Polynomial Time Approximation Schemes for Geometric k-Clustering

Rafail Ostrovsky*

Abstract

We deal with the problem of clustering data points.
Given n points in a larger set (for example, R?) endowed
with a distance function (for example, L? distance), we
would like to partition the data set into k disjoint clus-
ters, each with a “cluster center”, so as to minimize the
sum over all data points of the distance between the
point and the center of the cluster containing the point.
The problem is provably NP-hard in some high dimen-
sional geometric settings, even for k = 2. We give poly-
nomial time approximation schemes for this problem in
several settings, including the binary cube {0, 1}¢ with
Hamming distance, and R? either with L' distance, or
with L? distance, or with the square of L? distance. In
all these settings, the best previous results were con-
stant factor approximation guarantees. We note that
our problem is similar in flavor to the k-median prob-

*Telcordia Technolo-
gies, MCC-1C357B, 445 South Street, Morristown, New Jersey
07960 6438, USA. e-mail: rafail@research.telcordia.com URL:
http://www.argreenhouse.com/bios/rafail/index.shtml

t Computer Science Department, Technion — IIT, Haifa 32000,
Israel. Part of this work was done while visiting Telcordia Tech-
nologies. Work at the Technion supported by BSF grant number
96-00402, by Ministry of Science contract number 9480198, by
grant number 386/99-1 of the Israel Science Foundation founded
by the Israeli Academy of Sciences and Humanities, through the
CONSIST consortium by the Ministry of Trade and Industry’s
MAGNET program, and by the Fund for the Promotion of Re-

search at the Technion. Email: rabani@cs.technion.ac.il

Yuval Rabani'

lem (and the related facility location problem), which
has been considered in graph-theoretic and fixed dimen-
sional geometric settings, where it becomes hard when
k i1s part of the input. In contrast, we study the prob-
lem when k is fixed, but the dimension is part of the
input. Our algorithms are based on a dimension reduc-
tion construction for the Hamming cube, which may be
of independent interest.

1 Introduction

Suppose we are given a set X of n data points in R?
and we wish to find a “good” partition of the points into
two non-empty sets X7 and X5 (called clusters). There
could be many different measures of the quality of the
partition. The measure we adopt here is the following:
Assign to the set X; a center point ¢; € RY for i = 1,2.
Then, sum up the (Euclidean) distances between each
data point and the center of the set that contains it.
The smaller the sum, the better we deem the partition.

Another way to interpret the problem is the follow-
ing. If the centers are known, then obviously the best
partition is to assign each point to the closest center.
Thus, our problem is to find centers ¢1, s € R% so as to
minimize the quantity

> min{|lz = e, ||z — eall2}.

rzeX

More generally, we also consider variations of this prob-
lem with k centers, for a fixed k& > 2, using other dis-
tance measures (such as the L! norm, and the square of
Euclidean distance), and in other vector spaces (such as
the binary cube). We refer to these problems as (geo-
metric) k-clustering. In this paper, we give polynomial

time approximation schemes for k-clustering in several
high dimensional geometric settings, including the bi-
nary cube with Hamming distance, and R? with either
Euclidean distance, or the square of Euclidean distance,
or L' distance. As discussed in detail below, previous
results provided constant approximation guarantees, or
were limited to fixed dimension.

Clustering of data has significant importance in many
fields, including operations research, computational bi-
ology, data mining, statistics, computer vision and pat-
tern recognition (see, for example, [10, 36, 21, 32, 7, 37]
and references therein). In many applications, the goal
is to cluster data into several clusters according to some
measure, where the data has many incomparable at-
tributes and thus can be cast as a high dimensional
clustering problem [32, 18, 7, 37]. In this paper, we
consider the case where the dimension is very large but
the number of clusters that we need to produce is rel-
atively small. This is usually the case when a large
collection of documents must be clustered according to
a small number of topics that can be inspected by a per-
son in order to assist further classification and search-
ing. Examples of the methods include latent seman-
tic indexing [20, 16, 19, 9], and the “scatter/gather”
project [14, 13]. Another example is the “Manjara”
project [30, 24], which is a “back-end” clustering of a
web meta-search engine, where after the meta-search en-
gine produces an “answer” which consists of a large col-
lection of pages (several thousands) they must be clus-
tered according to several topics. In all these examples,
the dimension is very large, but the number of clusters
should remain relatively small.

When k is part of the input, the problem is also
known as the k-median problem. In graph-theoretic
settings (where the points are placed in a finite met-
ric space which is part of the input), the k-clustering
problem (fixed k) trivially has a polynomial time so-
lution: Simply enumerate over all possible choices for
the centers. For arbitrary k, in finite metrics, the k-
median problem was shown to be APX-hard by Guha
and Khuller [25]. A breakthrough result by Charikar,
Guha, Shmoys, and Tardos [11] gave a constant factor
approximation algorithm, based on a rounding proce-
dure for a natural linear programming relaxation. The
constant has been improved by Jain and Vazirani [28],
and further by Charikar and Guha [12], using the primal-
dual method.

