≤

ropt

(
P [t], k

)
+ 2δ, P ′ is stabbed by a set of points X ⊆ IRd, and |X| = m. Moreover, for any

(c, m, k)-static clustering of P ′, the corresponding clustering of P is ((1+c)ρ+c, m, k)-static
clustering.

Proof: Let D1, . . . , Dm denote the m horizontal d-dimensional disks in D. Let A1, . . . ,Ak

denote the partition of P into the sets as induced by D1, . . . , Dm. Namely, p is in Ai if p
stabs Di. If a moving point (i.e., a curve) is stabbing several such disks, we assign it to one
of the candidate sets arbitrarily.

Let ξi denote the center of Di. Let Bi denote the set of curves resulting from translating
each curve of Ai horizontally, so that it passes through ξi. Let P ′ = ∪iBi.

Observe that

ropt

(
P ′[t], k

)
≤ ropt

(
P [t], k

)
+ δ and ropt

(
P [t], k

)
≤ ropt

(
P ′[t], k

)
+ δ,

as the distance between a point in P and its translated image in P ′ is at most δ = rmin(P )
at any time.

Finally, given a (c, m, k)-static clustering of P ′, its corresponding clustering of P is ((1 +
c)ρ + c, m, k)-static clustering, as implied by Lemma 3.2.
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A natural interpretation of Lemma 3.5, is that it partitions the set of curves P ′ into m
families, where each family of curves passes through a common point.

Let P be a set of moving points in IRd, all passing through a common point ξ at time
t′. We can consider P [t] to be a set of curves in IRd+1, and we are interested in finding a
set of horizontal disks that stabs all the curves. Note that this measure in insensitive to
translation. In particular, we can translate the curves of P so that (ξ, t′) is mapped to the
origin. Let P ′ denote the resulting point set. Clearly, P and P ′ are equivalent, and one can
perform the clustering for P ′ instead of P . Furthermore, for t = 0 all the points of P ′ are
located at the origin.

Lemma 3.6 Let P be a set of moving points in IRd with algebraic degree of motion µ, such
that all of them are at the origin at time t = 0. Then, there exists a mapping f(·) of a point
of P [t] into a moving point of polynomial motion of degree µ − 1, so that for any A ⊆ P ,
we have r

(
f(A[t])

)
= r
(
A[t]

)
/t. In particular, given a (c, m, k)-static clustering U1, . . . , Um

of f(P ), then f−1(U1), . . . , f
−1(Um) is a static (c, m, k)-static clustering of P .

Proof: Let p[t] = (p1(t), p2(t), . . . , pd(t)) be any point of P [t]. We have, p[0] = (0, 0, . . . , 0)
by assumption. In particular, p1(0) = . . . = pd(0) = 0. Thus, all the polynomials p1(t), . . .,
pd(t) have a constant term which is zero. Namely, pi(t)/t is a polynomial of degree at most
µ− 1. Let f(p) = (p1(t)/t, . . . , pd(t)/t).

Let Q = f(P ). By the above, Q is a set of points moving with motion of degree at most
µ− 1.

For any p, q ∈ P , we have ‖p[t]q[t]‖ = ‖f(p[t])f(q[t])‖ · t. In particular, for any A ⊆ P ,
we have r

(
A[t]

)
= r
(
f(A[t])

)
· t. In particular, ropt

(
P [t], k

)
= ropt

(
Q[t], k

)
· t. Thus, given a

(c, m, k)-static clustering of Q by U1, . . . , Um, then we have:

r
(
f−1(Ui[t])

)
= r
(
Ui[t]

)
· t ≤ c · t · ropt

(
Q[t], k

)
= c · ropt

(
P [t], k

)
,

for all t ∈ IR.

Lemma 3.7 Let P be a set of moving points in IRd, where the degree of motion is µ.
There exists a partition of P [t] into m = kµ+1 sets P1, . . . , Pm, so that r

(
Pi[t]

)
≤ (2µ+1 −

1)ropt

(
P [t], k

)
. Namely, there exists a (2µ+1 − 1, kµ+1, k)-static clustering of P .

