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Abstract. We describe an efficient randomized algorithm to test if @ghinary
function f : {0,1}" — {0,1} is a low-degree polynomial (that is, a sum of
low-degree monomials). For a given integee> 1 and a given reat > 0, the
algorithm querie§ atO(% + k4%) points. If f is a polynomial of degree at most
k, the algorithm always accepts, and if the valuefdfias to be modified on at
least ane fraction of all inputs in order to transform it to such a patymial,
then the algorithm rejects with probability at le&¢8. Our result is essentially
tight: Any algorithm for testing degrelepolynomials ovelG F'(2) must perform

(1 + 2%) queries.

1 Introduction

In this work we consider the problem of testing whether atyifianctionf : {0,1}" —
{0,1} is a polynomial of degree at motsatisfyingf(0,...,0) = 0, for a given in-
teger parametet. Such a polynomial is simply a sum (modulo 2) of monomialsheac
being a product of at mogtvariables, with the free term equal to zero. (The restnictio
f(0,...,0) = 0 is imposed mainly for historical reasons, to make our dédiniand
result consistent with the previously treated case of lifigactionsk = 1. With minor
changes our algorithm can be adapted to test the class dilgligmials of degree at
mostk in n variables, without the restriction on the free term.) Thgoathm is re-
quired to accept functions that are polynomials of degreeasttk (vanishing at zero),
and to reject, with probability at lea8y3, functions that aréar from any such poly-
nomial. More precisely, the algorithm is given a distanceap®etere, and is required

* E-mail: nogaa@post.tau.ac.il. Research supported inoyaat USA Israeli BSF grant and by
a grant from the Israel Science Foundation
** E-mail: kaufmant@post.tau.ac.il, This work is part of thter's Ph.D. thesis prepared at Tel
Aviv University under the supervision of Prof. Noga Alonddarof. Michael Krivelevich.
*** E-mail: krivelev@post.tau.ac.il. Research supportedairt py a USA Israeli BSF grant and
by a grant from the Israel Science Foundation.
t E-mail: litsyn@eng.tau.ac.il. Research supported in ipae USA Israeli BSF grant and by a
grant from the Israel Science Foundation.
t E-mail: danar@eng.tau.ac.il. Research supported by thellScience Foundation (grant num-
ber 32/00-1).



to reject (with probability at least/3) any function whose value should be modified
on more that ar-fraction of the domain to become a degrepolynomial f satisfy-
ing f(0,...,0) = 0. To this end the algorithm can query the functipon inputs of
its choice, where our goal is to minimize the query complegitthe algorithm (as a
function ofk, 1/¢, andn).

The problem of testing multivariate low-degree polynomtahs been studied quite ex-
tensively [4,3,13,11,17,12, 2], and has important apfiboa in the context of Proba-
bilistically Checkable Proofs (PCP). However, with theepiion of the cask = 1, that

is, linear functions (which we discuss below), all resufiplst only to testing polynomi-
als over fields thaare larger thank (the degree bound). When the fidits sufficiently
large, it is possible to reduce the problem of testing wheghiinctionf : F* — F

is a multivariate degreg-polynomial to testing whether a function is a degkeeni-
variate polynomial, where the latter task is simply based on intlan. Namely, the
test for f selects randortinesin F™ (more precisely, in the finite projective geometry
PG(n —1,|F|)), and verifies that the restriction ¢fto each of these lines is a (univari-
ate) polynomial of degree at maist This reduction does not hold for small fields, and
in particular forGF(2), which is our focus.

As noted above, in the caselot= 1 (linear functions), the linearity test of Blum, Luby
and Rubinfeld [10] works also when the underlying field:ig'(2). In fact, our test can
be viewed as an extension of the [10] algorithm, as we exphamore detail below.
Linearity testing has also been studied in the followinggrag4, 11,6, 7, 5].

