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Abstract

Combinatorial property testing, initiated formally by Goldreich, Goldwasser and Ron in [11], and
inspired by Rubinfeld and Sudan [16], deals with the following relaxation of decision problems: Given
a fixed property and an input z, one wants to decide whether = has the property or is ‘far’ from
having the property.

The main result here is that if G = {gn, : {0,1}" — {0,1}} is a family of Boolean functions that
have oblivious read-once branching programs of width w, then for every n and ¢ > 0, there is a
randomized algorithm that always accepts every « € {0,1}" if g,(z) = 1, and rejects it with high
probability if at least en bits of z should be modified in order for it to be in g, *(1). The algorithm
makes (%)O(“’) queries. In particular, for constant € and w, the query complexity is O(1).

This generalizes the results of Alon et. al. [2] asserting that regular languages are e-testable for
every € > 0.

1 Introduction

Combinatorial property testing, initiated formally by Goldreich, Goldwasser and Ron in [11], and in-
spired by Rubinfeld and Sudan [16], deals with the following relaxation of decision problems: Given a
fixed property and an input z, one wants to decide whether z has the property or is ‘far’ from having
the property. A property here is a set of binary strings (those inputs that have the ‘property’) and
is identified with its characteristic function (that is ‘1’ on all inputs that have the property and ‘0’
elsewhere). Being ‘far’ is measured by the number of bits that need to be changed for an input z in
order for it to have the property (i.e- the Hamming distance). A property is said to be (e, g)-testable if
there is a randomized algorithm that for every input z € {0,1}" queries at most g bits of z and with
probability 2/3 distinguishes between the case that z has the property and the case that z is en-far from
having the property. Varying e and n may result in different algorithms with different query complexity
q = q(e,n), that may depend on both € and n. If for a fixed € > 0 and every large enough n, a property
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P is (e, q)-testable with number of queries ¢ that is independent of length of the input, n, then we say
that P is e-testable. If for every e > 0 P is e-testable then P is said to be testable.

Apart from being a natural relaxation of the standard decision problem, combinatorial property
testing emerges naturally in the context of PAC learning, program checking [10, 6, 16], probabilistically
checkable proofs [3] and approximation algorithms [11].

In [11], the authors mainly consider graph properties and show (among other things) the quite
surprising fact that the graph property of being bipartite is testable. They also raise the question of
obtaining general results identifying classes of properties that are testable. Some interesting examples
are given in [11], several additional ones can be obtained by applying the Regularity Lemma [1]. Alon
et. al. [2], proved that membership in any regular language is testable, hence obtaining a general result
identifying a non trivial class of properties each being testable. Here we further pursue this direction:
We prove that if a language has a (non-uniform) oblivious read-once branching program of width w then
it is (e, (%)O(w))—tes‘cable. In particular, this shows that every family of functions that can be defined
by a non-uniform collection of constant width oblivious read-once branching programs is testable. This
also generalizes and gives an alternative proof and algorithm for the result of [2], as regular languages
can be represented by constant width oblivious read-once branching programs. We note however, that
the dependence of the query complexity here is worse than in [2].

A Branching Program (BP) of width w is a deterministic leveled BP in which every level contains at
most w vertices. In the sequel we will be interested in BP’s of width w that have the further restriction
of being oblivious read-once. Namely, every level is associated with a variable (all nodes in a level query
the same variable) and each variable appears in at most one level. Branching Programs have been
extensively studied as a model of computation for Boolean functions (citebopp-sip contains a survey
text, see also [4, 5, 13] for a very partial list of different aspects involving BP’s and read-once BP’s).

The size of a BP (and a read-once BP) is tightly related to the space complexity of the function it
computes: If a language is in SPACE(s) then it has a BP of total size of at most n-29() [8], and also a
read-once branching program of width 20(2°) [12]. However, the inverse of the last assertion is not true
even for computable languages. The result of [2] and the result here, in its uniform manifestation, may be
viewed as asserting that ‘very small’ space functions are ‘efficiently’ testable: All regular languages are
in SPACE(O(1)), hence have read-once BP of O(1) size. What happens for SPACE(w(1))-functions?
It is known that SPACE(O(1)) = SPACE(o(loglogn))=Regular [12]. Hence the above question
is interesting for SPACE(s) with s = Q(loglogn). The result here says nothing directly for s =
Q(loglogn). However, we get rid of the strong ‘uniformity’ of the DFA’s used in [2]. In regular
languages the same finite automaton is used to test all the words, even of different lengths. On the
other hand, when represented by a family of BP’s, each BP computes the characteristic function of the
property for a given input length. There are languages of arbitrary complexity that can be represented
by O(1)-width oblivious BP’s. Our result apply to such cases as well. This includes the family of
O(1)-terms DNF, O(1)-clauses CNF and some other interesting examples (see section 4).

Finally we note that SPACE(O(logn)) functions are not testable in general; [2, 11, 15] contain
lower bounds showing that some functions in SPACE(O(logn)) are not e-testable, and sometimes not



even (e, n°)-testable for some fixed €, < 1. However, the question of whether properties in SPACE(s)
for loglogn < s << logn are ‘efficiently’ testable is open. In particular we don’t have any candidate
for a SPACE(O(loglogn)) function whose e-testing requires n) queries for some fixed € > 0.