Proof: The proof is by induction on µ. For µ = 0, the points are stationary, and as such
the claim trivially holds as the clustering is independent of time. In particular, we have for
µ = 0 a (α(0), φ(0), k)-static clustering, where α(0) = 1, and φ(0) = k.

For µ > 0, by Example 3.4, there exists a (1, k, k)-stabbing of P and by Lemma 3.5
one can map the points of P (by translating each one of them horizontally by a vector of
length ≤ rmin(P, k)) into a set P ′ so that the curves of P ′ are being stabbed by a set of
k points (i.e., the centers of the horizontal disks of the (1, k, k)-stabbing). Let A′

1, . . . ,A′
k

be the partition of P ′ into sets, so that each set passes through a single common point.
By Lemma 3.6, there is a mapping of each A′

i into a set of moving points B′i, so that the
degree of motion of B′i is µ − 1. By induction, each B′i has a (α(µ − 1), φ(µ − 1), k)-static
clustering. By Lemma 3.6, the corresponding partition is also a (α(µ − 1), φ(µ − 1), k)-
static clustering of A′

i. In particular, since ropt

(
A′

i[t], k
)
≤ ropt

(
P ′[t], k

)
, we have that the

clustering resulting from doing this clustering process to each A′
i separately, results in a
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(α(µ − 1), kφ(µ − 1), k) static clustering of P ′. However, by Lemma 3.5, such a clustering
corresponds to a (2α(µ− 1) + 1, k · φ(µ− 1), k)-static clustering of P . It is now follows that
α(µ) = 2α(µ− 1) + 1 = 2 · (2µ − 1) + 1 = 2µ+1 − 1, and φ(µ) = kµ+1.

In essence, Lemma 3.7 reduces a rather obnoxious clustering problem (clustering of mov-
ing points), into a somewhat strange but conventional clustering problem.

Somewhat surprisingly, the kµ+1 term in Lemma 3.7 is tight if one is interested in a
constant factor approximation. Indeed, let γi,j be the line passing through the points (i, 0)
and (j, 1), for some 1 ≤ i, j ≤ k, and let L denote the set of all such lines. This corresponds to
a set of linearly moving points in IR (i.e., the y-axis is the time axis). Note that ropt

(
L[0], k

)
=

ropt

(
L[1], k

)
= 0. Let L1, . . . , Lm be any static clustering of L with m < k2. One of those

static clusters, Lj, must have at least two lines of L. In particular, max
(
r
(
Lj(0)

)
, r
(
Lj(1)

))
≥

1 which implies that this is unbounded error compared to ropt

(
L(0)

)
or ropt

(
L(1)

)
which are

both zero. This example can be easily extended to a point set with polynomial motion µ,
showing that kµ+1 static clusters are necessary.

No static clustering can be competitive if insertions and deletions are allowed, even for
non-moving points. Indeed, let us assume that we are given points in a online fashion. Once
the point has been received, we have to immediately assign it to one of the static clusters
c1, . . . , cm, so that at any time this clustering is competitive with the optimal k-clustering.
To see why such an algorithm is not possible, let the sequence of points (on the real line) be
xi = (3 + i)i, for i = 1, . . . ,m + 1. Note that the optimal k-clustering for Pi = {x1, . . . , xi}
has xi as a singleton in the clustering (since the distance between xi and xi−1 is larger than
the distance between xi−1 and x1). In particular, x1, . . . , xm+1 must all be in disjoint clusters,
but we are restricted to m clusters – a contradiction.

Using the same construction in the other direction shows that no static clustering can
support deletions. Interestingly enough, one can combine the static clustering together with
the KDS approach so one can support insertions and deletions. See Section 5. The case
were only insertions (and mergings) are allowed for the stationary case was investigated by
Charikar et al. [CCFM97].

One can extend Lemma 3.7 by using tighter stabbings.

Theorem 3.8 Let A be an algorithm that computes a (c, m, k)-stabbing of a moving point
set. Then, for a moving point set P , with a degree of motion µ, one can compute a ((c +
1)µ+1 − 1, mµ+1, k)-static clustering of P .

Proof: The proof follows the same inductive argument of Lemma 3.7. For µ = 0, the
points are stationary, and A provides a (c, m, k)-static clustering of P . Let α(0) = c and
φ(0) = m.