Our Results

We describe and analyze an algorithm that tests whetheraidanf : {0,1}" —
{0,1} is a degree: polynomial satisfyingf (0, ...,0) = 0, or ise-far from any such
polynomial, using)(1/e + k - 22¥) queries. As we show, the exponential dependency
onk is unavoidable. This is in contrast to the case of testingeatek polynomials over
larger fields, where the sample complexity is polynomid.iOur testing algorithm is
simple. It repeats the following che(‘3<(2%e + k2*) times: It selects, uniformly and at
randomk + 1 vectorsyy, ..., yr+1 € {0,1}". It then evaluateg on the sum of every
non-empty subset of the selected vectors, and checks thatith of these evaluations
is 0. If all checks succeed then it accepts, otherwise ittgjéNote that for the special
case ofc = 1, we obtain the linearity test of [10] which uniformly sele€i(1/¢) pairs
y1,y2 € {0,1}", and verifies for each pair thg{y:) + f(y2) = f(y1 + y2).

Our choice of the sets corresponds to a random selection(bf+a 1)-dimensional
subspace in the affine geometry AG2) (see for example [14, Chap. 12]). In case
k = 1 we deal with lines of the affine geometry P2).

As a by-product of our analysis we obtairself-corrector(as defined in [10]) forf,
in casef is sufficiently close to a degréepolynomialg. Specifically, for any given
x € {0,1}", itis possible to obtain the valugz) with high probability by querying
on additional, randomly selected, points.



Relation to Coding

Our setting and results have a very natural interpretatioteims of coding theory.
The set of (evaluations of) all polynomials in variables of degree at mostover
GF(2) is called theReed-Muller codéR(k,n) with parameterg andn. (See, e.g.,
[16] for relevant background). So our algorithm can be cdex@d as (locally) testing
Reed-Muller codes. To be more accurate, as we consider ohypg@mialsf vanishing

at zero, we in fact test the so-callstortened Reed-Muller cod@(k,n)*, obtained
from R(k,n) by choosing all codewords with the first bit (i.e. that copasding to
the zero vector) equal to zero, and deleting this bit. ThedRdaller codeR(k,n) is

a linear code if0,1}2" of minimum distanc&™~*. The dual code oR(k,n) is the
Reed-Muller cod&R (n — k — 1,n). The dual code of the shortened Reed-Muller code
R(k,n)* is the so callegpuncturedReed-Muller code with parametets- k£ — 1 andn,
obtained fromR (n— k—1,n) by deleting the first bit of every codeword. The minimum
distance of the punctured Reed-Muller code with parameters—1 andn is 28+! —1,
and its minimum weight codewords are obtained from the mimmweight codewords
of R(n — k — 1,n), having the first bit equal to 1, by deleting this bit; the nuanbf
minimum weight vectors is proportional g§*+1)m

For an arbitrary vector fror0, 1}2n we want to distinguish between two cases: the
vector belongs to the code, or, alternatively, it is at (Hangpdistance at least- 2"
from the closest codeword & (k, n)*. Our strategy is then to pick a random minimum
weight vector from the puncturéd(n —k — 1, n), and to check if it is orthogonal to the
tested vector. Clearly, this will always confirm orthogatyaf the considered vector is
from the code. However, we prove that if the tested vectarighough from the code,
with positive probability the test will detect it, and give astimate for this probability.

2 Prédiminaries

For any integef, we denote by/] the set{1, ..., ¢}. For anyk € [n], let P} denote the
family of all Boolean functions ovef0, 1}" which are polynomials of degree at mast
without a free term. That isf € Py, if and only if there exist coefficieniss € {0,1},
for everyS C [n],1 < |S| < k, such that

f= > as- ][, 1)

SCln],|S|€[k] €S

where the addition is itt7F'(2). In particular,P; is the family of all linear functions
over{0,1}", that s, all functions of the forfy_, _ s z;, whereS C [n].

For any two functionsf, g : {0,1}" — {0,1}, the symmetric difference betwegn
andgis A(f,g) def {y € {0,1}" : f(y) # g(y)}. The relative distancéist(f, g) €

[0,1] betweenf andg is: dist(f, g) def |A(f,9)|/2™. For a functiory and a family of
functionsF’, we say thay is e-far from F, for some0 < € < 1, if, for every f € F,
dist(g, f) > €. Otherwise it isc-close to F.

A testing algorithmtester) for P, is a probabilistic algorithm, that is given query access
to a functionf, and a distance parametei0 < ¢ < 1. If f belongs taP;, then with



probability at least, the tester should accept and if f is e-far from Py, then with
probability at least the tester should reject it. If the tester accepts eyery P;, with
probability 1, then it is ane-sided tester.