Similarly, in fixed dimension d, the k-clustering prob-

VXXX

X

Figure 1: Two clustering instances in (R?, L?)

lem has a polynomial time solution. To illustrate this
for k = 2 (in R? with Euclidean distances), notice that
the clusters must be separated by a hyperplane. In fixed
dimension, the number of combinatorially distinct sep-
arations is polynomial in n, and we can check each of
them efficiently. However, the combinatorial complex-
ity of the problem grows exponentially with the dimen-
sion. Indeed, the k-clustering problem was shown to
be NP-hard even for £ = 2 in several cases. Kleinberg,
Papadimitriou, and Raghavan [33] show it for the bi-
nary cube, and Drineas, Frieze, Kannan, Vempala, and
Vinay show it for R? with squared Euclidean distances.
The NP-hardness of the Euclidean distances case is still
open. We note that in fixed dimension, for arbitrary &,
Arora, Raghavan, and Rao [6] give a polynomial time
approximation scheme, using dynamic programming.

Our measure of the quality of our clustering is by no
means the obvious choice. In fact, other measures have
been proposed in the literature. The most common al-
ternatives are min-sum clustering, and min-max clus-
tering (or k-center). In min-sum clustering, the quality
of the clustering is measured by the sum of intra-cluster
distances (so there are no centers associated with the
clusters). In min-max clustering, the quality is mea-
sured by the maximum distance of a data point to the
center of the cluster containing it. None of these mea-
sures seem to produce the intuitively “best” clustering
on all instances. For example, Figure 1

Figure 2: Min-sum clustering

shows two instances of points in the Euclidean plane
(requiring a partition into two clusters). Figures 2 and 3
show the results of min-sum and 2-clustering, respec-
tively, on these two instances.

Clearly, min-sum is intuitively better on the bottom
instance, whereas 2-clustering is intuitively better on
the top instance. (Notice that in the case of squared L?
distances, if C' is a cluster, then the cost of C' under the
min-sum measure is 1 pR— ||z —y||2 and the cost of C
under the 2-clustering measure is min, Y .. ||z — ¢|[3.
The latter expression is minimized at ¢ = EZzeC x,
and is proportional to the former expression. However,
the factor of proportionality is |C|, so the two measures
do not necessarily produce the same optimal clustering.)

Clustering problems, and in particular min-sum clus-
tering, have been considered recently by several authors.
A prevalent technique is sampling: One takes a small
(random) sample of the data points, enumerates over all
possible partitions of the sample, extends each partition
to a partition of the entire data set, and outputs the best
solution. Schulman [37] gives a polynomial (linear) time
approximation scheme for min-sum clustering in geo-
metric settings (including squared Euclidean distances),
provided that the dimension d = o(log n/ loglogn). His

)

Figure 3: 2-clustering

algorithm works in higher dimension too, but the run-
O(loglogn). Indyk [26] gives
a polynomial time approximation scheme for min-sum

ning time degrades to n

clustering in finite metric spaces (when two clusters are
needed), based on the polynomial time approximation
scheme of de la Vega and Kenyon [17] for metric MAX
CUT. Alon and Sudakov [4] give a polynomial time ap-
proximation scheme for the maximization version of our
problem in the binary cube (i.e., when the objective is
to find a partition and centers that maximize the sum
over all data points of the overlap between the point and
the center of the cluster containing it). Notice that an
optimal solution to their problem is also an optimal so-
lution to our problem. However, this is not the case with
near-optimal solutions (so their approximately optimal
solution could be far from optimal by our measure). All
these results use one form or another of sampling.

Sampling is not a common tool in the design of poly-
nomial time approximation schemes. It has been used
successfully in the context of dense graphs [5, 23]. In ge-
ometric settings (and in general), the ubiquitous method
is dynamic programming (see [10]). One example in
our context is the k-center algorithms of Agarwal and
Procopiuc [1]. They give an nO® ™) time exact al-
gorithm and a polynomial time approximation scheme

with running time O(nlogk) + (k/e)o(kl_l/d) for the k-
center problem in R with L? distances, for all p, using
dynamic programming. (See also the survey of Agarwal
and Sharir [2] for previous and related work.)

A different idea is advocated by Drineas, Frieze, Kan-

nan, Vempala, and Vinay [18]. They give a 2-approximation

for k-clustering (fixed k) for the case of squared Eu-
clidean distances, using methods from linear algebra
(specifically, singular value decomposition, see also [20,
16, 19, 9, 24] for its uses in information retrieval and
clustering). Prior to our work, this was the best result
for arbitrary dimension. Notice that there is a trivial 2-
approximation algorithm for the case of metric distances
(such as Euclidean distances), because if we restrict the
centers to be data points, we lose at most a factor of 2
in the quality of the solution (thanks to the triangle in-
equality). This immediately implies a 4-approximation
in the case of squared Euclidean distances. The advan-
tage of the Drineas et al. method is that the clustering
can be computed very quickly using methods for ap-
proximating the singular value decomposition (which in
turn use sampling).