2 Definitions and Notations

We identify properties with the collection of their characteristic Boolean functions, namely: A property
P C {0,1}* is identified with {f : {0,1}" — {0,1}} so that f(z) =1 if and only if z € P.

An oblivious leveled branching program (BP), is a directed graph B, in which the nodes are partition
into levels Ly, ..., Ly,. There are two special nodes; a ‘start’ node belonging to Ly and an ‘accept’ node
belonging to L,,. Edges are going only from a level to nodes in the consecutive level. Each node has
at most two out-going edges one of which is labeled by ‘0’ and the other by ‘1’. In addition, all edges
in between two consecutive levels are associated with a member of {1,...,n} (a Boolean variable). An
input z € {0,1}" naturally defines a path starting at the start-node: At each step, if the edges are
associated with ¢ then the edge with the label identical to the value of z; is chosen. A leveled BP defines
a Boolean function g : {0,1}" — {0,1} in the following way: g(z) = 1 if the path that z defines
reaches accept. This definition of branching programs is essentially equivalent to what is sometimes
called ‘deterministic’ branching programs (as each input defines at most one path from each node).
However, note that this definition is slightly different from the standard definition of deterministic BP’s
in which every vertex has exactly two outgoing edges, one that is labeled by ‘1’ and the other by ‘0.
Here instead, an input x can be ‘stuck’ at an internal node w due to the fact that w has just one
outgoing edge that is associated with 4 and is labeled by a value that is opposite to that of z; (this
cannot happen in the standard definition). A leveled BP is of width w (w-width) if its largest level
contains w nodes.

An oblivious read-once BP computing g : {0,1}" — {0,1} is a leveled BP with the additional
property that edges ending in distinct levels are labeled with distinct variables. This implies also that
there are exactly n + 1 levels (for a function that depends on all its n variables). We number the levels
of the BP from 0 (containing the start s) and on, and associate to the edges in between levels the formal
Boolean variables X1, ..., X, consecutively (by possibly renaming the variables). We may assume that
the last level is numbered by n.

Along the sequel we consider only oblivious read-once BP’s. For a given BP, B, and two nodes u, v,
we define Bfu : v] the (sub) branching program for which its start node is u and its accept node is v.
If u € L; and v € L; then Bu : v] computes a Boolean function on the variables X, ..., X;. The length
of Blu : v] in this case is v = j — 4. Such B[u : v], as a subprogram of a read-once oblivious BP, is also
read-once oblivious BP. When discussing such a BP B[u : v], we renumber its levels so that its first
level, which is level L; in B, is denoted Lo(B[u : v]) and its last level is denoted by L, (B[u : v]). When
it is clear from the context which is the BP that is considered, we just refer to its first and last levels
as Lo, L, respectively (where v is the length of the corresponding BP).

We will be interested in BP’s for which the start and accept nodes are not always defined. Namely,



the BP B, might have multiple nodes in its first and last levels. For such a BP of length n, any choice
of start and accept nodes (s,t) € Ly X L,, defines a different function on n variables. If no path from a
node w € B reaches the last level, then deleting w from B will not change the function that B computes
for any choice of start and accept nodes in the first and last level. Similarly, we may delete every vertex
that can be reached from no vertex of the first level. Also, when we talk about B[u : v] for some specific
nodes u, v we may delete any node from Blu : v] that is either not reachable from u or cannot reach v.
In particular, this means that u is the only node in Lo(B[u : v]) and v is the only node in the last level
of Blu : v]. All such nodes are called ‘unnecessary nodes’. Along the sequel, we always assume that all
BP under discussion contain no ‘unnecessary nodes’.

For integers a < b, we denote by B, the sub program of B containing all nodes in levels Ly, Ly 1, ..., Lp.
B,.p has undefined source and sink. Note that if B is an oblivious read-once BP of width w then for
any two nodes u,v, and any two numbers a and b, Blu : v] and B, are oblivious read-once BP’s of
width at most w. (The width can become smaller as nodes might become ‘unnecessary’.)

Let z,y € {0,1}", we define dist(z,y) = hamming(z,y) = [{i| z; # vi}|. Let g : {0,1}" — {0,1}
such that g 1(1) # ¢, we define dist(z,g) = min{dist(x,y)| v € g }(1)}. For a BP B, and two nodes
u and v in levels L;, L; respectively, let dist(z, Blu : v]) = dist(z[i,j],g') where ¢’ is the function
computed by Blu : v] on the formal variables X;, X;11,..., X;.

Let B be an oblivious read-once BP with fixed start and accept nodes, that computes a Boolean
function ¢ : {0,1}" — {0,1}. A randomize algorithm A is a 1-sided error e-test for B (g), of query
complexity ¢(A), if for every input z € {0,1}" it queries at most c¢(.A) queries and:

1. For every input € g~! the algorithm accepts.

2. For every input z € {0,1}" for which dist(z,g) > en the algorithm rejects with probability at
least 2/3.

Let B;, be the set of all oblivious read-once BP’s of width w and length n. For B € B;, we denote
by é(e, B) = min{c(A) : Ais a 1-sided error e-test for B}. Namely, ¢(e, B) is the query complexity of
the best 1-sided error e-test for B. Let §(e,w) = maz{é(e, B) : B € BJ\}. Namely, (e, w) is the worst
query complexity needed to e-test a w-width BP. Formally, ¢(e,w) is a function of n too, however, as
we shall see, asymptotically this is not the case.