The following notation will be used extensively in this pap8iven a functionf :
{0,1}" — {0,1}, foryi, ..., ye € {0,1}" let

Tf(ylr":yl) déf Z f(Zyz) ) (2)

0£SCle]  \i€s

where the first sum is ovéF F'(2) and the second one is ovgF F'(2))™, and let

T (Yo, ..o ye) = Ty(yr, -, 0e) + Fwn) - (3)

3 Characterization of L ow Degree Polynomialsover {0, 1}"

Claim 1 A functionf belongs taPy, (i.e., it is a polynomial of total degree at mdst
satisfyingf (0,0, ...,0) = 0), if and only iffor every y1, ..., yrt1 € {0,1}" we have

Tr(y1,---Yr+1) = 0. (4)

Proof. A polynomial from?P; can be viewed as a code word in the appropriate Reed-
Muller code, see, e.g., [16]. Thus, the above characté@izaeain be proved using known
facts about its dual. For completeness we provide a dirieaple proof.

We first prove that if a functiotf belongs toPy thenTy(y,. .., yk+1) = O for every
Y1, Yk+1 € {0,1}".

As f is a sum of monomials of total degree at mbst suffices to show that for ev-
ery monomialm = [[;.; zi, wherel < [I| < k, Tr(y1,-..,yk+1) = O for ev-
ery yi,...,yer1 € {0,1}". The number of linear combinatimﬁf;rl1 b;jy;, where

b; € {0,1}, for WhiChm(E;:ll bjy;) = 1is clearly the number of solutions of a linear
system of I| equations in thé + 1 variablesh;, and the trivial combinatioh; = 0 for
all j is not one of the solutions. Therefore, this number of sohgi(which is possibly
zero) is divisible by2*+1~I1! showing that there is an even number of sgtmtisfying

0 # S C [k + 1] such thatn(}", g i) = 1. This implies thal,y, (y1, - - ., yx+1) = 0,
as needed.

We next show that iff = f(z1,z,...,2,) : {0,1}" — {0, 1} satisfies Equation (4)
for everyys,ya,-..,yp+1 € {0,1}", thenf € Py. Every function from{0,1}" to
{0,1} can be written uniquely as a polynomial ov&F'(2):

f= Z aIHa:,-.

IC[n] el

Our objective is to show thaty = 0 and thata; = 0 for all |I| > k. Takingy; =
(0,0,...,0) for everyj we conclude, by (4), thaty = 0. Suppose, now, that there is a
nonzeroay with |I| > k. Take such ad of minimum cardinality, and assume, without
loss of generality, thak = [s] with s > &k + 1.



Let e; denote the-th unit vector in{0, 1}", and defing;; = e1,y2 = ea,...,yx = ek
andygi1 = egq1 + ... + es. Then the monomialn = ar [];., z; does not van-
ish on Zfill y; and does vanish o, ¢ y; for every) # S # [k + 1]. Thus
Trm(y1,---,yr+1) # 0. Onthe other hand, for any other monomial, say= [],. ., =:
with a nonzero coefficient in the representation fofT,,.s (v1,--.,¥x+1) = 0. In-
deed, if|I'| < k this holds by the first part of the proof. Otherwise, by the min
imality of I, m'(3,cqy:) = 0 forall S C [k + 1]. Altogether this implies that
T¢(y1,y2,..-,yr+1) = 1, contradicting the assumption.

This completes the proof of Claim 1.

4 A One-Sided Tester for Low Degree Polynomialsover {0, 1}"

In this section we present and analyze a one-sided test@forhis tester generalizes
the linearity tester of Blum, Luby and Rubinfeld [10].

Algorithm Test-Py,

1. Uniformly and independently sele@t(le6 + k2*) groups of vectors. Each group
containsk + 1 uniformly selected random vectays, .. ., yr+1 € {0,1}".

2. If for some group of vectorg, . . ., ye41 it holds thatT’s (y1, . .., yx+1) # 0, then
reject, otherwiseaccept.

Theorem 1 The algorithmTest-Py, is a one-sided tester fd?;, with query complexity
O(L + k2%).