Our results use neither sampling of the data points,
nor dynamic programming, nor the singular value de-
composition. For the Hamming cube, we use random
linear transformations to reduce the dimension. More
specifically, Kushilevitz, Ostrovsky, and Rabani [34] show
that a certain random linear transformation into a low
dimensional cube can be used to test for a specific Ham-
ming distance. We strengthen their analysis to show
that this transformation guarantees low distortion for
a range of distances, while for distances outside the
range it doesn’t shrink large distances too much and
it doesn’t expand small distances too much. We be-
lieve that this observation might be of independent in-
terest. We note that in Hilbert space (e.g., (R% L?))
the Johnson-Lindenstrauss Lemma [29] uses a random
linear transformation (a projection onto a random sub-
space) for nearly isometric dimension reduction of finite
subsets. This lemma has found recent applications in
combinatorics [22], graph algorithms [35], nearest neigh-
bor search [27], and learning mixtures of Gaussians [15].
It does not seem to be useful in our case.

In the low dimensional cube, we can enumerate over
the possible center locations and compute a candidate
clustering for each possibility. The value of a candidate
clustering in the low dimensional cube 1s not necessarily
proportional to its value in the original space. However,

we can check the value of each candidate clustering in
the original space and output the best solution. This
procedure is relatively simple for ¥ = 2. For larger &,
computing the clustering from the choice of cluster cen-
ters in low dimension is more complicated. The location
of cluster centers induces for every data point a tour-
nament among the clusters. We assign a data point to
an aper of its tournament, an idea previously used by
Kleinberg [31] in the context of nearest neighbor search.
Our other results are derived essentially by reducing the
problem to clustering in the Hamming cube. This is
not a “black-box” reduction, as we have to modify the
cube algorithm to test the candidate clusterings in the
original space. Thus, our results imply that in all the
settings we consider, in order to get a close to optimal
clustering we only need to consider a polynomial num-
ber of possible cluster centers. The set of centers to
consider can be generated efficiently from a distribution
that depends (in a complicated fashion) on the input
data points.

2 Low Dimensional Embeddings

Recall that a metric space is a pair (P,d) where P is a
set (whose elements are called points), and d is a func-
tion d : P x P — R (called a metric or a distance),
such that for every pi,ps,ps € P the following hold:
(i) d(p1,p2) > 0; (it) d(p1,p2) = 0 > p1 = pa; (i)
d(p1,p2) = d(pa2,p1); and (iv) d(p1,p2) + d(p2,ps) >
d(p1,p3). The last property is called the triangle in-
equality. If P is a vector space and || - || is a norm; then,
defining d(p, ¢) = ||p — q|| we get a metric space, which
we denote by (P,]| -])-

Definition. Let M = (P,d) and M’ = (P’,d’) be two
metric spaces. Let X, Y C P. A mapping ¢ : P — P’ is
(6, ¢, £)-distorted on (X, V) ! iff there exists ¢ such that

for every z € X and y € Y, the following holds:

1. If d(z,y) < el then d'(p(z), ¢(y)) < (1 + §)el’.

2. Ifd(z,y) > £/ /e then d'(¢(2), ¢(y)) > (1-8)¢' [/
3. If ef < d(z,y) < £/+/€ then
(1=8)t /e <d'(p(x), p(y)/d(z,y) < (1+8)¢/L.

Intuitively, a (4, €, £)-distorted mapping approximately
preserves distances close to £, and furthermore it doesn’t

If X =Y we simply say that ¢ is (3, ¢, £)-distorted on X.

shrink too much large distances and doesn’t expand too
much small distances.

The following lemma is central to the analysis of our
algorithms:

Lemma 1. Letd, e, £ >0, withe/(1—¢) < (1-6)/(1+
d). Let M = (P,d) and M’ = (P’',d’) be two metric
spaces. Let z,y,z € P, with £ < d(y,z) < 2£. Let ¢
be (4, €, £)-distorted on ({2}, {y, z}). If d'(¢(2), (y)) <
d'(¢(z), ¢(2)); then, d(z,y) < (1+{)d(z, z), where { =
max{(2¢ — 1)/(1 — €),2+/€,26/(1 — 8)}.
Proof. We consider four cases:
Case 1: 1f d(z,y) < ef, then by the triangle inequality,
d(z,z) > (1 — €)f. Therefore, the claim holds in this
case.
Case 2: It d(z, z) < ef, then d(z,y) > (1—¢)L. However,
because ¢ is (4, €, £)-distorted on ({z}, {y, z}), then for
some £ > 0,

d'(p(x), ¢(2)) (14 d)et!
(1 =3)(1 —e)

d'(p(x), £(y)),

in contradiction to the assumption of the lemma.

Case 3: It d(z,y) > £//€, then by the triangle inequal-
ity d(z, z) < d(z,y)+2f < (1+2+/€)d(z,y), so the claim
holds in this case too.

Case 4: Otherwise, e/ < d(z,y) < £/\/€, ef < d(z,z),
and we may assume that d(z, z) < £/+/€ (otherwise the
lemma is clearly true). Thus we have

C-d'(p(2), 0(y)

AN IN A

d(z,y) < 0—o)
£ d'(p(2), ¢(2))
- (1=
< gd(az,z) [|

Notation. The field with two elements is denoted Zs.
A d-dimensional vector space over Zj is Denoted Zg.
The d-dimensional Hamming distance (i.e., the L' norm
in Z9) is denoted H,;. The Hamming cube Q¢ is the
metric space (Z4, Hy).

The Hamming cube. Consider a probability distribu-
tion Ag 4 (p) on d’ xd matrices over Zs (i.e., linear trans-
formations from Z4 into Zg’), where the entries are in-
dependent, identically distributed random 0/1 variables

with Pr[1] = p. The following lemma is an extension of
a lemma in [34].