Finally, in the sequel, for ease of notations we neglect taking || and || for numbers, even when they
need to be integers, whenever this is clear from the context and has no bearing on the essence of proofs.

3 Results

Theorem 1 Let g : {0,1}" — {0,1} be computed by an oblivious read-once BP of width w. Then

there is an e-test for g that makes (%)O(w)

queries.
Corollary 3.1 Ifg:{0,1}" — {0,1} has a read-once BP of width w = O(1) then g is testable.
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The proof of Theorem 1 uses several reduction steps in order to reduce testing of a w-width BP to
testing of (w — 1)-width BP’s. This approach has prospects since 1-width BP’s are testable as asserted
by the following proposition.

Proposition 1 If g : {0,1}" — {0,1} is computable by an oblivious read-once BP of width w = 1,
then g is (€,0(%))-testable by a 1-sided error algorithm.

Proof: We assume that g is not identically ‘0’ and not identically ‘1’, as otherwise the test is trivial
(with no queries at all). Let B be a BP of width w = 1, computing the non-zero function g. It is clear
from the definition that g is a one term DNF. That is, written in formal variables X1, ..., X}, g = II"_;#;
where ¢; is either X; or X;. g does not necessarily depend on all its variables. In this case we just look
at the variables it does depend on. Let z be an input such that dist(g,z) > en (assuming that there is
such z). It is easy to see that for at least € - n of the places {1,...,n} z; is not consistent with ;. Hence
sampling O(%) bits of an input « and rejecting if z; is inconsistent with ¢; is guaranteed to succeed with
probability 2/3 for en-far inputs, and with probability 1 for any input = for which g(z) =1. =

For the proof of the case w > 2 we will need some machinery developed hereafter.

3.1 Main definitions and some intuition

The algorithm for e-testing w-width BP’s will be recursive on the width. Namely, our aim is to reduce
e-testing of a w-width BP to testing of (w — 1)-width BP’s with possibly a smaller e. Key notions are
that of r-full levels and decomposable BP’s. They are defined below.

For an integer r and a node v in a BP, we denote by
Ay (v) = {u| there is a path of length r from u to v}.

See Figure 1.

Definition 3.2 Let v be a vertex in level L; of a branching program with start and accept nodes that
are not necessarily defined. We say that v is r-full if A,(v) contains all nodes of level L;_,. If every
vertex in level Ly is r-full then L; is said to be r-full.

Namely, a vertex v is r-full if v is reachable from every vertex of level L, .., see Figure 1. Note that for
every two nodes u and v of a BP B, v is always 1-full with respect to B[u : v]. This is due to the fact
that Blu : v] contains no ‘unnecessary nodes’.

Fact 1 Assume that v € L; is r-full for a certain r and I, then:

o v is r'-full for every r' > r.

o Ifu € Ljyy is a neighbor of v then u is (r + 1)-full.



Proof: For the first part assume that ' > r and v' € L;_,». Then, as we assume that there are no
‘unnecessary vertices’, v’ can reach some vertex v” € L;_,. In turn v" can reach v by the assumption
that v is r-full. Hence v’ can reach v.

For the second part; if v is r-full it can be reached from any w € L;_,.. Since u is a neighbor of v, it
can also be reached by every w € L;_,. =

level [-r level [
o
D V
A.(v)
o o

Figure 1: A,(v) is the set of nodes in level L; , that can reach v. Here v is not r-full as not all nodes in
level L;_, can reach v.

The following is a crucial ingredient for the rest of the sequel.

Definition 3.3 Let § < 1. A BP of length v, with start and accept nodes that are not necessarily
defined, is said to be 5-decomposable if for some g—’é <l<v—-1 andr< L%J, Ly is r-full.

For a given BP, B, the role of the non §-decomposable subprogram of B is the following: We first show
in Section 3.2, that if B’ is not d-decomposable for § < ¢, then e-testing B’ can indeed be reduced
to testing ‘narrower’ BP’s. Then, in Section 3.3, we show how a general BP can be decomposed into
disjoint non-decomposable sub-programs, such that testing the BP can be reduced to testing not too
many of the non-decomposable parts of it.

3.2 Testing non-decomposable BP’s

The following Lemma, which is the main technical part of the proof of Theorem 1, relates testing
w-width non-decomposable BP’s to the test of general (w — 1)-width BP’s.

Lemma 3.4 Let 6 < e and let B be a non d-decomposable BP of width w and length n. Then e-testing
Bls : t], for any start and accept nodes s and t, requires at most O(qg—f(log %2)2) -§(0.8¢,w — 1) queries.

Proof: The idea of the proof is as follows: We fix 0(5%) levels that are equally spaced in B, leaving out
enough space in the beginning of B. The assumption that B is not J-decomposable will imply that for
each two nodes u, v in the levels we choose, the test of B[u : v] can be reduced to tests of (w — 1)-width
BP’s. We then show how to combine the results of the tests on B[u : v], for all such u,v, into an e-test
for B.



Formally: Let m = [TT”]. Let {lo,...,lp} be the set of numbers that are m apart, starting from
[2%™7 and ending at or before n. Namely, ; = [2™]+i-m, i=0,1,..,p = |_"T_n—l°J = O(3z). Let
S = Ly X ... x Ly,. Our first aim is to show that for every pair (u,v) € L;; X L;,,, the e;-test of Blu : v]
can be reduced to a small number of general test of (w — 1)-width BP’s.

i+1
We first need the following claims.
Claim 3.5 For every l > Iy level L; is not (2m)-full.

