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Abstract

In many practical applications, given an m x n matrix A it is of interest to find an approx-
imation to A that has low rank. We introduce a technique that exploits spectral structure in
A to accelerate Orthogonal Iteration and Lanczos Iteration, the two most common methods
for computing such approximations. Our technique amounts to independently sampling and/or
quantizing the entries of the input matrix A, thus speeding up computation by reducing the
number of non-zero entries and/or the length of their representation. Our analysis s based on
observing that both sampling and quantization can be viewed as adding a random matrix ¥ to
A, where the entries of E are independent, zero-mean random variables of bounded variance.
Such random matrices posses no significant linear structure, and we can thus prove that the
effect of sampling and quantization nearly vanishes when a low rank approximation to A is
computed. In fact, the more prominent the linear structure in A is, the more data we can afford
to discard and, ultimately, the faster we can discover it. We give bounds on the quality of our
approximation both in the L2 and in the Frobenius norm.
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1 Introduction

Many aspects of machine learning and data mining are affected by what has become known as “the
curse of dimensionality”. In order to find more sophisticated trends in data, potential correlations
between larger and larger groups of variables must be considered. Unfortunately, the number of
such correlations generally increases exponentially with the number of input variables and, as a
result, brute force approaches become infeasible. What often makes this all the more frustrating is
the realization that human beings have no difficulty identifying all salient features of, say, a high
resolution image — a very high dimensional object from the machine learning point of view.

How is it that humans are able to process such images almost instantly? This discrepancy is
generally attributed to the observation that meaningful images do not exploit their full allotment
of dimensionality. There are hundreds of thousands of pixels in an image of a face, yet a face
has only so many muscles and there are only so many understood expressions. Humans are not
so concerned with the nature of individual pixels, but rather with the implications of a particular
trend, the upturning of the mouth to form a smile. This structure inherent in the domain of facial
gestures suggests that there are just a few important “axes” for understanding a facial expression:
Is the mouth open? What emotion does the face exhibit? Is the person confused? Each of these
questions represents a meaningful dimension for the data. Understanding an image could be as
simple as discovering the right questions to ask; the proper dimensions to consider.

1.1 Low Rank Approximations

A natural goal for machine learning is to attempt to identify and isolate these characteristic di-
mensions. We would like to simplify the data sufficiently so that we can apply traditional machine
learning techniques, yet we do not wish to oversimplify and leave out information crucial to un-
derstanding. A method that is widely used for this purpose is to first cast the data as a matrix A
(indexed by (instance, attribute)) and then compute a matrix of low rank, D, that approximates
A. The idea is that the rank of a matrix corresponds roughly to the degrees of freedom of its
entries. By constraining the rank of D we aim to capture only the most pertinent characteristics
of the data in A, leaving behind dimensions in which the data appears “random”.

Such low rank approximations are most often derived by computing the Singular Value Decom-
position (SVD) of A and taking the rank k£ matrix, A, that corresponds to the k largest singular
values. Recall that for an arbitrary matrix A its Frobenius norm, |A|r, is given by

AT =) A(i,5)° .
1,

Perhaps the best-known property of Ay is that for any rank k& matrix D,
|A—D|r > |A— AklF . (1)

Considering the low rank approximations suggested by the SVD has proven empirically successful
in a number of different areas, including Information Retrieval, with Latent Semantic Analysis
(LSA) [2, 3], and Face Recognition [11]. In particular, empirical evidence suggests that indeed
meaningful dimensions of the data are captured by this approach. At the same time, a theoretical
understanding of this fact remains elusive. One way to put the current state of affairs is that
we don’t really know “To which data analysis question is Ay the answer?” In particular, the
characterization of Ay, offered by equation (1) does not seem to lend an insight into how Ay captures
meaningful dimensions of the data in A.