From the test definition and from Claim 1 it is obvious thaf iE Py, then the tester
accepts. Thus, the crux of the proof is to show thaf ifs e-far from Py, then the
tester rejects with probability at lea&t3. Our proof has a similar general structure to
Sudan’s analysis [18] of the linearity test in [10], but rega some additional ideas.
In particular, if f is the function tested, we can define a functjoas follows. For any

y € {0,1}"™

gly) =1if Pry, . . cio1}m [T}’(yz, -y Yk+1) = 1] > 1/2 andg(y) = 0 otherwise.
(5)

Thusg is a kind of majority function. That is, for every vectay € {0,1}", g(y) is

chosen to satisfy most of the equatidi’ﬁ(yz, . o, yk+1) = g(y). We also define

def
n = Pryl,---,yk+1e{0,1}" [Tf(yla"'ayk-i-l) # 0]

= Pry1,---,yk+1 €{0,1}" [T}h (yZa v ayk-i-l) 7é f(yl)] . (6)

Note that is simply the probability that a single group of vectgrs. . . , yx+1 Selected
by the algorithm provides evidence thag P,. We shall prove two claims. The first,
and simpler claim (in Lemma 2), is thatjfis small, thery is close tof . The second and
more involved claim (in Lemma 5) is thatsfis small, thery must belong tdP;,. This
would suffice for proving the correctness of a slight vadatbn our algorithm that uses
a larger sample size. In order to attain the sample complelaimed in Theorem 1,
we shall need to prove one more claim that deals with the cashichg is very small
(see Lemma 6).



Lemma 2 For a fixed functionf, let g andyn be as defined in Equations (5) and (6),
respectively. Thenlist(f, g) < 2n.

Proof. Recall that for everyy € {0,1}", Pry, _y. . cfo.3*[TF (Y2, - > Yrt1) =
9(y)] > 1/2. Hence

n= Pry,yz,---,yk+1€{0,1}" [Tﬁ(y% v :yk-‘rl) 7é f(y)]

1
= 2_n Z Pryg,...,yk+1€{0,1}" [T]{I(y% R Jyk+l) 7é f(y)]
y€{071}"
1
> oo Y Prgierony T @, yke) = 9(9)]
yEA(f,9)
1 1
> .|A .z
> o 1A 9l 5

ThUS,diSt(f7 g) = ‘Ag#)‘ < 2,,7.

Recall that by the definition of as a majority function, for every, we have that for at
least one half of thé-tuples of vectorgs, . . ., yx+1, T}’(y2, <o Yk+1) = g(y). Inthe
next lemma we show that this equality actually holds for d waggority of thek-tuples
Y2, - -, Yr+1 (@ssuming; is sufficiently small).

Lemma3 For everyy € {0,1}": Pry, .. ef0137[9(%) = T (y2;s-- -, ykr1)] >
1—2kn.

In order to prove Lemma 3 we shall first establish the follapdtaim.
Claim 4 Foreveryy, z,w,ys, ...,y € {0,1}",

Tf(y,yz,---,yk,'IU)+Tf(y,y2,---,yk,2)
:Tf(y+way2a7ykay+w+z)+Tf(y+zay277ykay+w+z) (7)

Proof. LetY = {ya,...,yx}, and consider any sétC {2,...,k}, which may be the

empty set. For a vectar € {0,1}" denotefy ;(z) o f(iervi + ).

For every sefl C {2,...,k}, each element of typg(> ;. y:) appears twice in both
sides of Equation (7) and thus cancels out. Now for every sef{2, .. ., k} (including
the empty set), we get in the left hand side of Equation (7):

Iyii(y) + frp(w) + fra(y +w) + fra(y) + fr: (2) + fra(y + 2) -
In the right hand side of Equation (7) we get:
frily+w)+ fyaly+z+w)+ fya(z) + frily+2) + fraly+w+2) + fy(w) .

This implies equality ove& F'(2).



