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Abstract 

We jntroducc and study a novel genre of optimization prob- 
lems, which WC call sgmenfution problems. Our motiva- 
tion, in part, is the development of a framework for evaluat- 
ing certain data mining and clustering operations in terms 
of their utility in decision-making. For any classical op- 
timization problem, the corresponding segmentation prob- 
lem seeks to partition a set of cost vectors into several seg- 
Nle/rts, so that the overall cost is optimized. This frame 
work contains a number of standard combinatorial cluster- 
ing problems as special cases, and many segmentation prob- 
lcmo turn out to be MAXSNP-complete even when the cor- 
responding “un-segmented” version is easy to solve. We 
develop approximation algorithms for two natural and in- 
teresting problems in this class - the HYPERCUBE SEG- 
MENTATION PROBLEM and the CATALOG SEGMENTATION 
PROBLEM - and present a general greedy scheme, which 
can be specialized to approximate a large class of segmen- 
tation problems. Finally, we indicate some connections to 
local search, game theory, and sensitivity analysis in linear 
programming. 

1 Motivation: a microeconomlc view of data 
mlnlng 

Dntn mining is about extracting interestingpatremsfrom raw 
data, There is some agreement in the literature on what 
qualities as a “pattern” (association rules and correlations 
[ I,‘/‘, 141 as well as clustering of the data points [8], are some 
common classes of patterns sought), but only disjointed dis- 
cuasion of what “interesting” means, Most work on data 

*Department of Computer Science, Cornell University, Ithaca NY 
f/1853. Email: kleinbcrQcs.comell.edu. Supported in part by an Alfred 
R Sloan Research Fellowship and by NSF Faculty Barly Career Develop- 
ment Av/ard CCR-9701399, This work was performed in part while visiting 
the IBM Almnden Research Center. 

t Compulcr Science Division, Soda Hnll, UC Berkeley, CA 94720. &is- 
toeQco,bcrkeley.edu, Research performed in part while visiting the IBM 
Almnden Research Center, nnd supported by NSFgrants CCR-9626361 and 
JRL9712131. 

t IBM Almnden Research Center, 650 Harry Road, San Jose CA 95120. 
prnghQnlmnden,ibm,com 

mining studies how patterns are to be extracted automati- 
cally, presumably for subsequent human evaluation of the 
extent in which they are interesting. Automatically focusing 
on the “interesting” patterns has received very limited formal 
treatment. Patterns are often deemed “interesting” on the 
basis of their confidence and support [ 11, information con- 
tent [24], and unexpectedness [ 17,231. The more promising 
concept of actionability - the ability of the pattern to sug- 
gest concrete and profitable action by the decision-makers 
[18,21,23] -has not been defined rigorously or elaborated 
on in the data mining literature. 

We want to develop a theory of the value of extracted 
patterns. We believe that the question can only be addressed 
in a microeconomic framework. A pattern in the data is in- 
teresting only to the extent in which it can be used in the 
decision-making process of the enterprise to increase util- 
ity.’ Any enterprise faces an optimization problem, which 
can generally be stated as 

where I) is the domain of all possible decisions (production 
plans, marketing strategies, etc.), and f(z) is the utility or 
value of decision a E TV. Such optimization problems are 
the object of study in optimization and microeconomics. 

The feasible region V and the objective f(z) are both 
comparably complex components of the problem-and clas- 
sical optimization theory often treats them in a unified way 
viaLagrange multipliers and penalty functions [3]. However, 
from our point of view there is a major difference between 
the two: the feasible region I) is basically endogenous to the 
enterprise, while the objective function p(z) is a function 
that reflects the enterprise’s interaction with a multitude of 
other agents in the market (customers, suppliers, employees, 

‘To quote [6], “merelyfinding the patterns is not enough. You mast be 
able to respond to the patterns, to act on them, uhimately turning the data 
into information, the information into action, and the action into value.” 