Lemma 2. For every v > 0 there exists A > 0 such
that for every € > 0, and for every positive integers n, d,
and ¢, with £ € [1,d], the following holds: Let X C ZZ,
with |X|=n. Let d = Alnn/¢, and let A be a random
matrix drawn from A4 4 (¢/£). Then the linear mapping
z — Az is (/€ ¢, £)-distorted on X (with respect to the
Hamming distance in both spaces) with probability at
least 1 —n™7.

Proof. Let z,y € X. Consider a probability distribu-
tion D over vectors r € 74, where the entries of r are
independent, identically distributed, random 0/1 vari-
ables with Pr[1] = ¢/£. We estimate the probability of
the event r - (2 — y) # 0, denoted in what follows as E.

We first notice that the probability of £ 1s monoton-
ically increasing in Hq(z,y) (assuming e/¢ < %) To see
this, pick r by selecting coordinates independently with
probability 2¢/£ each, and then setting each selected co-
ordinate independently as 1 with probability % (with all
the remaining coordinates being set to 0). The proba-
bility of E is precisely half the probability that in the
first step we select at least one coordinate where z and
y differ. The latter probability is clearly monotonically
increasing in Hqy(z,y).

Let S be the set of coordinates where z and y differ

(so |S| = Ha(z,y)), and let (the random variable) X =
[{i € S;r; = 1}|. Then,

Pr[E]=Pr[X =1 mod 2] > Pr[X = 1] > (1)

€ |S| €\ 2 elS|\ €lS]
2'5"z—(2)'(z) 2(“% e

where the second inequality follows from the Bonferroni
Inequalities. On the other hand,

ey 1Sl
PrE]<PrX >1=1-(1-5) . (2
= = !

If Hy4(z,y) is in the interval [ef, £/+/€], then (1) is at least
(1 —+/¢/2)eHy(z,y)/¢, and (2) is at most eH4(z,y)/L.
By the monotonicity of Pr[FE], if Hy(z,y) > £/+/€, then
Pr[E] > (1 — \/€¢/2)\/e, and if Hy(z,y) < €f, then
Pr[E] < %

Now, picking a random matrix A from .Ag 4 (e/f)
amounts to picking the rows of A as d’ independent
samples from D. The value of Hg (Az, Ay) is precisely
the number of times the event E happens for the d’ sam-
ples. The expectation is d' Pr[E]. By standard Chernoff

bounds (see [3, Appendix A]), The probability that we
deviate from the expectation by more than /ed’ Pr[E]/2
(either way) is at most 24/ < n=2=7 assuming A is
sufficiently large. Summing up this probability over all
(g) pairs z,y € X completes the proof. MW

Other metric spaces. For instances in (R% L!) and
(R4, L?), we use embeddings into the Hamming cube.
Let Bp(z,£) denote the L? ball of radius ¢ around = €
R<. The following lemma was proven in [34]:

Lemma 3 (Kushilevitz, Ostrovsky, and Rabani).
Let p € {1,2}, and consider the metric space (R, L?).
For every B,¢,f > 0, and for every positive integer d,
there exist § = d(¢) > 0 and a positive integer d' =
poly(d, =1, log 3~1), such that § — 0 as ¢ — 0, and
such that for every z € R? there is a distribution ® =
®(z,¢,4,3) over mappings ¢ : R? — Zgl with the fol-
lowing properties:

1. Every mapping ¢ in the distribution @ is defined
by poly(d’) rationals; given these rationals, for ev-
ery y € R #(y) can be computed using poly(d’)
arithmetic operations; and, it 1s possible to gener-
ate the rationals defining a random sample ¢ of ®
in poly(d’) time.

2. If ¢ is drawn from @, then with probability at least
1— 3, ¢ is (4, ¢, £)-distorted on (B, (z,), RY) (with
respect to the LP distance in R?, and the Hamming
distance in Z¢).

For our approximation schemes we need the following
stronger claim:

Lemma 4. Let X = {z! 2%, ... 2"} CR% For every
B,€,£,d, there exist § = §(€) > 0 and a positive integer
d'" = poly(n,d,d71,log371), such that there is a dis-
tribution ® = ®(X,£,4,5) over mappings ¢ with the
following properties:

1. Every mapping ¢ in the distribution ® is defined
by poly(d’) rationals; given these vectors, for ev-
ery x € R ¢(z) can be computed using poly(d’)
arithmetic operations; and, it 1s possible to gener-
ate the rationals defining a random sample ¢ of ®
in poly(d’) time.

2. If ¢ is drawn from @, then with probability at least
1 - B o is (0, €, £)-distorted on
(Uzr'bleP (IZ7 E/\/E)v Rd)'

The proof of this lemma follows closely the construction
from the proof of Lemma 3 in [34]. We do not include
it here.

3 Clustering in the Hypercube

Observe that for any given cluster C' (a subset of the
data set), the best cluster center ¢ can be computed
easily. Indeed, for i = 1,2,...,d, ¢; = majority{z;;z €
C}.

Two clusters. Our basic algorithm is a polynomial
time approximation scheme for instances in Q¢ and for
k = 2. The approximation scheme for k& > 2 uses sim-
ilar ideas in a more complicated way. The algorithms
for other metrics use variations of these schemes as sub-
routines.