For µ > 0, we compute, using A, a (c, m, k)-stabbing of P , and we move each curve
of P to the center of its stabbing disk. This partitions the resulting point set P ′ into m
sets: A1, . . . , Am. By Lemma 3.6, we can treat each of the Ai as having degree of motion
µ− 1. By induction, for each Ai one can compute a (α(µ− 1), φ(µ− 1), k)-static clustering.
Combining those sets together results in a (α(µ − 1), φ(µ − 1)m, k)-static clustering of P ′.
By Lemma 3.2, this is a ((1 + α(µ− 1))c + α(µ− 1), φ(µ− 1)m, k)-static clustering of P .

11



Thus, φ(µ) = mµ+1, and

α(µ) = (1 + α(µ− 1))c + α(µ− 1) = c + (c + 1)α(µ− 1)

=

µ∑
i=1

c(c + 1)i−1 +(c + 1)µ α(0) = c

(
µ∑

i=1

(c + 1)i−1 +(c + 1)µ

)

= c

µ+1∑
i=1

(c + 1)i−1 = c
1− (c + 1)µ+1

1− (c + 1)

= (c + 1)µ+1 − 1.

Overall, this results in a ((c + 1)µ+1 − 1, mµ+1, k)-static clustering of P .

Lemma 3.9 Given a (c, m, k)-stabbing D of a moving point set P in IRd, then one can
compute a

(
ε, O

(
m(c/ε)d

)
, k
)
-stabbing of P .

Proof: Cover each disk of D by O(1/εd) equal size disks (for example, by covering such a disk
by a grid of size ≤ (ε/

√
d)rmin(P, k)), such that each one of them is of radius ≤ εrmin(P, k).

The resulting set of disks is clearly a (ε, O(m/εd), k)-stabbing of P .
Thus, to compute static clustering of a moving point set, we need to be able to compute

a (c, m, k)-stabbing quickly. It is unclear how one can compute quickly (even approximately)
a (c, m, k)-stabbing of a moving set of points. Nevertheless, it is quite easy to come up with
a “slow” algorithm for computing such stabbing (intuitively, you just enumerate all possible
stabbings, and return the best one). Thus, using this together with the speedup technique of
Section 2 results in a reasonably fast algorithm for computing static clustering, as described
in the following section.

4 A Motion-Clustering Algorithm

In this section, we describe how to compute the static clustering of Section 3 using the
techniques of Section 2.

Lemma 4.1 Given a set of n moving points P [t] with algebraic degree of motion µ, and
a center ξ[t] ∈ P [t], one can compute the time t′ when r

(
P [t], ξ[t]

)
is minimized, where

r
(
P [t], ξ[t]

)
= maxp∈P ‖p[t]ξ[t]‖. This takes O(λ2µ+2(n) log n) time, where λt(n) is the maxi-

mum length of a Davenport-Schinzel sequence of order t.

Proof: Let fi(t) = ‖pi[t]ξ[t]‖, for i = 1, . . . , n. Clearly, finding the time when the disk
centered at ξ[t] has minimum radius and covers all the points of P [t], is equivalent to finding
the lowest point in the upper-envelope maxi fi(t). This can be done in O(λ2µ+2(n) log n)
time [SA95].

Remark 4.2 Lemma 4.1 can be extended to find the optimal radius for a static clustering.
Namely, we are given k sets P1[t], . . . , Pk[t], and respective centers ξ1[t] ∈ P1[t], . . . , ξk[t] ∈
Pk[t], and we wish to compute the time where the k disk’s centers at ξ1[t], . . . , ξk[t] cover
their respective sets, and the maximum radius is minimized. Clearly, this boils down to
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finding the lowest point in an upper-envelope of n functions (assuming |P1|+ · · ·+ |Pk| = n),
and thus can be computed in O(λ2µ+2(n) log n) time.

Definition 4.3 Given a set of points P [t] in IRd, we associate with any pair of points
(p, q) ∈ P [t] × P [t] the distance between the two points. The signature of P [t] at time
t, is the ordering of all those

(
n
2

)
pairs by their length.