%‘here is such an optimization problem associated with virhudly every 
enterprise, however in real life suchproblemsare so involvedand complex, 
that often nobody knows exactly their detailedformulation. The decision- 
makers of the enterprise base their decisions on a very rough. approximate, 
and heuristic understanding of the nature and behavior of the underlying 
optimization problem. The fact that the details of the optimization problem 
being solved are nebulous and unknown to the decision-makers does not 
make the problem less real -or its mathematical study less useful. In fact, 
economictheory during this century has flourished on models such as these, 
in which the precise nature. of the functions involved is essentially unknow- 
able; the mathematical insights derived from the abstract problem are still 
valuableas heuristic guides in decision-making. 
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competitors, the rest of the world). That is, at a first approx- 
imation the objective function can be rewritten as 

where C is a set of agents or other factors influencing the 
utility of the enterprise. We shall be calling elements of C 
“customers.” We shall be deliberately vague on what they 
are. There are two different possible views here: On a con- 
crete level, we can think of them as profiles of customers 
and other relevant agents, about whom we have gathered rel- 
evant information by a first stage of data mining; it is this first 
stage that our point of view seeks to influence and dirat. A 
more abstract, but potentially equally useful, point of view is 
that, alternatively, we can also think of the elements of C as 
rows of the ruw table being mined-customers, transactions, 
shipments, and so on. 

What makes this relevant to data mining is the following 
crucial assumption: we assume that the contribution of cus- 
tomer i to the utility of the enterprise under decision Z, fi(~), 
is in fact a complicated function of the data we have on cus- 
tomer i. Let y; denote the data we have on customer i; then 
hi(z) is justg(z, yi), some fixed function of the decision and 
the data. Hence, our problem is to 

The conventional practice in studying such problems is 
to replace CiEc g(z, yr) by g(z, s), where i is some ug- 
grepte value3 (aggregate demand of a product, aggregate 
consumer utility function, etc.). Such aggregation is un- 
derstood to be inaccurate, resulting in suboptimal decisions, 
because of non-Zineurities (non-zero second partial deriva- 
tives) in the function g(a, y;). Aggregation has been toler- 
ated in traditional microeconomics because (I) the computa- 
tional requirements othenvise would be enormous, and (2) it 
is difficult to obtain the data yi. The point in data mining, in 
our view, is that we now have the computational power and 
we&h of data necessay to attack the unaggregated opti- 
mizationproblem, to stud)? the intricate ways in which corre- 
fationsand clusters in the data afict the enteqxise’s optimal 
decisions. 

Segmentation Problems. 

For most of the paper, we consider the class of segmentu- 
tion problems, which are aimed at addressing a particular 
type of aggregation in optimization problems. As above, we 
consider a company that has information about a set C of 
customers; and we view 2, as a set of possible marketing 
strategies. Any given marketing strategy z E 2, will attract 
certain customers and fail to attract (or even repel) others. 
Thus, for each customer i E C, the utility of the marketing 

“We use “aggregate” in its microeconomics usage - summary of B pa- 
rameter over 3 large population - which is related but not identical to its 
technical meaning in databases. 

strategy z with respect to i can be written as a quantity f;(a); 
then, the overall utility f(z) of marketing strategy a can be 
approximated by the superposition Ciec f;(o). 

There is a spectrum of degrees of aggregation, between 
the following two extremes. At one extreme - no aggre- 
gation - the enterprise could consider each of the func- 
tions f; separately, and implement ICI different decisions 
al, . . . , ~1~1, targeting 2i specifically at i E C. This is clearly 
not practically feasible for a variety of reasons. The com- 
putational effort required to determine this many separate 
strategies, and the cost to implement them in this extremely 
targeted way, is prohibitive: moreover, one’s estimates of the 
individual functions fi are not nearly accurate enough even 
to make this a meaningful activity. At the other estreme - 
complete aggregation - the enterprise could compute a sin- 
gle decision z that maximizes xiec fi(~). But this will typ- 
ically miss certain obvious - and profitable - segmenta- 
tions of the underlying customer data. 