Proof: Immediate from the choice of parameters and the fact that B is not §-decomposable. =

For each [ such that [; <1 < l;11, let F(I) be the set of all (I — [;)-full vertices in level L;. In other
words, v € F(I) if it is in the [-th level and it is reachable from every vertex of the /;-th level. By our
assumption on B, F(l) # L; as otherwise L; would be (I — [;_1)-full in contradiction with Claim 3.5.

Hence the above implies the following claim:
Claim 3.6 Let u,v be vertices in levels Ly, Ly, , respectively and let | be such that I; <1 <1l;y;.

e Let u' be in level Ly and assume that u' ¢ F(l), then Blu :u'] is of width w' < w — 1.

e Let v’ be in level L; and assume that v' € F(l), then B[v' :v] is of width w' < w — 1.

Proof: Let u' ¢ F(I) be in level L;. As ' ¢ F(l), v’ is not (I — I;)-full, then, by Fact 1, it is also not
(I —I")-full for every I' > l;. Namely, for every intermediate level Ly, [; < ' <, there is a vertex that
cannot reach u' and hence can be deleted from Blu : u/].

For the second part assume first that ' is in level L; for [ > I; and v' € F(l). Let ¢t be any node at
level Ly, | <1' <l;j11, that is reachable from v'. Since v' € F(I) it follows that ¢ is (I’ — [;)-full. Hence
not all vertices in level Ly are reachable from v’ as otherwise level Ly will be (I’ —1;)-full in contradiction
to Claim 3.5. As this is true for every | <’ <1l;1 it follows that B[v' : v] is of width w' < w — 1. If o'
is in level L;, then the same argument for ¢ will work except that ¢ will be (I’ — ;_1)-full. Again, this
implies that level Ly, I; < 1" < l;y1 cannot have all its nodes reachable from v’. Otherwise it would be
(I" = I;—1)-full in contradiction to Claim 3.5. =

Claim 3.6 asserts that B[v; : v;11] is indeed of width of at most (w — 1), unless v; ¢ F(l;) and
viy1 € F(lj+1). We still need to deal with the case for which v; ¢ F(l;) and v;+1 € F(l;4+1) where the
subprogram Blv; : v;y1] might be of width w. The key observation here is that any path from v; to
viy1 must start at L;;, — F(I;) (as v; is such) and end in F'(l;4;). Hence this path must intersect F'(I)
for some intermediate level L;, [; < [ < l;11. In addition, by Fact 1, once it intersects F(l), it intersects
F(I') for every I' > | (see Figure 2). This suggests the following:

Let k = %, we choose k + 1 numbers, po,...,pg, that are 7 apart in the range {l;,...,li11} :

Claim 3.7 For every u € Lj, — F(l;) and v € F(lj11):
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Figure 2: Vertices in shadowed area are in F'(). If a path from v; to v; ;1 intersects F'(I) at some intermediate
level L;, then it intersects F'() for every following level.

o If y € {0,1}" is such that dist(y,Blu : v]) = 0, then for some j € {1,...,k} there are some
u' € Ly, _, — F(pj_1), v' € F(p;) so that dist(y, Blu : u']) = dist(y, B[v' : v]) = 0.

o If y € {0,1}" is such that dist(y,Blu : v]) > (1 — a)em for some a < 1. Then, for every
j€{1,..,k} and for every u' € Ly,_, — F(pj_1) and v' € F(p;) such that u can reach u', u' can
reach v' and v’ can reach v,

dist(y, Blu : u']) + dist(y, B[v' : v]) > (1 — a)em — — > (0.9 — a)em. =

m
k
Proof: If dist(y, Blu : v]) = 0 then by the discussion above there is some level [; < I < ;1 so that the
path, Path(y), that y defines from u to v intersects F(I') for each | <1’ < [;1; and does not intersect
F(1") for each I; < 1" <. Let j be the smallest such that p; > . Let u’ be the vertex that Path(y)
intersects in L, _, and v’ be the vertex that Path(y) intersects in Ly, . Clearly for these j,u',v" the first
part of the claim holds.

For the second part, assume that for y € {0,1}" there is a j € {1,...,k}, v’ € Ly, , — F(p; 1) and
v' € F(p;) such that u can reach u’, v’ can reach v’ and v’ can reach v, and such that dist(y, Blu : v]) <
(0.9 — a)em. Then certainly dist(y, B[u : v]) < (1 — a)em: First, by changing at most (0.9 — a)em bits
of y in the range {l;+1,...,pj—1} and {p; +1,...,l;41}, we can get a ¢ such that its corresponding parts
(to the places above) traverse B from u to «’ and from v’ to v. Then by changing possibly additional
m/k < 0.1em bits, namely all bits in the range {p;_1 + 1,...,p;}, we get a y" that traverses B from u
to v through v’ and v'. m

We now can present the algorithm that (1 — a)e-test Blu : v] for each (u,v) € Lj; X L;y1 given that
we have a general 1-sided error test for (w — 1)-width BP’s. Note that the length of B[u : v] for any
such u and v is m.



Algorithm A;((1 — a)e,w, Blu : v]):
The first parameter is relative distance, the 2nd is width, (u,v) € Ly, x Ly, ;.