Lemma 4.4 Given a point set P [t] whose signature is constant in the interval t ∈ [a, b], the
partition induced by the greedy clustering [Gon85] generated for any t ∈ [a, b] is the same,
and provides a (2, k, k)-static clustering in this interval. In particular, one can compute a
2-approximation to the minimum of ropt

(
P [t], k

)
on the interval [a, b] in O(nλ2µ+2(n) log n)

time.

Proof: Since the algorithm of Gonzalez [Gon85] bases its decisions on comparing distances
between pairs of points of P [t], it is clear that if the signature does not change, then the
resulting partition remains the same for all t ∈ [a, b].

This is a (2, k, k)-static clustering, because at any time t ∈ [a, b] the algorithm of Gonzalez
[Gon85] generates a 2-approximation to ropt

(
P [t], k

)
.

Computing the minimum radius of this partition in [a, b] can be done in the time specified,
using the algorithm of Remark 4.2.

Lemma 4.5 One can compute O(n4) sorted intervals that cover the real-line, in O(n4 log n)
time, so that inside each such interval P [t] has the same signature.

Proof: Consider a quadruple of points p1, p2, q1, q2 ∈ P . The equation ‖p1[t]p2[t]‖ =
‖q1[t]q2[t]‖ has 2µ solutions, and those are the times when the pair p1p2 exchanges places
with q1q2 in the signature. Repeating this for all possible quadruples results in all the times
when the signature changes. Overall, there are O(n4) such events, and one can sort them in
O(n4 log n) time.

Lemma 4.6 Given a set of n moving points P in IRd with algebraic degree of motion µ, one
can compute, in O(n4λ2µ+2(n) log n) time, a (2, k, k)-stabbing of P .

Proof: Use the algorithm of Lemma 4.5 to compute all the intervals where the signature
remains the same. Apply for each interval the algorithm of Lemma 4.4. Return the set of
disks computed with minimum radius.

Lemma 4.7 Given a set P of n moving points in IRd, with algebraic degree of motion µ,
one can compute a (2, 15k, k)-stabbing of P , for all k = O(n1/14), in O(nk) time.

Proof: We are going to use Theorem 2.9, but for the sake of simplicity we will use the
naive point-location data structure (i.e., for each curve, we scan the disks and decide whether
it stabs the disk or not). We set η = 14, and ε = (k/n)1/(η+1). The samples used by the
algorithm are of size m = O

(
k log n

ε

)
= O

(
n1/(1+η)kη/(1+η) log n

)
. Using the algorithm of

Lemma 4.6 such a sample can be 2-approximate k-clustered in

TC(m) = O(m4λ2µ+2(m) log m) = O(m5.5) = O
((

n6k6η
)1/(1+η)

)
= O

((
n6+6η/14

)1/(1+η)
)

= O
(
n(84+6η)/14(1+η)

)
= O

(
n168/210

)
= O(n)
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time, as k = O(n1/14) and η = 14. Thus, the overall running time of the algorithm of
Theorem 2.9 is O(nk + (η + 1)TC(m)) = O(nk), since we spend O(k) on each point-location
query, and we perform O(ηn) point-location queries.

Lemma 4.7 can be easily improved, by using more advanced data structures. However,
since such data structures are rather complicated, we opted for a slower algorithm which is
reasonably fast.

Putting Lemma 4.7, together with Theorem 3.8, we have:

Theorem 4.8 Let P be a set of moving points in IRd, where the algebraic degree of motion
is µ. One can compute a (3µ+1 − 1, (15k)µ+1, k)-static clustering of P in O(nk) time, for
k = O

(
n1/14

)
.

5 Using Coresets to Perform Insertions and Deletions

In this section, we show how to maintain static clustering under insertions and deletions.

Theorem 5.1 Let P be a set of moving points in IRd with algebraic degree of motion µ, and
0 < ε < 1/2 a parameter. One can compute a

(
ε, O((k/εd)µ+1), k

)
-static clustering of P in

O(nk/εd) time, for all k = O
(
n1/14εd

)
.

Proof: We convert a (2, 15k, k)-stabbing of Lemma 4.7 into a (ε/c, O(k/εd), k)-stabbing
of P , using Lemma 3.9, where c is a constant to be specified shortly.