We now turn to prove Lemma 3.
def

Proof of Lemma 3: We fixy € {0,1}" and lety = Pry, .. .. cfo13[9(y) =
T}’(yz, ..., yr+1)]. Recall that we are interested in proving that 1 — 2kn. To this
end, we shall bound a slightly different, but related pralitgblL et

def
5= Pryg,...,yk+1,za,...,zk+1€{0,1}" [T;l(y% s ayk+1) = T;‘/(z% ] zk+1)] : (8)

Then, by the definitions of andd,
d= Pr[T;/(y% KRR yk-i-l) = g(y) andT}/(z% ) zk-i-l) = g(y)]
+ PI‘[T}!(yg, .. 7yk+1) # g(y) andT}/(z% ERE] zk-l-l) 7£ g(y)]
=9"+(1-1) 9

where the probabilitites are over the choiceyef. .., yx11,29,...,2k41 € {0,1}".
Since we are working ove¥ F'(2),

0= Pryg,...,yk+1,z2,...,zk+16{0,1}" [Tf(il/,ym cee ayk-f-l) + Tf(ya 22y 7zk+1) = 0] .
Now, for any choice ofjs, . .., yg+1 @andza, ..., 2g41:

Tf(:‘/;y%---:yk-i—l) +Tf(y,22,...,2k+1) =
Tf(y;yQ;---;yk—i-l) +Tf(yay27"'7ykazk+1) +
Tf(nyQa"'Jykazk-i-l) +Tf(nyQJ'"Jyk—lazkazk-l-l) +
Tf(yayQa" -;yk—l;zk;zk—i-l) + Tf(nyQJ' .. ;yk—2;zk—1;zk;zk+1) +
. +
Ti(y,y2,23,- - - 2k41) + T4y, 22, - s 2h41)-
Consider any pair Te(Y,Y2,-- -, Yty 20415 - - - 5 Zht1) +
T¢(y,y2,---,Ye—1,%¢,---,2k+1) that appears in the above sum. Note that

Tf(ya Y2, Yts 20415 - zk-l—l) ande(ya Yoyee s Yt—15245-- -, Zk+1) differ Only in
a single parameter. Sincg(-) is a symmetric function we can apply Claim 4 and
obtain that

Tf(y7y27 s Yo Ret1 - - Jzk-i-l) +Tf(y7y27 ceesYe-1,2¢, - - '7Zk+1)
=T+ Yo, Y2, - Ye1, 20415+ 2641, Y + Yo + 2¢)
+ Tf(y + 20,92, .- yYb—15 20415 -5 Zk+1,Y +ye + 2() (10)

Recall thaty is fixed andys, . . ., ykt1, 22, .- ., 241 € {0,1}" are uniformly selected,
and so all parameters on the right hand side in the aboveiequat uniformly dis-
tributed. Also recall that by the definition of for Ty (r+, ..., 7g+1), Wherer; are uni-
formly selected at randon®r,, . r..,ef0,137 [T (r1;---,7k+1) # 0] = 1. Hence, by
the union bound:

0= Pryg,...,’yk+1,Z2,...,Zk+1€{0,1}n [Tf(y7 Ya,--- 7yk+1) + Tf(y7 2515 Zk+1) = 0]
> 1— 2kn. (11)

By combining Equations (9) and (11) we get th&t+ (1 — )2 > 1 — 2kn. Since
v >1/2itfollowsthaty =y +v(1 —7) > ¥+ (1 —v)? > 1 —2kn.O



Lemmab5 Ifn < then the functiog belongs taPy.

1
(4k+2)2F
Proof. By Claim 1 it suffices to prove thatif < m thenTy(y1,...,yk+1) =0,
for every y1, ..., yk+1 € {0,1}". Let us fix the choice of, . . ., yx+1, and recall that
as defined in Equation (2], (y1, - - -, Yk+1) = Z®¢I§[k+l] 9(> ;1 vi)- Suppose we
uniformly select - (k + 1) random vectors; ; € {0,1}",1<i<k+1,1<j<k.
Then by Lemma 3, for everd, @ # I C [k + 1], with probability at leasl — 2kn over
the choice of the; ;'s,

g (Zyi> =Ty (Zyi,zzi,l,zzi,z,...,Zzi,k> +f <Zy) . (12)

el el el i€l el el

Let E; be the event that Equation (12) holds for &I~ I C [k + 1]. By the union
bound:
Pr[E;] > 1— (28 — 1) - 2kn (13)

Assume thafy; holds. Then

Tg(yh .- 'Jyk+1)