Let X C 74 denote the input set of points. Our
algorithm for k = 2 proceeds as follows. We guess the
distance £ between the two centers (by enumerating over
all d possible values). We then project the data points
into a dimension d’ = O(logn) cube. In the smaller
cube, we enumerate over all 229 possible locations for
the projections of the optimal solution cluster centers.
Each choice induces a partition of the data set into two
subsets. Each subset is associated with a cluster center
projection, and contains all the points whose projec-
tions are closer to this center’s projection than to the
other center’s projection, ties broken arbitrarily. We
check each possible partition in the original space, by
computing the best cluster center for each subset, and
summing up the distances from the points to their as-
signed centers. Finally, we output the best partition,
over all guesses of £ and over all guesses of the clus-
ter centers projections. More formally, the algorithm is
given by the following pseudo-code:

HAMMING2CLUSTERING, (X))

d' « Mn(n + 2)/¢;
for £ =1,2,...,d do
Draw a random A’ from Ag qr(e/0);
for all choices of ¢t ¢% € Zgl do
Ch {I‘ € X; Hd/(AZI‘, 51) < Hy (AZCL‘, 52)};
02 — X\C1;

cost + HAMMING CosT(C4) + HAMMING CosT(C5);

Output the partition (Ci, C3) with the smallest cost.

HammiNGCosT(C')

¢ « (majority{z;; z € C})le;
Return }° .~ Ha(z, c).

For simplicity, we left out the initialization and up-
dating of the auxiliary variables needed to find the min-
imum cost and to store the solution in the main pro-
cedure. Clearly, for fixed €, the running time of the
algorithm is polynomial in n and in d. The following
theorem states the performance guarantee for this algo-
rithm.

Theorem 5. For every v > 0, there exists A > 0 such
that for every % > ¢ > 0, the above algorithm finds a
solution whose value is within a factor of 1+ 4./€ of the
optimum, with probability at least 1 —n~7.

Proof. Put A = A(y) to be the constant stipulated
in Lemma 2. It is sufficient to show that one of the
guesses that the algorithm uses produces a solution with
value within a factor of 1 + 44/¢ of the optimum, with
probability at least 1 — n~7Y. To see this, consider the
solutions produced by the algorithm for £ such that £ =
Hy(ct, ¢?). By Lemma 2, with probability at least 1 —
n~7, the mapping z — Az is (\/c,¢, £)-distorted on
X uU{e', ¢?}. So, from now on we assume that this event
happens. Of course, we don’t know where the images of
¢! and ¢? are, but one of the guesses that the algorithm
enumerates over is correct. So, consider the solution
given by the algorithm for A? and the correct guess of
the images ¢ = A’c! and ¢ = Ac?. Denote by 6’1, 62,
the clusters computed by the algorithm, and let &', é2
be their centers, respectively. (A point z € X is placed
in 61 iff Hy(Alz,¢') < Hy(Afz, &%), and otherwise it
is placed in 62) Using Lemma 1,

Z Hy(z,é') + Z Hy(z, %)

reC, zely
< Z Hy(z,c') + Z Hy(z,c?)
z€eCq z€eCy
< (1+4y/6) Y min{Hy(x,c"), Ha(, ")}
zeX

More than two clusters. We now consider partition-
ing the data set into k clusters, for an arbitrary (fixed)

k > 2. The algorithm is similar to the case of k = 2.
We enumerate over the possible distances between cen-
ters ((g) values this time). However, for a given guess,
the assignment of data points to clusters is more com-
plicated. Recall that a tournament is a directed graph
where every pair of distinct nodes is connected by an
arc (in one of the two directions). An apez of a tourna-
ment is a node of maximum out degree. Every apex has
the property that there is a path of length at most two
from 1t to any other node in the tournament. The algo-
rithm for k£ > 2 proceeds as follows. After guessing the
distances f;; between every pair s,t of cluster centers
in the optimal solution, we project the data points into
(g) cubes, each of dimension O(logn). Each projection
is set to check a particular pair of cluster centers. In
each O(logn)-dimensional cube, we enumerate over all
the possible locations for the projections of the cluster
centers. Given a such a choice, for every data point
and for every pair of cluster centers, we decide whether
the data point is closer to one center or the other ac-
cording to the situation with the projected points. This
induces, for every data point, a tournament among the
cluster centers. We assign each data point to an apex
of 1ts tournament. The assignment of all data points
induces a partition of the data set into & subsets. We
check this partition in the original space, as we did for
k = 2. Finally, we output the best partition among all
the choices for inter-cluster center distances, and cluster
centers projections. The following pseudo-code gives a
more formal description of the algorithm:

HAMMING CLUSTERING, (X))

d — Xn(n+k)/¢
vl e {1,2,...,d}, draw a random A* from Ay 4 (¢/¢);
for all (u)1<sci<k € {1,2,...,d}(3) do
for all (Eij)f;éj:l € (Zgl)k(k_l) do
(01,02,...,Ck) — (0,0,...,@);
for z € X do
Compute a tournament T’
over node set {1,2,...,k}:
for 1 <i<j<k,
17 is an edge of T
iff Hd/ (Al’j:L‘, 5“) S
S Hd/(AZ’jI,Eji),
and otherwise j¢ is an edge of T
Find an apex i of T
C; + C;U{z};
cost Zle HaMmmINGCosT(C;);

Output the partition (Cy,C4, . ..