Using such a stabbing in the algorithm of Theorem 3.8 results in a (a, b, k)-static clustering
U of P , where a = (1 + ε/c)µ+1 − 1 and b = O

((
k/εd

)µ)
. For c = 2(µ + 1), we have:

a = (1 + ε/c)µ+1 − 1 ≤ exp

(
ε

2(µ + 1)
(µ + 1)

)
− 1 ≤ 1 + 2(ε/2)− 1 = ε,

since 1 +x ≤ ex ≤ 1 + 2x for 0 ≤ x ≤ 1/2. Thus, U is a
(
ε, O((k/εd)µ+1), k

)
-static clustering

of P
Theorem 5.1 implies that one can extract a small subset from P that represents the point

set, up to factor of ε, as far as k-clustering at any time is concerned.

Definition 5.2 Let P be a point set in IRd, and 1/2 > ε > 0 a parameter. A set Q ⊆ P
is an ε-coreset of P if for any set of k balls C that covers Q, we have that P is covered by
C
(
εropt

(
P, k

))
, where

C(δ) =
{

ball(p, r + δ)
∣∣∣ ball(p, r) ∈ C

}
,

where ball(p, r) denotes the ball of radius r centered at p.
If P ′ is a set of moving points, then Q′ ⊆ P ′ is an ε-coreset of P ′ if Q′[t] is an ε-coreset

of P ′[t], for all t.

For recent work on coresets, see [AH01, HV02, BHI02].

Lemma 5.3 For P , k as above, and 0 < ε < 1/2, the following holds:
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(i) If Q is an ε-coreset of P , then (1 − ε)ropt

(
P, k

)
≤ ropt

(
Q, k

)
≤ ropt

(
P, k

)
≤ (1 +

2ε)ropt

(
Q, k

)
.

(ii) If Q is an ε-coreset of P , and Q′ is a coreset of P ′ then Q∪Q′ is a coreset of P ∪ P ′.

(iii) If Q1 ⊆ Q2 ⊆ . . . ⊆ Qm, where Qi is an ε-coreset of Qi+1, for i = 1, . . . ,m− 1. Then
Q1 is an δ-coreset of Qm, where δ = εme2εm.

Proof: (i) Clearly, ropt

(
Q, k

)
≤ ropt

(
P, k

)
, as Q ⊆ P . Furthermore,

ropt

(
Q, k

)
+ εropt

(
P, k

)
≥ ropt

(
P, k

)
,

as we can convert the optimal k-clustering of Q into a clustering of P , by expanding each
ball by εropt

(
P, k

)
. Thus, ropt

(
Q, k

)
≥ (1− ε)ropt

(
P, k

)
. Also,

(1 + 2ε)ropt

(
Q, k

)
≥ (1 + 2ε)(1− ε)ropt

(
P, k

)
≥ ropt

(
P, k

)
,

as ε < 1/2.
(ii) Let C be a k-clustering of Q ∪ Q′. By definition, P ⊆ C

(
εropt

(
P, k

))
and P ′ ⊆

C
(
εropt

(
P ′, k

))
, as C is a k-clustering of Q and Q′ separately. Finally, ropt

(
P, k

)
, ropt

(
P ′, k

)
≤

ropt

(
P ∪ P ′, k

)
. Thus, P ∪ P ′ ⊆ C

(
εropt

(
P ∪ P ′, k

))
.

(iii) Let C1 be a clustering of Q1 by k balls, and let Ci = Ci−1(εropt

(
Qi, k

)
), for i = 2, . . . ,m.

By induction Qm ⊆ Cm. Furthermore, Cm = C1(ρ), where

ρ =
m∑

i=2

εropt

(
Qi, k

)
≤ ε

m∑
i=2

(1 + 2ε)m−i ropt

(
Qm, k

)
≤ εme2εmropt

(
Qm, k

)
= δ · ropt

(
Qm, k

)
,

as 1 + x ≤ ex, for 0 ≤ x ≤ 1, and δ = εme2εm. We conclude that Qm ⊆ C1

(
δropt

(
Qm, k

))
,

and thus Q1 is a δ-coreset of Qm.
Note that Lemma 5.3 holds verbatim if the point sets are moving.

Theorem 5.4 Let P be a set of moving points in IRd with algebraic degree of motion µ. One
can compute an ε-coreset of P of size O((k/εd)µ+1), in O(nk/εd) time.