Our starting point in this paper is another, perhaps less well known, property of the SVD.
Namely, that the approximations it offers to A are also optimal with respect to the L2 norm,

|A| = |A]2 = max|Az| .
|lz|=1

We will see that the L2 norm, also known as spectral norm, measures “linear structure” in data,
i.e., the tendency of instances (rows, columns) to be linear combinations of a small number of
other instances. Thus, minimizing the L.2 norm of A — D appears naturally related to extracting
dimensions which are significant for the data in A. We further posit that considering the L2 norm
enables a principled approach to determining “how many” dimensions we should retain (what value
of k). The key fact in this vein is the stability of spectral structure with respect to perturbations
caused by random noise. This will suggest that one should measure |A — Ag|y vis-3-vis the L2 norm
of a random “A-like” matrix (to be defined precisely).

Our main technical contribution lies in exploiting the stability mentioned above in order to
inject a special form of “noise” into the data, namely, independent sampling and quantization of
individual entries. Each one of these “matrix simplifications” greatly accelerates algorithms that
compute low rank approximations, such as Orthogonal Iteration and Lanczos Iteration. Further, we
will show how to combine sampling and quantization to yield a dramatic reduction in the amount
of data needed to compute a good low rank approximation to a matrix A. Thus, besides speeding
up computation, our technique also benefits data storage and transmission.

1.2 Owur Results

Both results we present have the ultimate goal of accelerating the computation of low rank matrix
approximations. The two most commonly used algorithms for this task are Orthogonal Iteration
and Lanczos Iteration. While the two algorithms are quite distinct (for an excellent discussion
see [7]), both spend the bulk of their time performing matrix-vector multiplications. Our approach
speeds up such multiplications by i) sampling (and thus sparsifying) the input matrix A, and/or
ii) quantizing the entries of A so that arithmetic operations can be performed faster.

The approximations to Ay that we compute are of high quality (additive error), as expressed in
Theorems 1 and 2. In particular, the bounds we present for our approximation D are of the form

|A—D| < |A— Ag|+ Error ,

where Error is caused by sampling/quantization. As a yardstick for our approximations, we define
¥4 as the minimum amount of linear structure contained in any matrix whose entries are “in the
same range” as A. More precisely, for an m x n matrix A with max; ; |A(4, j)| = b, we define

P = min

Qe {=b,+b)ymxn

Note that 14 is bounded by the norm of the random m X n matrix where each Q(, ) is b with
equal probability; arguably such a matrix contains no meaningful linear structure. Our bounds can
afford to measure Error in units of ¢ 4.

To simplify notation, both Theorems 1 and 2 are stated with probability of failure 1/(m + n).
As we will see, this probability can be driven to any 1/poly(m + n) factor by a modest increase of
the range constants in each theorem (we elaborate on this point in Section 3.1).



Our first result allows us to randomly omit a large fraction of the entries in a matrix without
destroying its spectral structure. More precisely, the error incurred is parameterized by the fraction
of entries discarded. Hence, the more prominent the linear structure is in A, the more data we can
afford to discard and the faster we can discover it.

Theorem 1 Let A be any m X n matriz. For s > 1, define A to be a random m x n matriz where

R 0 wp. 1—1/s
A(i,j) =
sA(,j)  w.p. 1/s .

If s < WM’ then with probability at least 1 —1/(m +n),

|A— Ayl < |A— A+ Tepavs .

We note that in practice it is not necessary to multiply entries by s. Omitting s from all sA(%, j)
terms would result in exactly Ay /s, which could readily be scaled by s afterwards.

Our second result allows us to “round” the entries of A randomly, again without destroying its
spectral structure. In Theorem 2 below we are rounding entries to two values, thus requiring only a
single bit to store each entry. This represents a 32 to 64 factor of compression over storing floating
point numbers. Naturally, one can generalise the rounding process to a larger set of numbers,
trading representation length for error.

Theorem 2 Let A be any m X n matriz and let b = max; ;|A(4,7)|. Define A to be a random
m X n matriz where

1 A(
+b  w.p. 3 + (211;])
Ali,j) =
1 A(5,5)

Then with probability at least 1 —1/(m + n),
|A— Ayl < |A— Akl +T9a .

As with Theorem 1, the use of b is not necessary in practice. Entries could be rounded to £1 just
as easily, enabling addition in place of multiplication, with a final scaling of the result by b.