1. Ifu € F(l;) or v ¢ F(l;41) then by Claim 3.6, Blu : v] is already of width w' < w — 1. This
test is done by calling the general (1 — a)e-testing procedure for (w — 1)-width BP’s.

2. Otherwise, if u ¢ F(l;) and v € F(liy1) let k = 22 and p = 1 + % We choose in

the range {l;,...,l;11} k-+1 numbers, p, ..., pg, that are T apart: p; =L;+5-7, j=0,..,k.

For every triplet (j,u'v') such that j € {1,..,k}, ' € Ly,_, — F(pj—1), v' € F(p;), and
such that u can reach u', 4’ can reach v' and v’ can reach v, a (0.9 — a)e-test is performed p
independent times on Blu : u'] and B[v’ : v]. This is done by calling the general procedure
for testing (w — 1)-width BP’s.

If there is a triplet (j,u'v") for which all p tests pass, then the outcome of A; is ‘Yes’.

Otherwise, if for every triplet (j,u,v') one or more of the p tests, on either Blu : u'] or

B[v' : v] answer ‘No’, then the outcome of A; is ‘No’.

Claim 3.8 Let B be a w-width BP that is not §-decomposable, and m,k as above. Let x € {0,1}" be
any input, then Algorithm A; makes O(“’T2 - log %2) calls for a general (1 — a)e-test of (w — 1)-width
programs on x and:

o If dist(z, Blu: v]) =0 then Ay answers ‘Yes’ on x with probability 1.

o If dist(z, Blu: v]) > (1 — a)em then the outcome of A1 on x is ‘No’ with probability at least 2/3.

Proof: For each triplet (4,v',v') that is relevant to the second case of Algorithm A;, Claim 3.6 asserts
that Blu : u'] and B[v' : v] are of width at most (w—1). Hence all calls of A; are to tests of (w—1)-width
BP’s. There are at most O(k - w?) = O(sz) such triplets, hence the claim on the number of calls to

(w — 1)-width tests is obvious.

We assume that the general (w — 1)-test is a 1-sided error. Hence, for an input z € {0,1}" with
dist(z, Blu : v]) = 0 a ‘No’ result will be obtained if Blu : v] is of width at most w — 1 and the general
(w — 1)-width test answers ‘No’ (1st case of A;) or if for every triplet (j,u',v’') as above, one of the
tests, to either Blu : u'] or B[v' : v], answers ‘No’. Both cases occur with probability 0 by Claim 3.7.

Now, let z € {0,1}" be an input for which dist(z,Blu : v]) > (1 — a)em. If Blu : v] is of
width (w — 1), then A; answer ‘Yes’ only if the general (w — 1)-width test errs. This occurs with
probability at most 1/3. If Blu : v] is of width w, then by Claim 3.7, for every triplet (j,u',v') as
above, dist(y, Blu : u']) + dist(y,B[v' : v]) > (0.9 — a)em. But then, for each such triplet, either
dist(y, Blu : v']) > (0.9 — a)e - % -m or dist(y, B[v' : v]) > (0.9 — a)e- (1 — k%)m In any of these
cases, a general (0.9 — a)e-test to the corresponding (w — 1)-width BP would erroneously say ‘Yes’

with probability at most 1/3. Since there are p such independent tests, all these tests would err with



probability at most (%)p < =15, This will cause A; to say erroneously ‘Yes’ due to this triplet. As

3kw? "
there are at most kw? possible triplets, A; errs with probability at most 1/3. m
We formally now end the proof of Lemma, 3.4 by presenting the following proposition and the testing
algorithm it implies.

Proposition 2 Let B be a non 6-decomposable BP of width w and length n. Let m,{ly,...,Ip} and S
be as defined above (right after the statement of Lemma 3.4). Let y € {0,1}", then for any start and
accept nodes (s,t) € Ly X Ly,:

1. If dist(y, B[s : t]) = 0, then there ezists a tuple (vo,...,vp) € S such that s can reach vy, v, can
reach t and dist(y, B[v; : vi11]) =0 for i =0,...,p — 1.

2. Let dist(y, B[s : t]) > en, then for each (v, ...,vp) € S such that s can reach vy and v, can reach
t, Si=h dist(w, Blv; : vig1]) > en —lo — (n — 1) > 0.9en,

Proof: If dist(y, Bls : t]) = 0, then the path that y takes in B defines the tuple (vo,...,vp) € S which
contains the nodes in which this path intersects L;, i = 0,...,p along the way from s to ¢. This tuple
asserts the first item of the proposition.

If dist(y, B[s : t]) > en, then for any (vo,...,vp) € S such that s can reach vy and vy can reach ¢,
dist(y, Blvg : vp]) > en —lo — (n —Ip) > 0.9en. But dist(y, Blvg : vp)) = Si—h ‘dist(z, Blv; : viy1]). =

Proposition 2 defines a way of how to combine answers to tests on BP’s of the form B[v; : v;1+1] into
an e-test of B. Intuitively, on an input = € {0,1}", we just need to check for all tuples (vy,...,vp) € S,
and check whether there exists one for which dist(z, Blv; : viy1]) =0 for i =0,...,p — 1.

Formally, let z € {0,1}" be the input. The following is an e-test of B for any start and accept nodes:

Algorithm As(e, w): (B is a non d-decomposable BP of width w).

Let m and S be as above and let v =1 + 10%;;«;2) = O(log §).