For example, telephone companies in the U.S.A. have 
divided their customers into two segments: residence and 
business customers; they offer different terms and prices to 
the two. Mail-order companies produce several hundred dif- 
ferent catalogs each year, targeting only a small number of 
these at each of the customers on their mailing list. How 
can such segmentation decisions be arrived at in a princi- 
pled and automatic manner? In each situation, what is the 
optimal level of aggregation, and what is the corresponding 
optimumensemble of decisions? Segmentation problems, as 
defined and studied in this paper, are stylized computational 
problems whose intention is to capture these important qucs- 
tions. 

Segmentation problems also relate to clustering, an im- 
portant, classical, and challenging algorithmic problem arca 
[ 151, of interest in data mining -which it predates. Suppose 
that a large set of points in a multidimensional space must 
be partitioned into clusters. How is the quality of such a 
partition to be judged? There are numerous general-purpose 
criteria (minimizing the sum of the radii of the clusters, max- 
imizing their distance, maximizing the weight of the edges 
cut, optimizing information-theoretic criteria, among many 
more [5,9, 12, 13, 161) but very little problem-independent 
guidance on how to select the most appropriate one. Seg 
mentation problems use explicitly the objective function in 
the underlying decision-making problem as the clustering 
criterion. This captures in a very concrete sense one of the 
main motivations of clustering - namely, llesible decision- 
making at the cluster level. 

Organization of the Paper. In Section 2, we carefully 
define the class of segmentation problems considered here, 
exploring several formulations of the problem (some of them 
equivalent) and developing basic facts about their comples- 
ity. Sections 3 and 4 are concerned with approximation nlgo- 
rithms for two natural and simply stated segmentation prob- 
k%I’tS: the CATALOG SEGMENTATION PROBLEhI and the HY- 
PERCUBE SEGMENTATION PROBLEM. Section 5 develops 
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a connection between segmentation problems and a gener- 
alization of submodular functions, which leads to a general 
greedy strategy for approximating a large class of submodu- 
lap functions, Finally, in Section 6, we discuss further results 
that indicate a number of interesting directions for research: 
l par segmentation problems that arise from an underlying 
linear program, we propose a natural local search heuristic 
that WC term the h-fold simplex method. 
l The above motivation is expressed entirely in terms of the 
utility function for a single enterprise. But one can develop 
a notion of segmentation in a competitive environment, and 
this leads to the formulation of segmented matrixgames. 
l We also investigate a type of problem involving aggrega- 
tion and non-linearity that falls apparently outside the frame- 
work of segmentation problems - it suggests another sense 
in which associations and correlations between attributes in 
a dataset can be deemed “interesting” if they correspond to 
non-linear terms in the objective function of the enterprise, 
and has connections with sensitivity analysis in linear pro- 
gramming. 

2 Formulating Segmentation Problems 

To cast the definitions to come in a concrete setting, we be- 
gin with an example. The classical knapsackproblem asks: 
given d items each having a weight and a value, and a bound 
on the total allowable weight T, select a subset of the items of 
maximum value with total weight not exceeding r. Here is 
an application of this problem: suppose that we have a set of 
items to offer for sale to n customers. We are given, for each 
customer, the subset of items the customer is known to like. 
WC wish to create a catalog with r of the items to send to the 
cuotomcrs; our objective is to maximize the sum, over these 
r items, of the number of customers who like each item. This 
is a special case of the knapsack problem in which each item 
has unit weight; the (rather trivial) solution is simply to se 
lect the T most popular items, 

Now suppose, instead, that we are allowed to create two 
catalogs each with T items, sending one of the two to each 
consumer; obviously, there are cases in which the value we 
obtain from a pair of catalogs can greatly exceed the value 
obtainable from one. 

CATALOG SEGMENTATION. Given a ground set U and n 
subsets Sl, . , , , S,, of U, find two subsets X and Y of U, 
each of size T, so that 

is maximized, 
Thus, beginning with a standard optimization problem 

(an easily solvable version of KNAPSACK), together with a 
large act of different cost functions, we obtain a segmented 
optimization problem in which the goal is to produce two 
feasible solutions, evaluating them with respect to a partition 
of the cost functions. 