We note that there are several occasions when one might seek particularly weak linear structure;
vectors in the null space of a matrix, for example. Our results are not useful in these domains. In
essence, our results are useful whenever the structure we seek in the data is beyond the realm of
random noise or, equivalently, whenever adding random noise cannot obscure the structure.

1.3 Related Work

The singular value decomposition has received a lot of attention in information retrieval where
its use was pioneered by Deerwester et al. [4] with Latent Semantic Analysis (LSA). Given a
collection of vectors, each one capturing the terms appearing in a single document, LSA considers
a low rank approximation, D, of their cosine similarity matrix (a symmetric matrix with bounded



entries). Considering distances between documents/terms with respect to D goes a long way in
addressing both synonymy and polysemy in practice. Recently, certain progress has also been
made in providing a theoretical explanation for the empirical success of LSA. This originated with
the work of Papadimitriou et al. [10] who proved that LSA works in the context of a simplified
probabilistic “corpus-generating” model. A related work, albeit indirectly, is that of Kleinberg [9]
on authoritative sources in a hyperlinked environment. Kleinberg’s HITS algorithm computes the
singular value decomposition for the adjacency matrix of the directed web link graph.

Recently, Azar et al. [1] extended the results of [10], considering a corpus generated by exposing
an approximately low-rank matrix A to a particular form of random error E. Our work is inspired
by the ideas in [1] and our results can be viewed as turning the random process acting on the data
“on its head”: rather than viewing the random error matrix F as a foe corrupting the data, we
co-opt the random process and “shape” F so that A + E has useful properties.

In terms of computing low rank approximations to large matrices in practice, a relatively com-
mon approach is to use “incremental” algorithms. Such algorithms bring as much data as possible
into memory, compute the SVD, and then update this SVD in an incremental fashion with the
remaining data. To the best of our knowledge, such algorithms come with no guarantees regarding
the quality of the approximation produced.

The first mathematically rigorous approach to speeding up the computation of low rank ap-
proximations was offered by Frieze, Kannan and Vempala [5]. They showed that by performing
a weighted sampling of the columns of A one can in fact afford to keep a matrix A whose size
depends only on k. In particular, they show how to compute a 1 + € approximation with respect
to the Frobenius norm by keeping a square submatrix of dimension 107k* /5.

While the result of [5] is theoretically intriguing, it suffers from two drawbacks. The first one
is pragmatic: the constants involved are far from being practical. (In fairness, it is not clear that
practical considerations were the main aim of [5]). The second drawback is more subtle but, we
feel, more germane: the approximation offered is good only with respect to the Frobenius norm.
As we will see in Section 4, the Frobenius norm is a poor measure of linear structure. In fact, we
will see that other than allowing for good “data reconstruction”, good approximations with respect
to the Frobenius norm do not appear to have other clear implications in the realm of data mining.

To the best of our knowledge, our approach gives the first method which is both practical and
armed with strong performance guarantees (both with respect to the Frobenius and the L2 norm).
Moreover, we feel that by focusing on the L2 norm we bring forward a potentially more fruitful
viewpoint for evaluating low rank approximations.

Paper Outline. In Section 2 we discuss linear structure, its measurement by the L2 norm, and
its absence from random matrices. In Section 3 we discuss the acceleration of low rank matrix
approximations and prove Theorems 1 and 2. In Section 4 we discus the Frobenius norm, why
it does not capture linear structure, and give Frobenius norm bounds for our approximations. In
section 5 we discuss: i) how to combine sampling and quantization, and ii) how to get further
sparsification when there is great variance in the magnitudes of the entries by using non-uniform
sampling. We conclude with a summary of our results and some directions for further research.

2 Linear Structure and Randomness

A matrix A can be viewed as a collection of instances (rows) each comprised of values for a common
set of attributes (column indices). Linear structure in such a data set is the tendency of the



instances towards a particular (consistent) set of ratios between attribute values. That is, fixing
any one of the attributes influences other attributes in a linear fashion. We can test for linear
structure by multiplying our matrix A with a candidate ratio vector v, normalized so that |v|=1.
The vector Av then describes the structure captured by v for each instance; entries with large
magnitude correspond to rows that have significant projection onto v. Therefore, the strongest
linear correlation in our matrix is witnessed by the unit vector z maximizing |Az|, i.e., the witness
for the L2 norm of A.