Proof: Compute an (ε/2, O((k/εd)µ+1), k)-static clustering of P using the algorithm of
Theorem 5.1. Next pick arbitrarily a representative point from each static cluster, and let
Q be the resulting point set. It is now easy to verify that Q is an ε-coreset of P .

Note that we can now maintain the k-clustering of a moving point set by computing its
ε-coreset, and clustering the coreset whenever we want the exact clustering.

Theorem 5.5 One can maintain an ε-coreset for k-clustering of a point set moving in
bounded polynomial motion in IRd. The operations insertion, deletion and motion update
can all be handled in time poly(k, 1/ε, log n), where n is the maximum number of points
in the data structure at any time. Furthermore, one can extract a (2 + ε)-approximate k-
clustering, at any time, in the same time bound.
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Proof: Clearly, once we have an ε-coreset of the current point set in the data structure,
we can report the 2+ε approximate clustering by just computing it directly from the coreset
using the algorithm of Gonzalez [Gon85]. This would take O(kM), where M is the size of
the coreset.

So, we need to show how we can maintain the ε-coreset of a moving point set, under
insertions and deletions (motion updates can be performed by a deletion followed by an
insertion). The basic idea was introduced in [AH01]: Let T be a balanced binary tree that
stores the points in its leaves, and store inside each interior node v of T a coreset of the
points stored in the subtree of v. Let this set be denoted by coreset(v).

If u and w are the two children of v, we can compute coreset(v) by computing a δ-coreset
of coreset(u) ∪ coreset(w) using the algorithm of Theorem 5.4, where δ is to be specified
shortly. Clearly, insertions and deletions can be performed by doing rotations in T , and we
can always fix the coresets of the changed nodes by recomputing them from their children
coresets. Clearly, all this can be done while keeping the tree depth smaller than 5 log n, and
the running time is O(poly(1/δ, k, log n)).

We now apply Lemma 5.3 (iii), with m = 5 log n and δ being the approximation factor.
Clearly, coreset(root(T )) is a ρ-coreset of the points stored in T , where

ρ = δme2δm = 5e10δ log nδ log n.

In particular, setting δ = ε/(20 log n), we have ρ = εe1/2/4 ≤ ε. Namely, coreset(root(T )) is
an ε-coreset of all the points stored in the tree.

As for the running time, one can verify that all the operations can be performed in
O(poly(1/ε, k, log n)). Finally, computing the k-clustering from the root coreset takes O(kM) =
O(poly(k, 1/ε, log n)) time as M = O(poly(k, 1/ε, log n)).

The solution of Theorem 5.5 might be of limited use in practice, as sometime we would
like every point to be marked by the current cluster that it is contained in. One option, is to
take the ε-coreset maintained by the data structure of Theorem 5.5 and explicitly maintain
its clustering, using a KDS as done in the following (naive) result. For more information
about KDS and relevant definitions, see [BGH99].

Lemma 5.6 Let P be a set of moving points in IRd. One can maintain a 2-approximate k-
center clustering of P , such that at any time there are O(nk) active certificates. Furthermore,
when one of the certificates is violated, the clustering and the associated set of certificates
can be recomputed in O(nk) time.

Furthermore, if the points move with polynomial motion of degree µ, then there would be
at most O(n4) events throughout the execution of the algorithm.

Proof: The algorithm follows the following naive approach: We run Gonzalez [Gon85]
algorithm on P at the current time t, and we compute for each comparison of the type
‖x[t]y[t]‖ ≤ ‖z[t]w[t]‖ a certificate (one can implement Gonzalez’s algorithm so that it uses
only this kind of comparison), where x, y, z, w ∈ P .

Whenever one of these certificates is being violated, we stop and recompute the clustering
and the set of certificates.

Finally, the bound on the number of events follows immediately from Lemma 4.6. Note
that at any point in time, we know for every point which cluster it belongs to, and the
current set of clusters.
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Note that this result is far from being satisfactory from a KDS point of view, as the
number of events, and the time spent on each event are prohibitive. However, using core-
sets we can trade off between accuracy and the number of events. Namely, we can main-
tain the k-clustering of the coreset using Lemma 5.6. This results in a KDS handling
O(n poly(k, 1/ε. log n) events (instead of O(n4)) that maintains a (2 + ε)-approximate k-
clustering. The details are straightforward, and we omit them here.