OAIC[k+1] iel i€l iel il i€l
RPN DL R A DR DD BEN
O#£IC[k+1] D£IC[k] icl jeJ iel il jeJ

Y Y (zz)

0£J C[k] 0AIC [k+1] iel jeJ

F Yy f(zyﬁzzzw)

0+ JC[k] 0AIC[k+1] iel iel jeJ

Z Tf (ZZLJ,...,Z%HJ)

0£JClk jeJ jeJ
—+ Z Tf Y1 + Z 21,5,y Ykt1 + Z Zkt1,j | - (14)
0#£JC[k jeJ jeJ

Let E, be the event that for evefy# J C [k], T (ZJ.EJ 2y Xjed zk+17j) =0
andT (y1 + D jeg Pl Ykt T ey zk+1,j) = 0. By the definition ofy:

Pr[Fy] > 1-2(2% - 1)p (15)



Suppose thaj < m. Then, by Equations (13) and (15), the probability that both
E, andE, hold, is strictly positive. In other words, there exists aick of thez; ;s for
which all summands in Equation (14) are 0. But this implieg T (y1, - - . , yx+1) = 0.

We conclude that ify < m theng belongs tdP,, and this completes the lemma’s
proof.

By combining Lemmas 2 and 5 we obtain thaf is 2(1/(k2%))-far from Py, thenn =
12(1/(k2*)), and so the algorithm rejecfswith sufficiently high constant probability
(since it select$2(k2*) groups of vectorgy, ..., yx+1). We next deal with the case in
which g is small. By Lemma 2, in this case the distamce dist(f, g) betweenf and

g is small, and we show that the test rejeftwith probability that is close t¢2¢+! —
1)d. This follows from the fact that in this case, the probapitiver the selection of
Y1,--+,Yrs1, that among th¢2k+1 — 1) pointszmﬂc[kﬂ] y;, the functionsf andg
differ in precisely one point, is close {@**! — 1)d. This is formally proved in the
following lemma.

Lemma6 Suppos® < n < m Letd = dist(f, g) denote the distance between
fandg, and let
def 1 — (2M1 —1)d
T 14 (2 —1)d
Then, whemyy,y2, - .., yr+1 are chosen randomly, the probability that for exactly one

pointv among theg2¥1 — 1) points}", g yi, (0 # S C [k + 1)), f(v) # g(v), is at
leastp.

(28 —1)d.

By definition ofy and the above lemmg, > p (under the premise of the lemma). In
particular, since (by Lemma 2)< 2n < (2k+1)2k andk > 1,7 > 1(2¥1 —1)d, and,

for fixed k, asd tends to zerog > (2¥+1 — 1)d — O(d?).

Proof. For each subsef, § # S C [k + 1], let Xg be the indicator random
variable whose value id if and only if f(3 ;csvi) # 9(2 ;csyi)- Obviously,
Pr[Xs = 1] = d for every S. It is not difficult to check that the random variables
X are pairwise independent, since for any two distinct nortgnsp, Sz, the sums
Yies, vi and}", o v; attain each pair of distinct values {9, 1}" with equal prob-
ability when the vectorg; are chosen randomly and independently. It follows that
the random variableX = )" ¢ X5 which counts the number of poinisof the re-
quired form in whichf (v) # g(v) has expectatiofi[X] = (2¥*! — 1)d and variance
Var[X] = (2¥*! —1)d(1 —d) < E[X]. Our objective is to lower bound the probability
that X = 1. We need the well known, simple fact that for a random vaeadblthat
attains nonnegative, integer values,

P> 0> E°

Indeed, ifX attains the valuéwith probabilityp; for < > 0, then, by Cauchy-Schwartz,

EIXD* = Q- ip)? = O ivpiv/pi)” < (O °pi) (Y pi) = E[X’JPr[X > 0].

i>0 i>0 i>0 >0



In our case, this implies

(E[X])? (E[X])?* _  EX]
PrX >0 > Frer 2 B+ Bx))? - 13 BN
Therefore
E[X] > Pr[X = 1] + (% _PrX = 1]> 2= % _Pix = 1],
implying that iy 2
pr(x = 1] > DA = (BIX)) 1]J:E([)[(] )

Substituting the value d&[X], the desired result follows.

We are now ready to wrap-up the proof of Theorem 1.