1. For each (u,v) € Ly, x Ly,,,,i=0,...,p — 1, call A1(0.9-¢,w, Blu :v]) (namely with a = 0.1)
independently, for v times. If for (u,v) all of these tests answer ‘Yes’ then define T'(u,v) = 1.
Otherwise, if there is a test out of the v tests that answers ‘No’ for (u,v) then set T'(u,v) = 0.

2. Define the following directed graph G = (V, E): V = Ly U L, U (U_,L;,) and
E = {(s,u) € Ly x Lyy| s can reach u in B}U

{(v,t) € Ly, x Ly| v can reach t in B}U
{(u,v) € Ly; x Ly;,,,i =0, ...,p — 1| such that T(u,v) = 1}.

3. Answer ‘Yes’ for (s,t) € Ly x Ly if and only if s can reach ¢ in G.

Claim 3.9 For any (s,t) € Ly X Ly, and for every input x:
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1. If dist(z, B[s : t]) = 0 then Algorithm Ay answers ‘Yes’ on (s,t) with probability 1.

2. If dist(z, B[s : t]) > en then Algorithm Az answers ‘No’ on (s,t) with probability at least 2/3.

Proof: Assume that dist(z,B[s : t]) = 0 for an input z € {0,1}" and (s,t) € Ly x L,. Then,
by Proposition 2, there exists a tuple (vg,...,vp) € S such that s can reach vy, v, can reach t and
dist(y, Blv; : viy1]) = 0 for ¢ = 0,...,p — 1. By Claim 3.8 Algorithm A; answers ‘Yes’ on each of the
calls A1(0.9 - €, w, Blv; : v;41]) with probability 1. Hence, the path (s,vo,...,vp,t) is a valid path in G
with probability 1, causing A, to answer ‘Yes’ with the same probability.

For the second part assume that dist(z, B[s : t]) > en. Then, by Proposition 2, for each (v, ...,vp) €
S such that s can reach vy and v, can reach t, Zfz‘g_ldist(x,B[vi : vj+1]) > 0.9en. But then for each
such (vo, ..., vp) € S, for some ¢ < p — 1, dist(z, Blv; : vi41]) = 0.9¢7 > 0.9em. Let E' be the set that
contains for each (vo,...,vp) € S a corresponding (v;, vi+1) for which dist(z, Blv; : vi+1]) > 0.9em. Note
that E' defines an (s,t)-cut in G. Namely, s cannot reach ¢ in G — E'.

For each member (v;,v;11) € E', Claim 3.8 asserts that Algorithm A; answers ‘No’ on the call
A1(0.9 - ¢,w, B[v; : vi41]) with probability 2/3. Hence it answers erroneously ‘Yes’ on all v calls for a

’ in step

pair (u,v) € E' with probability at most (%)” < &)ﬁ' Namely, T'(u,v) is set erroneously to ‘1
1 of the algorithm with probability at most ?’p%. However, there are at most pw? possible pairs in E'.
This implies that with probability at most 1/3 there exists a pair (u,v) € E' for which T'(u,v) = 1. In

particular, it follows that s cannot reach ¢t in G with probability at least 2/3. m

w

Claim 3.10 For any (s,t) € Ly x L, and for every input x, Algorithm As make O(t‘;’—Q2 log %) calls to
A1 with distance parameter 0.9¢.

Proof: There are O(pw?) = 0(15_22) possible pairs (u,v) € Lj; x Ly,,,,i = 0,...,p — 1. For each pair
(u,v) there are v = O(log ) calls for A;. =

The following corollary ends the proof of Lemma, 3.4.

Corollary 3.11 Algorithm Ag provides a 1-sided error e-test for Bls : t], for every start and accept
nodes (s,t) € Lyo(B) x L,(B), making at most O(%’—;(log “’72)2) -4(0.8¢,w — 1) queries.

Proof: Claim 3.9 asserts the correction of Ay as a 1-sided error e-test for Bls : t], for each (s,t) €
Lo(B) x Lp(B). Observe that the calls for A; do not depend on the choice of s and ¢. Hence, with
the same amount of queries as described above for a given choice of s,t, As provides an e-test for every
choice of s and t; for each s and ¢ the outcome has probability at least 2/3 to be correct.

According to Claim 3.8, each call for A; results in possib21y O(“’T2 -log sz) calls to a general (.8¢-test

of (w—1)-width BP’s. Claim 3.10 asserts that there are O(%; log §) calls to A, hence the claim follows.
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3.3 The general case

In order to test general w-width BP’s it remains to be shown how to reduce testing of decomposable
BP’s to that of non-decomposable ones. We need the following:

Proposition 3 For a BP, B and t > r, let t1,ts be r-full vertices in L; and let uw € L;, with [ <t —r.
Then for every y € {0,1}"

|dist(y, Blu : to]) — dist(y, Blu : t1])| < 7.

Proof: The closest 3’ to y that traverses B from u to ¢; must intersect A,(t2). Hence, by changing
only the r last bits of 4/, we get a 1" that traverses B from u to t3. m

Definition 3.12 Let y € {0,1}" and 0 < a < b < n, we define:

dist(y, Bap) = min{dist(y, Blu : v])| u € Lq,v € Lp}.