6 Approximate k-center clustering

In this section, we show how one can compute a 2-approximate clustering in expected linear
time. We achieve this by using the speedup technique of Section 2, together with some ideas
from Feder and Greene [FG88].

Observe that in some clustering problems, one can replace the point-location data struc-
ture by an approximate point location data structure. In this case, we are allowed to slightly
inflate the clusters, and the data structure has to decide whether the points are inside the
inflated clusters (in fact, we allow uncertainty in this region).

Definition 6.1 A γ-approximate point-location data structure is a data structure that re-
ceives a set C of u clusters as input and preprocesses them in TPA(u) time, so that given a
point p it can decide in O(TQ(m)) time whether a point lies inside

⋃
C, or alternatively is

in distance larger than γ r
(
C
)
from

⋃
C. If the point is in the middle, returning either result

inside/outside is allowed.

In low dimensions, constructing such an approximate point-location data structure is
quite easy, as the following lemma demonstrates.

Definition 6.2 Given a set Q of balls in IRd, all of radius at most l, let G be the uniform
grid of side-length l, Z(Q, l) denote the set of cubes of G that intersects the balls of Q,

and UG(Q, l) =

 ⋃
z∈Z(Q,l)

z

 denote the union of those cubes. Note that if a point is inside

UG(Q, l), then it is in distance at most (1 +
√

d)l from one of the centers of Q.

Lemma 6.3 Given a set Q of k balls in IRd of radius at most l, one can preprocess them
in O(k) time, so that given a query point, one can decide, in O(1) time, whether a point
is inside UG = UG(Q, l). In particular, given a set P of n points, one can compute all the
points in P \ UG in O(n + k) time.

Proof: Compute Z(Q, l) in O(k) time. Since all the cubes of Z(Q, l) are cells in a grid,
one can answer a point-location query that decides for a point q whether or not it is inside⋃

Z(Q, l), in O(1) time, by using a hash-table to check if the grid cell that contains q is in
Z(Q, l).

Lemma 6.4 Given a set P of n points in IRd, one can compute a (4 + 2
√

d, k, k)-clustering
of P in O(n) expected time, for k ≤ 3

√
n/ log n.
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Proof: We implement FastCluster by using the algorithm of Gonzalez [Gon85] as the
clustering subroutine. Gonzalez’s algorithm computes a (2, k, k)-clustering of m points in
O(mk) time. We set ε =

√
k/n, and use a sample of size m = O((k log n)/ε) = O(

√
nk log n).

Thus, this stage takes O(mk) = O(
√

nk3/2 log n) = O(n) time, and we compute a k-clustering
C ′′. Next, for the point-location stage, we use the data structure of Lemma 6.3. This yields a
((
√

d+1)l, 2k, k)-clustering C ′ of P , where l = r
(
C ′′
)
/ropt

(
P, k

)
≤ 2ropt

(
P, k

)
/ropt

(
P, k

)
= 2.

Thus, C ′ is a (2
√

d+2, 2k, k)-clustering of P . By clustering representative points (each point
of P is in distance ≤ (2

√
d + 2)ropt

(
P, k

)
from its closest representative point) from each

cluster of C ′, and applying Gonzalez’s algorithm [Gon85] we get a (2
√

d + 4, k, k)-clustering
C of P in O(n + k2) = O(n) expected time.

We now show how to transform a (large) constant approximation to the optimal k-center
clustering into a 2-approximation. The following is a simple extension of the algorithm of
Feder and Greene [FG88], and is presented here as the implementation of Feder and Greene
[FG88] relies on a structure constructed in an earlier stage of their algorithm, and our version
is independent of this structure.

Lemma 6.5 Let P be a set of n points in IRd, and k, r parameters, so that ropt ≤ r ≤ c ·ropt,
where c ≥ 1 is a constant and ropt = ropt

(
P, k

)
. Then, one can compute a 2-approximation

to the optimal k clustering of P in O(n + k log k) time.