From the above discussion we see that in forming an approximation of A which captures its linear
structure, a natural first step is to determine the strongest linear correlation in A (as witnessed by
the vector z identified by the L2 norm) and extract it from the matrix. Thus, D; = Azz” becomes
our first approximation to A. If all the rows of A are colinear, i.e., rank(A) = 1, then A = Dy and
|A — Dq| = 0. In general, of course, there is still linear structure left in A — D;. Using the same
method, we can now determine a second matrix, Dy, that approximates A — D;. We incorporate
the structure that Dy captures by adding it to D;. As we repeat this process, we get a more precise
approximation to A and an error matrix A — > Dy with decreasingly significant linear structure.

What is truly remarkable is that the greedy process described above is in fact optimal. That
is, it maintains an optimal approximation to A for all k.

Theorem 3 Let Ay =), Di. For any rank k matriz D, |A — D| > |A — Ag|.

Recall now our motivation for seeking a low rank approximation D to A: if D is to be both low
rank and a good approximation to A, then it must capture only the pertinent characteristics of A.
Theorem 3 organizes dimensions by pertinence, leaving us with: “What is the right value of k7”

A direct answer to the above question seems hard to come by. Nonetheless, remember that
we are seeking dimensions along which the data exhibits structure, i.e., along which it appears
“non-random”. Therefore, having computed Ay, we can consider the following thought experiment:
take the “remaining” matrix A — Ag; change the sign of each entry independently and with prob-
ability 1/2 to get a matrix P; compute |P|. If it turns out that |A — Ag| ~ |P| then it seems fair
to say that A — Ay contains no meaningful linear structure. Otherwise, A — Ay, still contains linear
structure to be extracted.

Fortunately, we don’t have to scramble A — A; in order to decide. Norms of random matrices
are well-understood and can be readily compared vis-d-vis |A — Ag|.

2.1 The Norms of Random Matrices

At what point is a linear correlation “too strong” to be attributed to chance? Alternatively, how
much linear structure is there in a random matrix? Wigner’s famous semi-circle law [12] gave a first
answer to this question for random symmetric matrices. His result was later refined by Juhdsz [8]
and Firedi and Komlés [6]. We state below a straightforward extension of the Fiiredi-Komlds
bound to non-symmetric matrices.

Theorem 4 Let E be a random m x n matriz with E(i,j) = r;; where the {r;;} are independent
random variables and for all i,5: r;; € [-K, K], E[r;;] = 0 and Var(r;j) < o?. For any o > 1/2, if

K < ovm+n (Talog(m+n)) 3
then

Pr[|E| > (7/3)ovm+n] < (m+n)/?7® .



Proof: We consider the (m + n) x (m + n) matrix

0 ET
=[5 ]

use that |E| = |F|, and apply Theorem 2 of [6] for random symmetric matrices. (More precisely, we
first reparameterize Theorem 2 of [6] to allow for variable probability of success and then consider
a straightforward generalization that allows for entries whose variance is bounded by o2.) |

Remark. Note that although the proof of Theorem 4 appears rather naive, the bound it gives
is tight up to a constant factor; if m > n then one should expect |E| ~ o+/m since with high
probability the rows of E are essentially orthogonal and, as a result, |E| ~ |[E()|, where E() is the
first row of F.

To put Theorem 4 in perspective let us consider the following two canonical random m x n
matrices. In the first one, N, we have r;; = N(0,1) for all ¢, j; in the second one, B, for all 4, j,
r;; = +1, each value having probability 1/2. Using that for any matrix 4, |A|% < |A|*> x min{m, n},
it is easy to show that with exponentially high probability

|IN| > (2/3)vVm+n and |B| > (2/3)vVm +n .