Claim 3.13 Let B[s : t] be a BP of length v with start vertez s (the only vertezx at level Ly) and accept
vertex t (the only vertex at level L,). Assume that there is a sequence of numbers lp = 1,....0, = v

and a sequence of numbers r1,...,ry, such that level L;, is r;-full for each i = 1,...,h. Then, for every
y € {0,1}", Eidist(y, By;,,) > dist(y, B[s : t]) — Zr.

Proof: Let y be such that X?dist(y, B,_,.,) = d. We will show that dist(y, B[s : t]) < d + X;; which
implies the claim.

Indeed, let w; = y[l—1 + 1,: l;], i = 1,..., h be the substring of y that corresponds to the variables
of By, ,.;- Let yl, i =1,...,h be such that dist(w;,y!) = d;, dist(y!, By, ,.4;) = 0 and so that $}d; = d.
Then for each yi, i = 1,...,h let (u;,v;) € Ly,_, x L, be such that dist(y}, By,_,.,) = dist(y;, Blu; :
v;]) = 0. Namely, u;,v; are the start and end nodes through which y/ travels through B;,_,.,. Then,
by Proposition 3, for every i = 1, ..., h there is a string z; such that dist(y},z;) < r; and dist(z;, Blu; :
u;+1]) = 0. But then the string z = 2 - ... - 2, which is the concatenation of z;,i = 1, ..., h, ‘travels’ in B
through all the u;, 4 =0, ..., h. In particular dist(z, B[s : t]) = 0 (as s and ¢ are the only nodes in levels
Ly, L, respectively).

On the other hand dist(y, B[s : t]) < dist(y,z) < E;dist(w;,z;) < Z;i(dist(w;,y)) + dist(y,,z")) <
Ei(di+7"i) =d+X;r;, =

We are ready now to prove Theorem 1.

Proof: Let B be a BP of width w and length n with start and accept nodes s € Ly and t € L,

respectively. Let ap = 0 and let a; = [; be the smallest integer such that level L,, is r;-full for r < ;l—é.
Let I3 be the smallest integer for which level L,,, a2 = a1 + 2 is ro-full for ro < te_g, etc. This defines a

sequence of numbers £ = (ag, a1, ...) of which the last may or may not be n. If the last number in £ is
not n then we add n as the last member resulting in a sequence L', otherwise we set £ = L. Assume
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that £' = (ap = 0,a1,...,ap, = n). This defines a sequence of h BP’s (with start and accept nodes that
are not necessarily defined), By, ..., By, B; = By, ,.q, of length l; = a; — a;_;.

Note, by our choice, for every i = 1, ..., h, either [; = O(1) or B; is not e;-decomposable for e; = 0.5¢.
Moreover, for every 7 = 1,...,h — 1, the last level of B; is r;-full, and for By, (with L,, as last level) L,
is either r;-full if n € £ or is 1-full if n was added to result in £ (as ¢ is always 1-full in B(s : ¢]).

An e-test of B is done as follows: For 4/e times, independently an 7 € {1, ..., h} is chosen at random
with probability proportional to the length ;. Let I be the multi-set that contains the 4/e chosen i’s,
possibly with multiplicity. Let T; be a Boolean flag associated with each ¢ € I. For each 7 € I an €;-test
is performed on By, _,.,; for every choice of start and accept nodes (u,v) € Ly, , X Lg,. If for some pair
(u,v) € Lq; , X Lg,, the answer to (u,v) in this test is ‘Yes’ then we mark 7; as ‘1’. Otherwise, if for
all such pairs (u,v) the answer is ‘No’, we mark it as ‘0’.

Finally, if there exists a chosen ¢ € I for which T; = 0, then the answer to the e-test for B is ‘No’.
Otherwise, if for all chosen i’s T; = 1, then the answer to the e-test on B is ‘Yes’.

Let us first analyze the query complexity of the above test: As was remarked before, each B; is
either of O(1) length or non e;-decomposable. Hence, for each chosen i, an €;-test for each start and
accept nodes (u,v) € Ly, , X Lg, can either be done in O(1) queries (in the former case) or it can be
done by calling Algorithm Ay for non-decomposable BP’s. Note that in the latter case, Corollary 3.11
asserts that one call to A, provides a test for each start and accept node.

Since there are at most 4/e calls for Ay (with § = €1), the total complexity is

5 4 w? w2 5 w w2 5
g(e,w) < o 0(§(log Z)Z) -G(0.8e1,w — 1) = 0(6—4(10g ?)2) -4(0.4¢,w — 1),

which implies that (e, w) = (£)0®),

€

Let us check the error probability of this algorithm. If for an input z € {0,1}", dist(z,B[s:t]) =0,
then for every 7 € I that is chosen in the algorithm above, dist(z, B[u : v]) = 0 for some (u,v) €
Lg; , X Lg;. Hence the answer will be “Yes’ with probability 1.