Proof: Let G be a partition of IRd into a uniform grid, with side length ∆ = r/(2c
√

d) ≥
ropt/(2c

√
d). Note that ∆ ≤ c · ropt/(2c

√
d) = ropt/(2

√
d). Compute for each of the points

of P the cell of G that contains it, and compute for each grid cell the points assigned to it
(using hashing and bucketing), in overall linear time (note that we need the floor function
to implement this efficiently).

Since each ball of the optimal clustering can intersect at most (2ropt

(
P, k

)
/∆ + 1)d =

O((4c
√

d + 1)d) = O(1) cells of the grid, it follows that two non-empty grid cells in distance
at least 2r from each other cannot participate in the same cluster in the 2-approximation
to the optimal clustering. We compute for each non-empty grid cell c of G (there at most
O(k) such non-empty cells) the O(1) grid cells in distance at most 2r from c which are not
empty. For each cell c, let N(c) denote this cell list of neighbors.

We now implement the algorithm of Gonzalez [Gon85] on P . We remind the reader that
the algorithm of Gonzalez [Gon85] repeatedly picks the point furthest away from the current
set of centers as the next center to be added, and updates for each point its distance to its
closest center. In our setting, each time we pick a new center p, which lies in a grid cell c,
we visit all the neighbors N(c) of c and update the distance to the closest point for all the
points of P stored in those cells. (Note that we do not have to update cells that are further
away from c as they lie on different clusters in any 2-approximate clustering.) Furthermore,
a cell can contain only a single center point, as its diameter is at most

√
d∆ < ropt, and

thus can initiate such a distance update only once. In particular, the points stored in a cell
c might be scanned at most O(|N(c)|) = O(1) times. Furthermore, the algorithm maintains
for each cell c the point of P inside it which is furthest away from the current set of centers.
This representative point is the point that algorithm might pick for its next center (i.e., since
the algorithm always picks the next center to be the point which is furthest away from the
current set of centers, the representative is the only point that is relevant for the algorithm
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inside the cell).
Since each point is being scanned a constant number of times, it follows that the overall

running time associated with this operation is O(n). Also, the algorithm needs to maintain
a heap of the points of P that might serve as the next center. Here, the heap is sorted by
the distance of the points to their nearest center, and the top of the heap is the point that
maximizes this quantity. Instead of maintaining a heap for n points, we instead maintain
a heap for the O(k) representative points. Since each cell has a single such representative,
and the algorithm performs O(k) insertions, weight-update and delete-max operations on
this heap, it follows that we can implement each heap operation in O(log k) time. Thus, the
overall running time of the algorithm is O(n + k log k) time.

Combining Lemma 6.4 and Lemma 6.5, we establish the following result:

Theorem 6.6 Given a set P of n points, one can compute a 2-approximate k-clustering of
P , in O(n) expected time, for k = O( 3

√
n/ log n).

Note that the algorithm of Theorem 6.6 is very simple. It boils down to repeated usage
of random sampling, hashing, and using the (rather simple) clustering algorithm of Gonzalez
[Gon85] as a subroutine.

7 Conclusions

In this paper, we proved that there is a small static clustering of any set of moving points
and presented an efficient algorithm for computing this clustering. We also show how to
efficiently maintain static clustering under insertions and deletions. No previous results of
this type were previously known for moving points, and this presents to our knowledge the
first efficient dynamic data structure for maintaining (approximate) k-center clustering of a
moving point set.

We also described a simple technique for speeding up clustering algorithms. In a certain
sense, our speeding up technique implies that clustering is easy if one is willing to compromise
on the number of clusters used.

We use it to derive a linear time algorithm for 2-approximate k-center clustering in
Euclidean space. We believe that the ability to do 2-approximate clustering in (expected)
linear time, even under our strong computation model, is interesting and surprising. Our
result can be interpreted as extending the techniques of Rabin [Smi00, GRSS95, Rab76] for
closest-pair computation to clustering.

We note that our results about the small coreset for k-center clustering, implies that one
can maintain such approximate clustering on a stream of points, using O(poly(k, 1/ε, log n)
overall space (each insertion can be handled in similar time). This follows because any
measure that has a small coreset can be streamed, see [AHV03] for details.

One open question for further research is to develop an algorithm with a tradeoff between
clustering quality and I/O efficiency.
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