At the same time, Theorem 4 implies (immediately for B, almost immediately for N) that with
probability, say, 1 — 1/(m + n)

IN| < (7/3)vVm+n and |B| < (7/3)vVm+n .
Thus, we see that in both examples the theorem is tight up to a small constant factor.
Finally, let us note that the fact |A|% < |A|? x min{m,n} also implies

min Q| > (b/vV2)Vmtn ,

Qe{—bAb}mxn

and hence B above is very close to being a minimizer of the 1.2 norm.

3 Computing Low Rank Approximations

Lanczos Iteration and Orthogonal Iteration are the most commonly used techniques to compute
low rank approximations of matrices. (When one is interested in determining all singular values,
often the matrix is first brought to a tridiagonal form — a O((m+n)?3) operation.) The particulars
of these two algorithms are not really important to our discussion, save for a common feature: to
compute a rank k approximation, each algorithm repeatedly multiplies the input matrix A with a
(changing) set of k orthogonal vectors. In fact, the bulk of the running time for both algorithms
is comprised of these matrix-vector multiplications. (The k vectors are initially arbitrary, random
say, but with each iteration their span gets closer to the top k-dimensional invariant subspace of
A.) Tt is worth pointing out that to compute even a single matrix-vector product one needs to read
into memory the entire matrix from wherever it is stored. For many practical applications, this last
requirement alone makes the computation of a low rank approximation infeasible. Using sampling
and quantization can give dramatic gains in each of the following respects.

e Time: The number of operations required for a matrix-vector multiplication is proportional
to the number of non-zero entries in the matrix.

e Space: The amount of data that needs to be processed (and hence stored/transferred) for a
matrix-vector multiplication is proportional to the representation length of each entry.



3.1 L2 Bounds

We present now our main technical theorem, relating |A — A\k| to |[A — Ag|. Theorems 1 and 2 will
follow from Theorem 5 by considering the corresponding random matrix for each case.

Theorem 5 Let A be any m X n matriz and let b = max; ; |A(7,7)|. Let A be a random m x n

matriz with A(i, ) = a;j where the {a;;} are independent random variables such that for all i,j:
Ela;j] = A(i,7), Var(a;;) < (ob)?, and

|A(i,7) —aij| < obvm+n (Talog(m+n))™> . (2)
Then with probability at least 1 — (m + n)Y/?~,
|A— Ayl < JA— Al +To9a .

Proof: Before we commence the proof we need an observation that allows us to consider the
relation between |A — Ai| and |A — Ag| in terms of |A — A|. In particular, for all k

[A— A < JA— Al +|A- 4] . (3)

The above is essentially equivalent to a variational property of singular values, a high dimensional
application of the triangle inequality. To make the proof self-contained we will prove (3) below.

Now, starting with |A — A\k|, applying the triangle inequality and using (3) we get

|A — Ay |A— A +|A - Ay

<
< A- Ay +24- 4] .

To prove the theorem we observe that the random matrix A — A fits the conditions of Theorem 4.
Therefore, with probability at least 1 — (m + n)'/2~%, it has norm less than (7/3)oby/m + n. To
conclude the proof we recall that 14 > (b/v/2)v/m + n.

To prove (3) we will use the Minimax characterisation of the singular values of A. In particular,
for each k, a player min (minimizer) choose a k dimensional subspace Y. Then, in response, a
player maxz (maximizer) attempts to chose a vector « orthogonal to Y so as to maximize |Az|. The
Minimax characterisation of the singular values of A is

|A —Ag] = min max|Az| .
Y=k zLlY

(Recall from our construction of Ay that we repeatedly removed dimensions that had large L2
norm; that is, we played the role of the minimizer.) With the Minimax definition in mind, we have

|A— Ay = min max|Az|
Y |=k z1Y

= min max|(4 + A- A)z|
|V|=k zLY

< min max |Az| + max |(;1\— A)z|
|Y|=k o LY x

— |A—A4+]A-4A



O

Theorems 1 and 2 follow from Theorem 5 almost trivially. In each case, the expectation of Ais
A while o is 4/s and 1, respectively. Taking o = 3/2 yields the stated bounds.