Proof of Theorem 1: As we have noted previously, jf is in Py, then by Claim 1
the tester accepts (with probability 1). We next show thdtig e-far from P, then the
tester rejects with probability at Iea%t

Suppose thatlist(f,Pr) > e. Denoted = dist(f,g). If n < W then by

Lemma 5¢g € P, and, by Lemma 65 > 2(2%d) > (2%¢). Hence,n >

min (Q(2k€), m) Clearly it is enough to perforrﬁ)(%) rounds of the algo-
rithm in order to detect a violation with probability at Ie%s This completes the proof
of the theoremd

4.1 Sdf-Correcting and a L ower Bound
From Lemmas 2, 3, and 5 one can immediately conclude thexfimitn

Corollary 7 Consider a functiory : {0,1}" — {0,1} that ise-close to a degreé-
polynomialg : {0,1}" — {0,1}, wheree < m. Then the functiorf can be
self-corrected. That s, for any givene {0,1}", itis possible to obtain the valugx)

with probability at leastl — ek by queryingf on2* — 1 points in{0, 1}".

The following is a lower bound on families of functions thatiespond to linear codes.

Theorem 2 LetF be any family of functiong : {0,1}" — {0, 1} that corresponds to
a linear codeC. Letd denote the minimum distance of the cddand letd denote the
minimum distance of the dual code(hf

Every testing algorithm for the famil§ must perfornm2(d) queries, and if the distance
parametere is at mostd/2"*1, then2(1/e) is also a lower bound for the necessary
number of queries.

As noted in the introduction, the famif§;, corresponds to the shortened Reed-Muller
codeR(k,n)*. It is well known (see [16, Chap. 13]) that the distanceRgk,n)* is
27— and the distance of the dual code (which is a punctured RegteMcode) is
2k+1 _ 1. Hence we obtain the following corollary.



Corollary 8 Every algorithm for testing?;, with distance parameter must perform
2 (max(L,2%+1)) queries.

Proof of Theorem 2: We start with showing tha(d) queries are necessary. A well
known fact from coding theory (see [16, Chap. 5]) states tilewing: for every lin-
ear codeC whose dual code has distandeif we examine a sub-word having length
d',d < d, of a uniformly selected codeword @ then the resulting sub-word is uni-
formly distributed in{0, l}d'. Hence it is not possible to distinguish between a random
codeword inC and a random word i8™ (which with high probability is far from any
codeword) using less thahqueries.

We now turn to the case< d/2"*! . To prove the lower bound here, we apply, as usual,
the Yao principle by defining two distributions, one of pa&tinstances, and the other
of negative ones, and then by showing that in order to diststgbetween those dis-
tributions any algorithm must perforfid(1/¢) queries. The positive distribution has all
its mass at the zero vectdr= (0, ...,0). To define the negative distribution, partition
the set of all coordinates into= 1/e nearly equal partg,, ... ., I; and give weightl /¢

to each of the characteristic vectassof I;, i = 1,...,t. (Observe that indedll € C

due to linearity, andlist(w;,C) = € due to the assumption on the minimum distance
of C). Finally, a random instance is generated by first choosivggaj the distributions
with probability1/2, and then generating a vector according to the chosentuistn.

It is easy to check (see, e.g., [1] for details) that in ordegive a correct answer with
probability at leas2/3, the algorithm has to quet(1/¢) bits of the input.

O

5 Concluding remarks

We first note that in view of the above lower bound, our uppermbis almost tight.

It will be interesting to study analogous questions for othnear binary codes. Several
recent papers, including [8], [9], deal with related quasti As shown above, a code
is not testable with a constant number of queries if its digthdce is not a constant,
and it seems plausible to conjecture that if the dual digds@ constant, and there
is a doubly transitive permutation group acting on the coaigs that maps the dual
code to itself, then the code can be testable with a constambar of queries. The
automorphism group of punctured Reed-Muller codes costhiegeneral linear group
GL(n,2), and thus those codes supply an example with these propesiether in-
teresting example is duals of BCH codes (this class alsaamitinear functions as a
particular case). Another possible extension of the resudtild be the study of testa-
bility of low-degree multivariate polynomials over smaklfis GF'(q). This situation
corresponds to generalized Reed-Muller codes [15].
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