Clearly, for fixed € and k this algorithm runs in time
polynomial in n and d. Its performance guarantee is
given by the following theorem.

Theorem 6. For every v > 0, there exists A > 0 such
that for every % > € > 0, the above algorithm finds a
solution whose value is within a factor of (1 + 4,/€)? of
the optimum, with probability at least 1 — n™7.
Proof. Letc',c? ..., c* € Z4 denote the centers of the
clusters in the optimum solution. Take A large enough,
so that with probability at least 1 —n~7, for every inte-
ger £ € {1,...,d}, the matrix A? is (\/¢, ¢, £)-distorted
on X U{ct c?, ... ck}.2

Consider the iteration of HAMMING CLUSTERING, where

bi; = Hy(ct,c), forall 1 <i < j <k, and & = Aliict
forall 1 <i#j<k Letxz€ X,andlet ¢’ be the cen-
ter of the cluster containing z in the optimum solution.
Suppose z is clustered in C; by the algorithm. Then,
there is a path of length at most 2 from ¢! to ¢ in the
tournament for . Let ¢/ be the middle point in this
path (if the path has length 0, then i = j = ¢, and if
the path has length 1, then ¢ = j). Applying Lemma 1
at most twice (for A% and for A%), we get:

Ha(z,c") (14 4Ve)Hy(z, &)

<
< (144V0)’Hy(z,).

The rest of the proof follows that of Theorem 5. ®

4 Other Metrics

Consider a metric space M = (P, d) and an input set of
n points X C P. Let B(z,f) denote the ball of radius
£ around x in M. We present here polynomial time ap-
proximation schemes for k-clustering for several choices
of M. For simplicity, our presentation is restricted to
the case £ = 2. The generalization to arbitrary fixed
k is straightforward. The details will appear in the full
version of the paper.

The main idea of our approximation schemes is the
following generic approach: Guess the distance £ be-
tween the cluster centers. Let § = d(¢) be such that
d — 0 as ¢ = 0. Map the input data set into Z3* (where

2The case d >> n has to be handled with care.

, Cx) with the smallest cost.m = poly(n, d, e~')) using a mapping o which is (6, €, £)-

distorted on
(Ugex B(z,£/~/€), P) (with respect to Hamming distance
in the target space). Now run the procedure
HAMMING2CLUSTERING, on ¢(X) with the following
change: Use, instead of HAMMINGCoOST, a procedure
OURSPACECOST that computes the cost of a cluster in
M rather than in Q™.

For this approach to work, three conditions are re-
quired. Firstly, the set of possible guesses for the dis-
tance between the two cluster centers has to have poly-
nomial size. Secondly, the mapping ¢ must exist and
must be computable in polynomial time. Thirdly, it
must be possible to compute the cost of a cluster in M
in polynomial time. We establish these conditions for
a few interesting cases. Before we discuss these con-
ditions, we analyze the performance guarantee of the
above approximation scheme. Let C; and C3 be the
partition of X into clusters in the optimum solution,
and let ¢' and ¢? be the centers of these clusters, re-
spectively.

Theorem 7. Let € be sufficiently small so that §,¢ <
%. There exists { = ((¢) > 0 such that { — 0 as e = 0,
and such that the following holds. For every v > 0
there exists A > 0 such that if £ < d(c!, ¢?) < 2¢; then,
the above algorithm produces a clustering whose cost is
within a factor of 14 of the optimum, with probability
at least 1 — n™7.

Proof. Put A = A(y) to be the constant stipulated
in Lemma 2. Let ¢ be the scale for which ¢ is (4, ¢, £)-
distorted on (Uzex B(z, £/+/€), P). Consider the execu-
tion of the modified HAMMING2CLUSTERING on ¢(X) C
Z3. Let 6’1 and 62 be the partition of X into clusters
which i1s computed by the algorithm in the iteration us-
ing ¢ and the centers ¢! = Azlgo(cl) and ¢ = AZIQD(C2).
Let é',¢é%2 € P be the centers of 6’1,6'2, respectively.
Fori=1,2,let A; = {z € Cy; d(x,) > £/\/e}, and let
Bi = 62 \Az NOW,

S d(@ e+) d(w, &)

:L'Eél 1‘662
< E d(z,c') + E d(z, c?)
I'E61 1‘662
= Z d(z,c') + Z d(z, c?) +
rEA, €Az
+ E d(z,c') + Z d(z, c?)
reB; r€B>

< Y (1 20 minde, . da) +
rTEAUAS
+ Z d(z,c') + Z d(z, c?)
reB; r€B>
< Z <1 + %) min{d(z, c'), d(z, c*)} +
rTEAUAS
>
reB,UB>

<1+max{%,2((5+\/€+5\/5)(1—6—\/5—(5\/2)

min{d(z,c'),d(z,c*)},

where the last inequality follows from Lemma 1, using
the fact that A% oy is (8, ¢, £)-distorted on X U{e!, c?},
for §' = §++/e+68/c and ¢ = max{(1+4)e,¢/(1—4)*}.
|

We now turn our attention to the three conditions re-
quired for the success of our approach. The first condi-
tion is easy to guarantee in every metric space. Indeed,
to apply Theorem 7, all we need is to guess d(c!,c?)
within a factor of 2. Thus, the number of values we
have to check depends only on the range of possible val-
ues. To restrict that range, we use

Lemma 8. Let dpa.x be the maximum distance be-

: : : 1.2 dmax
tween any pair of points in X. If d(c', ¢?) < “max
then any partition has a cost within a factor of 1+ nz_e'zle
of the optimum solution.