Our choice of @ = 3/2 is somewhat arbitrary; we chose 3/2 because it happens to make the
probabilities relatively simple to read. We can drive the probability of failure to any polynomial
of m + n by changing the leading constant in (2) in Theorem 5. In particular, for Theorem 1, to
achieve probability of success 1 — (m +n)/?~%, we must require that s < (m+4n)(7alog(m+n)) 6.
In Theorem 2, the probability amplification only changes (by a constant factor) the smallest value

of m + n for which the Theorem holds.

4 The Frobenius Norm

We start by discussing the insensitivity of the Frobenius norm to linear structure and the implica-
tions of bounding approximation error in terms of that norm. In spite of our negative conclusions,
it is clear that there are domains in which the Frobenius norm is relevant. For example, entrywise
confidence is important in data reconstruction and is naturally captured by the Frobenius norm.
In Section 4.3, we give bounds on the accuracy of the approximations resulting from sampling and
quantization with respect to the Frobenius norm.

4.1 The Singular Value Decomposition

Our discussion of the Frobenius norm will require the formal definition of the singular value de-
composition: any m X n matrix A can be written as

A = Z oiuvl (4)
1<i<n

where the singular values, {o;}, are non-increasing, non-negative scalars and the singular vectors,
{u;} and {v;}, are each orthonormal bases. Note that Ay, the optimal rank k approximation to A,
can be written as the partial sum

A = E aiui'uZT.
1<i<k

4.2 Linear Structure and the Frobenius Norm

Recall that the Frobenius norm | - | is given by
AR = Y AG4)?
1,

Let’s start our examination of the Frobenius norm with a somewhat foreboding example. For a
matrix A, consider a new matrix B resulting by changing the sign of each entry in A independently
and with probability 1/2. It’s not hard to see that B fits the criteria of Theorem 4, and thus has a
very small amount of linear structure. However, the Frobenius norm of B is identical to that of A.



While this example suggests that something may be amiss with the Frobenius norm, perhaps a
more insightful point of view is the following. Observe that for any vector z,

n 2

|A$|2 = Z(Uiui’UZT):E (The definition of the SVD)
i=1
n
T \2
= Z (aivi x) (The u; are orthonormal)
=1

- 2
= Dol (v)
i=1

For unit z, we see that the length of z after being multiplied by A is a convex combination of the
squares of A’s singular values. As we’ve seen, the L2 norm is described by the maximizer of |Az|,
namely x = v1, and thus it captures o1, the largest stretch induced by A. Rather than taking
z = v1, let us now choose z uniformly at random from the n-dimensional unit sphere. By spherical
symmetry each v} z is identically distributed; since Y, 0? = |A|% we get

E[|l4z]’] = EB[@]2)’]-) of
i=1
T
= 4

Thus, |A|r measures the average stretch induced by A. Such averaging nature is not what we are
looking for when we seek structure; as the number of dimensions in A gets large, it is easy for the
strong correlations to get lost in the averaging, desensitising the Frobenius norm to linear structure.

To conclude, let us consider a particular example of the insensitivity mentioned above. Consider
an n X n matrix £ whose elements are chosen uniformly from {—1,+1}. This matrix has large (n)
Frobenius norm, but relatively small L2 norm. Let A = cuv” be a matrix with reasonably strong
linear structure, i.e., /n < o < n. It is illustrative to observe how the Frobenius norm changes as
the linear structure is added and removed from FE:

|Elp=n < |[E+Alr<n+o

|E|<3vn < |E+A|>0-3Vn

For o in the range noted above, |E + A|r = (1 4 o(1))|E|r. Thus, the precision of any Frobenius
norm approximation must be very large in order to be at all sensitive to A. For example, note
that Fj, which obviously does not capture anything meaningful about E + A, is a pretty good
approximation to E + A in the Frobenius sense. In particular, it is only 1 + o(1) worse than the
optimal approximation, namely (E + A)y.

4.3 Frobenius Bounds

As we said earlier, the Frobenius norm does represent a good measure of entry-wise error. In
particular, if we are are simply interested in compression, the Frobenius norm indicates how closely
we match the original data. Our bounds suggest that as long as the input matrix A has strong
linear structure we can still provide a good entrywise approximation to Ay after sampling and/or
quantizing the entries of A.