For an input z such that dist(z, B[s : t]) > en, Claim 3.13 implies that ¥;dist(z, By;.q,,,) > en—%;r;.
However, as r; < Z—l’,z =1,..,h—1 and r, < maz{l, %} we conclude that Yr; < &5 + 1 and hence
Ydist(z, Ba;.air) > %en for large enough n. Thus, by sampling one i € {1, ..., h} as above, we get that
dist(z, Bo;:a;4,) > %eli = €1l; with probability at least 0.44e. To see this let D = {i| dist(z, Bq;_,:q;) >
%eli} and let d; = dist(z, Ba;_,:a;), then

94

1 ) 1
mﬁn S EZEDdZ + EZQDd’L S EieDli + EGEZ¢D1’L S P’I"Ob(Z € D) “n + 567’1/

which implies that Prob(i € D) > 0.44e.
Assuming that ¢ € D, then for every u € L,, ,,v € L,,, dist(z, B[u : v]) > €1l;. Thus, the success
probability for a chosen i is at least 0.44e - % Namely, that ¢+ € D and that the e;-test on B; answers

‘No’ as it should, for at least one pair of start and accept nodes of B;. Making 4/¢ independent such
tests will, again, reduce the error probability to below % [
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3.4 Time Complexity

We end up this section with a note on the total running time of the algorithm. Every fixed BP, B, defines
a property Pg C {0,1}". We have presented in the section above an ‘algorithm scheme’. Namely, it
produces an e-test for any given € and w-width oblivious read-once BP, B. For the algorithm-scheme,
the input is € and B, while for the property tester the input is z € {0,1}". These two notions should not
be confused. Thus, in analyzing the running time of the e-test of Pp, for a given BP, B, we may assume
that we have at hand the decomposition of B into non-decomposable parts for all possible recursion
levels. We also assume that we have F(I) for every level | and for every possible subprogram that is
considered in any of the recursion levels. We don’t discuss how this data is represented or computed,
which is out of the scope of this paper. We note however that, by computing all-pairs-connectivity, the
data above can easily be obtained. Hence the above can be done in polynomial time (in the length of
B and 1/e).

For an input z € {0, 1}", the operations in a given recursion level involve sampling a decomposable
subprogram, calling A; and As, and processing the return answers of Algorithms A; and Ay. Sampling
one decomposable program takes O(logn) steps since there might be O(n) non-decomposable B;’s in
the top level. Once all calls to A; are done, computing the outcome of Algorithm Ao, for a w-width
BP in the top recursion level, is done by forming the graph G and then checking whether s can reach ¢
in G. Given the answers of the calls to A, preparing the graph G takes O(pw?) = O(f—;) steps. Then,
solving the connectivity problem on G takes O(f—;) steps. Putting this together yields the following
recursion for the time t(e, w,n) where € is the distance parameter, w is the width and n is the length of
the BP:

t(e,w,n) = L-[O(logn) + O(F) + O(% log 2) - O( - log ) - #(0.4¢,w — 1,7n)].

The % term comes from the number of ¢’s chosen in the top level general test. The logn comes from
sampling one i. The O(%;) term comes from deciding the connectivity in As, and the rest comes from
A; multiplied by the number of calls to it from As.

Solving the above yields (e, w,n) = (2-081)0®),

4 Examples of some interesting functions and open problems

We present here some examples of functions that have narrow width, read-once BP’s and are ‘efficiently’
testable (sometimes, a direct efficient testing algorithm is obvious). The first non-trivial such family is
of all regular languages with a direct testing algorithm by [2]. We remark here, that for this case, our
algorithm is conceptually different than that of [2]. The dependence of the query complexity on w in
this case is similar to what would come out of [2]. The dependence on ¢ is worse.

Other very simple families are k-term-DNF and k-clauses-CNF, each having 2¥-width oblivious read-
once BP. A function ¢ : {0,1}" — {0,1} is k-term-DNF if it has a DNF representation (a disjunction
of terms where each is a conjunction of literals) with at most & terms. Analogously, a k-clause CNF
is defined. Two remarks are due here: For both k-term-DNF and k-clause-CNF e-tests are known
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(folklore): k-term DNF is (e, O(%g—k))—testable by testing for each term separately. k-term CNF can
be tested by 0 queries for any € > % as such function is either constant or every input has distance at

most k to a satisfiable one.

It is also interesting to note that 1-term-DNF includes examples of functions that are, say, in uniform
SPACE(loglogn) but not regular and hence not in SPACE(o(loglogn)). One such interesting example
is the following example of Papadimitriou [14]: Let b be a binary string without leading 0’s. We denote
by n(b) the natural number whose binary representation is b. Let L = {b;$b2$...8b;| n(b;) = i}. Clearly
L € SPACE(loglogn). It is also not hard to see that L is not regular. However, as L contains at most
one word of each length, it obviously has a BP of width w = 1. Note that, although we have here an
alphabet of size 3, we may actually encode everything in binary by encoding each symbol with two bits.

In view of Theorem 1 one may ask what is the true dependence of e-testing w-width read-once BP’s on
w and €. This remains open at this point. Another more puzzling question is whether SPAC E(loglogn)
can be ‘efficiently’ testable (by this we mean with complexity, say, less than n? for any § > 0). Currently
we do not have any candidate for a counter example to this.

Another issue is how far the current result may be generalized. One restriction that may be con-
sidered is being ‘read-once’ — can this be replaced by, say, polynomial total size? To this, the answer
is false: Barrington [4], has proved that every NC' function has a polynomial length oblivious leveled
BP of width 5. However, In [2] examples of such functions that require 6(y/n) queries are presented.
Hence, instead, one may ask whether constant width linear size BP’s are testable. A negative answer
is given in [9]: They show that there is a Boolean function ¢ : {0,1}" — {0, 1} that is computed by a
read-twice constant width oblivious BP and that is not e-testable for some fixed € > 0 (a read-k-times
BP is a BP where each variable appears in at most k levels).
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