Proof. Let z,y € X be two points at distance d(z,y) =
dmax. By the triangle inequality, d(z,c!) + d(y,ct) >

dmax. Thus, without loss of generality d(z, ¢!) > dmax/2.

However, by the triangle inequality, d(z,c?) > (% -

%)dmax, so the cost of the optimum solution is at least
(% — =)dmax. Consider any partition of X into two clus-
ters Ay and As with cluster centers a' and a?, respec-

tively. Using again the triangle inequality,

Z d(z,a') + Z d(z, a?)

TEAL TEA2
< Z d(z,c') + Z d(z, c?)
TE€AL TE€A2
< D (d(z,ch) + edmax/n) + D (d(w,¢%) + dmax/n)
zeC1 z€Cs
< Z d(z,c) + Z d(z, c?) + edmax
zeC1 z€Cs
<

<1 + n2_€n2€) (Z d(z,c') + > d(m,c2)> .

z€Cy z€Cy

As for the second condition, Lemma 4 guarantees
that we can compute ¢ for instances in (R9 L!) and
in (R% L?). In both cases, the third condition holds as
well. For the L' norm, implementing OURSPACECOST
is easy: On input set C, compute the best center ¢ by
c¢; = median{z;; * € C}, then output)_ - ||z — cl|s.
For the L? norm, the problem is significantly harder.
Finding the best center ¢ amounts to minimizing a con-
vex function, and 1t can be approximated with arbitrary

ecision in polynomial time. Thus we get the following
ofrollary of Theorem T7:

orollary 9. There are polynomial time approxima-
tion schemes for 2-clustering in (R%, L!) and in (R4, L?).
|

Finally, we deal with the case of clustering points
in R? with distances measured by the square of the
L? norm. The problem with this case is that the dis-
tance function does not induce a metric, so our analysis
so far does not hold. We solve this problem by using
the algorithm for L? distances, but using a different
OURSPACECOST procedure that computes cluster costs
under L? squared distances. Such a procedure is easy to
implement. On input set C, the best center ¢ is given by
¢; = average{xz;; © € C}. The procedure then returns
the value - .. ||z — ¢||3. We get

Theorem 10. The above algorithm is a polynomial
time approximation scheme for 2-clustering in R%, with
distances measured by the square of L? distance.

Proof. The proof follows closely the proof of The-
orem 7. We use the same notation as in that proof.
Our algorithm enumerates over a polynomial number of
guesses £ for ||¢! — ¢?||3. By the discussion above, one
of these guesses satisfies £ < ||c! — ¢?|]2 < 2£. Now,
for this ¢, the algorithm uses a mapping ¢ : R? — Z2.
Let £ be the scale for which ¢ is (, ¢, £)-distorted on
(Ugex B(z,£/+/€), P). Consider the execution of the
modified HAMMING2CLUSTERING on ¢(X) C Z5. Let
6’1 and 6’2 be the partition of X into clusters which
is computed by the algorithm in the iteration using ¢’
and the centers ¢' = Azlgo(cl) and &% = AZIQD(C2). Let
¢1,é2 € P be the centers of 6’1,6'2, respectively. For
i=1,2,let A; = {z € o |z — c||l2 > £/y/<}, and let
Bi = 62 \Al NOW,

Do llz =&+) lle—&ll3

reC, zeCy
< D dlle=cE+ D] llz =23
zeC, zeCy

Yo llz=clilz+ Y lle =l +

[8] A. Broder, S. Glassman, M. Manasse, and
G. Zweig. Syntactic clustering of the Web.
In Proceedings of the Sizth International World
Wide Web Conference, pp. 391-404, 1997.

2./€ : 9] M.W. Berry, S.T. Dumais, and G.W. O’Brien.
S (1+12) minlle -l lle -+ !

Using linear algebra for intelligent information

retrieval. STAM review, 37(4):573-595, 1995.

[10] M. Bern and D. Eppstein. Approximation al-
gorithms for geometric problems. Chapter 8 in
D. Hochbaum, Ed. Approzimation Algorithms for
Hard Problems. PWS Publishing, 1996.

[11] M. Charikar, S. Guha, D.B. Shmoys, and E. Tar-

dos. A constant factor approximation algorithm

. 2) .
<1 —|—max{ fﬁj(&—l— Vet 6/ (1 =8 — e — (R/E)}) for the k-median problem. In Proc. STOC ’99.

TEA, €A
Do Ml =5+ D7 e =3
r€B; Tz€B3
<
rTEAUAS L 2\/2
2 llz =i+ 3 lle— I3
r€B, T€B;
2
2:/¢ .
< Y (1 2] minflle - e -) +
1—24/€
TEAUAS
+ D
reB,UB>
min{|[z — ¢'[[3, ||z — ¢*|3}.
|]
References

[1] P.K. Agarwal and C.M. Procopiuc. Exact and
approximation algorithms for clustering. In Proc.