In our Frobenius norm bounds we will not use the matrix A\k to approximate A. Instead, we
will compute the space spanned by the top k singular vectors of A and use the projection of A onto
that space. This approach greatly simplifies the analysis and parallels that of [5], in that we only
compute a “representation” of the the low rank approximation. It is quite possible that A\k itself is
also a good approximation to A in the Frobenius norm but we do not consider this possibility here.

Theorem 6 Given matrices A and 121\, let E=A— A. If Vk is the matriz whose columns are the
top k right singular vectors of A, then
PPN 4|E
A-AGTOE < 1A Adh+ 2

Ok
The proof of this theorem can be found in the appendix.

We will apply Theorem 6 to analyze sampling and quantization. Recall that we assume that &
is such that the linear structure in Ay, is significant, i.e.,

L=ox(A)/Ppa>1.

Corollary 7 Let A be any m x n matriz and let b = max; j |A(%,7)|. Let L = oy(A)/va. Define
A to be a random m X n matriz where

0 wp. 1—1/s

sA(i,7)  w.p. 1/s .

m+n

Let Vk be the matriz whose columns are the top k right singular vectors of A. If s < T Togd(mim)’

then with probability at least 1 — 1/(m + n),

~ 28./5
[A—AVVDF = 1A= Al + == AlF -

Corollary 8 Let A be any m x n matriz and let b = max; ; |A(3,j)|. Let L = oy(A)/va. Define
A to be a random m x n matriz where

1 AG
+b  w.p. §+ (22;)])
AG,5) =
b w 1 A(,4)

Let I7k be the matriz whose columns are the top k right singular vectors of A. With probability at
least 1 —1/(m + n),

~ A~ 28
A= AVVOIE = [A— Akl + T 1AlE -

5 Implementation Details

While our results are mathematical, we hope that they affect the practice of computing low rank
approximations. Hence, we feel that it is appropriate to discuss two particular practical points in
some detail. The first such point pertains to combining our two techniques effectively. The second
point is a slightly more sophisticated sampling process which will generally result in smaller error
than that specified by Theorem 1.

10



5.1 Combination of Results

Mathematically, the results of Theorems 1 and 2 are entirely orthogonal and can thus be combined
readily. In practice, though, we must face the fact that a significant fraction of the representation
of a sparse matrix lies in representing is structure, not its entries. A typical representation of a
sparse matrix stores a list of triples (row, col, val), each representing a non-zero entry in the matrix.
Compressing the wal to one bit results in relatively minor compression.

To address this, we will make use of the fact that the sparsity structure is introduced by a
process that we control. That is, in practice, by using only the seed of the “random” number
generator we can reconstruct the list of non-zero positions that our process introduced. We store
this seed along with the list of bits indicating the rounded values in non-zero positions. When
we multiply the matrix by a vector, we simultaneously “run” the omission process, generating the
list of non-zero entries. For each entry, we read off the bit value and perform the appropriate
multiplication. This allows us to reap the combined benefits of sparsification and quantization.

Note that in terms of computation the above scheme introduces the overhead of a random num-
ber generator that produces geometrically distributed random variables. To put this in perspective,
recall that the generation of these random variables can be performed without memory interaction
and is much faster than reading data from memory.

5.2 Non-Uniform Sampling

Recall that the bound we use for the norm of a random matrix, Theorem 4, relies only on the
maximum deviation of any entry. Moreover, note that there is no a priori reason to omit each
entry in A with the same probability. In particular, we can tailor each omission probability so that
all entries in A — A have the same deviation (maximum) and thus omit even more entries. More
precisely, if £ = A-A then, if we keep entry (4, j) with probability 1/s;;, we have

Var (E(i,j)) = A(i,5)*(sij — 1) .

If we require that s;; = s, then the maximum variance is 0? = max; j A(4,5)?(s — 1). Any entry
which has magnitude less than the maximum can, thus, have its probability discounted without

increasing the maximum deviation. In particular, if we set

0.2

A TER 1

then the variance corresponding to each entry will be exactly o2, while sij > s for all 4, j. Assuming
that not all entries are of equal magnitude, we have decreased the expected number of non-zero
entries, without affecting the provable norm of the matrix. Note that care must be taken to ensure
that we do not violate the range constraint of Theorem 4. Whenever we increase the s;;, we increase
the range of the random variable. We may not be able to fully enlarge s;; for very small |A(3, j)|.

6 Conclusions and Future Directions

We examined the computation of low rank approximations for the purpose of extracting structure
from data. In particular, we observed that the empirical success of such approximations is related
to their minimization of the L2 norm along with the stability of the latter in the presence of
random error. We have used these facts to give matrix simplification techniques that accelerate the
computation of low rank approximations.
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While our theoretical results are, in our eyes, compelling at the same time we feel that ultimately
“the proof of the algorithm is in the running.” We have conducted a few very preliminary experi-
ments to get some sense of what the appropriate parameters would be in practical applications. For
example, we tested a sequence of human faces (the eigenfaces domain) for a relatively small corpus
(m x n = 2000 x 1000). We found that we could set s = 15, i.e., keep only 7% of the data, without
suffering noticeable error. Naturally, these results are preliminary, and further experimentation is
necessary. A general trend, though, that we discovered (confirming mathematical intuition) is that
the larger the input size is, the greater an omission rate, s, we can afford.

Another direction that merits investigation is the application of our techniques to accelerate the
computation of errorless low rank approximations. The key idea in that direction is the following.
Imagine that we have run, say, Orthogonal Iteration on A to the point where we are relatively
close to a (perfect) rank k approximation to (the imperfect) A. At that point, rather than letting
the method run to convergence, we can instead add (put back) data from A to A, lowering the
fraction of entries omitted, and continue running with this new matrix. Clearly, repeating this
process until we have put back all the data converges to Ai. Moreover, this scheme fits perfectly
into the incremental nature of both Orthogonal and Lanczos Iteration. The computational savings
come from the fact that until we get quite close to the k& dimensional invariant subspace of A,
a “rough approximation” of A is “just as good” in terms of driving each method’s convergence.
Understanding the behaviour of this scheme, in particular the appropriate rate to reintroduce
entries, remains an interesting open problem.
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7 Appendix

We note that the proof of Theorem 6 is rather more technical than the other proofs in this paper.
In particular, some unmotivated definitions and unproven inequalities are used. All can be found
in the excellent text of Golub and Van Loan [7].

Proof: We will need a few facts about the Frobenius norm. Principal among them is the equality

AlF = Y Agl (5)
%

valid for any orthonormal basis {g;}. We will consider the bases V' = {v;} and V= {vi} corre-
sponding to the right singular vectors of A and A respectively. Applying (5) to V and V we get

D AnP =D A5 . (6)
i i
Applying (5) to A — A with respect to V we further get

A=Ay = D (A= Al + ) 1(A = Ag)vil?
i<k ik

= D I(A- Ap)wil®

1>k

= > | . (7)

1>k

Similarly applying (5) to A — A(‘/;',J//\',CT) with respect to V we get

|A—AVVD[E =" A6 . (8)
1>k
Thus, we can rewrite (6) as
S lAv + 1A - Ad =Y 14T + [A - AVVD[E (9)
i<k i<k
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Ultimately, the second and fourth terms in (9) are going to participate in our bound, so we are
interested in bounding the remaining terms. Rearranging, we have

A - AWV,VD)2 |A = Aplz + > (|Avi]? - |AT; )

i<k

= [A- A+ (0P - (A= EWaif?) .
i<k

To conclude the proof we will use a fairly common inequality about singular values, namely
that adding a matrix E cannot change the k™ singular value by more than |E|. In fact, this is the
same observation as equation (3). We thus get

A - AV R < 1A= A4fi+ )7 (0F — (0i — 2(E))?)

i<k

< JA—- Al + ) 4ail B
i<k
41E|

< M- Alp+ =3 o

1<k

4| F

= A Al B e
Ok
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