SODA ’98.

[2] P.K. Agarwal and M. Sharir. Efficient algorithms
for geometric optimization. ACM Computing
Surveys, 30(4):412-458, 1998.

[3] N. Alon and J. Spencer. The Probabilistic

Method. Wiley, 1992.

[4] N. Alon and B. Sudakov. On two segmentation
problems. Journal of Algorithms, 33:173-184,
1999.

[6] S. Arora, D. Karger, and M. Karpinski.
Polynomial-time approximation schemes for
dense instances of NP-hard problems. In Proc.

27th STOC, pp. 284-293, 1995.

[6] S. Arora, P. Raghavan, and S. Rao. Approxima-
tion schemes for Euclidean k-medians and related

problems. In Proc. STOC 98.
[7] A. Borodin, R. Ostrovsky, and Y. Rabani. Sub-

quadratic approximation algorithms for cluster-
ing problems in high dimensional spaces. In Proc.

STOC "99.

[12] M. Charikar and S. Guha. Improved combina-
torial algorithms for the facility location and k-
median problems. In Proc. FOCS "99.

[13] D.R. Cutting, D.R. Karger, and J.O. Pedersen.
Constant interaction-time scatter-gather brows-
ing of very large document collections. In Proc.

SIGIR ’93.

[14] D.R. Cutting, D.R. Karger, J.O. Pedersen, and
J.W. Tukey. Scatter/gather: A cluster-based ap-
proach to browsing large document collections. In

Proc. SIGIR 92, pp. 318-329.

[15] S. Dasgupta. Learning mixtures of Gaussians. In

Proc. FOCS ’99.

[16] S. Deerwester, S.T. Dumais, T.K. Landauer,
G.W. Furnas, and R.A. Harshman. Indexing by
latent semantic analysis. Journal of the Society

for Information Science, 41(6):391-407, 1990.

[17] W.F. de la Vega and C. Kenyon. A randomized
approximation scheme for metric MAX CUT. In
Proc. FOCS 98.

[18] P. Drineas, A. Frieze, R. Kannan, S. Vempala,
and V. Vinay. Clustering in large graphs and
matrices. In Proc. SODA ’99.

[19] S.T. Dumais. Improving the retrieval of in-
formation from external sources. Behavior Re-
search Methods, Instruments and Computers,

23(2):229-236, 1991.

[20]

[25]

[26]

[27]

[31]

[32]

S.T. Dumais, G.W. Furnas, T.K. Landauer and
S. Deerwester. Using latent semantic analysis to
improve information retrieval. In Proc. of CHI

‘88, pp. 281-285.

D. Eppstein. Fast hierarchical clustering and

other applications of dynamic closest pair. In

Proc. of 9th SODA, 1998.

P. Frankl and H. Maehara. The Johnson-
Lindenstrauss lemma and the sphericity of some
graphs. J. of Combinatorial Theory B, 44:355—
362, 1988.

A. Frieze and R. Kannan. The regularity lemma
and approximation schemes for dense problems.

In Proc. 37th FOCS, pp. 12-20, 1996.

A. Frieze, R. Kannan, and S. Vempala. Fast
Monte-Carlo algorithms for finding low-rank ap-
proximations. In Proc. of FOCS 98, pp. 370-378.

S. Guha and S. Khuller. Greedy strikes back:
Improved facility location algorithms. In Proc.

SODA ’98.

P. Indyk. A sublinear time approximation scheme
for clustering in metric spaces. In Proc. FOCS

’99.

P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of dimen-
sionality. In Proc. of 30th STOC, pp. 604-613,
1998.

K. Jain and V.V. Vazirani. Primal-dual approxi-
mation algorithms for metric facility location and
k-median problems. In Proc. FOCS ’99.

W.B. Johnson and J. Lindenstrauss. Extensions
of Lipschitz mappings into Hilbert space. Con-

temporary Mathematics, 26:189-206, 1984.

R. Kannan and V. Vinay. The Manjara Meta-
Search Engine.
http://cluster.cs.yale.edu/about.html

J. Kleinberg.
neighbor search in high dimensions. In Proc. of

29th STOC, pp. 599-608, 1997.

Two algorithms for nearest-

J. Kleinberg. Authoritative sources in a hyper-
linked environment. In Proc. of 9th SODA, 1998.

[33]

[34]

[35]

[36]

37]

J. Kleinberg, C. Papadimitriou, and P. Ragha-
van. Segmentation problems. In Proc. STOC

98.

E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Ef-
ficient search for approximate nearest neighbor
in high dimensional spaces. SIAM J. Comput.,
to appear. Preliminary version appeared in Proc.

STOC "98.

N. Linial, E. London, and Y. Rabinovich. The ge-
ometry of graphs and some of its algorithmic ap-
plications. Combinatorica, 15(2):215-245, 1995.

J. O’Rourke and G. Toussaint. Pattern recog-
In J. Goodman and J. O’Rourke, eds.
Handbook of Discrete and Computational Geom-
etry. CRS press, 1997.

nition.

L.J. Schulman. Clustering for edge-cost mini-
mization. To appear in Proc. STOC 2000.