In general, we are given a domain 2) E Rd of possible 
decisions, and we are given a set of n customers, represented 
by functions fi, . . . , fn with f; : V --P R. In our formula- 
tions, these functions will have a very simple form; typically, 
f;(z) = vi - t for a vector vi E Rd. Now, if rneap f(x) 
is any optimization problem, its corresponding segmentation 
problem is the following: 

SEGMENTATION PROBLEM FOR (‘0, f): Given n functions 
fl ,..., f,andanintegeri,findLsolutionsz1,..., ok E’D 
such that the sum 

is maximized. 

Thus, for example, if ‘D is the set of spanning trees of a graph 
G, and customer i has a vector of edge weights vi, then the 
SPANNING TREE SEGMENTATION PROBLEM would be to 
produce 12 spanning trees of G; each customer then chooses 
the best among these Iz trees with respect to her edge weights, 
and the value of the overall solution is determined by sum- 
ming over all customers. One can define “segmented” ver- 
sions of essentially any other standard optimization problem 
in a similar way; note that the definition makes sense in the 
context of minimization problems as well. In this paper we 
will be focusing on certain natural segmentation problems 
that capture the marketing motivation. 

We can define another version of the segmentation prob- 
lem: 

SEGMENTATION PROBLEM FOR (‘D, f) (PARTITION VER- 
SION): Given n functions fl , . . . , fn and an integer h, find 
a partition of (1,. . . , n) into X: sets Sl, . . . , Sk such that the 
sum 

is maximized. 
It is easy to see that the two variants are equivalent, es- 

sentially because the two max operators commute. The al- 
gorithmic significance of this equivalence is that the naive 
algorithm for solving segmentation problems need not be of 
complexity [‘Dl2”” (list all partitions),where [Dl is the num- 
ber of extreme points of ‘D, but “only” IDlkn (list all b-tuples 
of solutions) -in other words, it is fixed-parameter tractable 
if we consider D fixed and n as the truly unbounded param- 
eter. There is another, equally natural, version, in which X: 
is not fixed a priori, but there is a cost 7 for each additional 
segment: 

SEGMENTATION mormhf FOR (D, f) (WNAI~IA b VER- 
SION): Given n functions fi , . . . , fn and an integer 7, find 
an integer L, and Iz solutions ~1,. . . ,215 E 2) to maximize 
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Note the apparent similarity between segmentation prob- 
lems and facility location problems, in which one must “open” 
some number of facilities to serve customers: there is a cost 
for each facility opened, and a penalty for each customer- 
facility distance. The issues in our algorithms here turn out 
to be technically quite distinct from those in facility location 
problems. First, our problems center around maximization 
rather than minimization, and this changes the nature of the 
approsimation questions completely. Moreover, our space 
of possible decisions is typically exponential or infinite, and 
only implicitly represented. In recent approximation algo- 
rithms for the discrete facility location problem and its vari- 
ants, on the other hand (see e.g. [22]), the facilities must typ- 
ically be sited at demand locations, yielding, immediately, a 
relatively small space of possible decisions. 

Complexity 

Even the most trivial optimization problems (e.g., maximiz- 
ing a linear function over the d-dimensional ball, whose or- 
dinary version can be solved by aligning the solution with 
the cost vector) become NP-complete in their segmentation 
versions. We summarize the comple,xity results below: 

Theorem 2.1 The segmentationproblems (all three versions) 
corresponding to thefollowingfeasiblesets D are NP-complete: 
(I) The d-dimensional unit ball, even with b = 2; (2) the d- 
dimensional unit L1 ball; (3) the r-slice of the d-dimensional 
hypercube (the CATALOG SEGMENTATION PROBLEM), even 
with k = 2; (4) the d-dimensional hypercube, even with 
b = 2; (5) the set of all spanning trees of a graph G, even 
with k = 2. 

Proof Sketch. Notice that the optimization problems under- 
lying these problems are extremely easy: The one underlying 
(1) can be solved by aligning the solution with the cost vec- 
tor, the one for (2) has only 2d vertices, the one for (3) can 
be solved by choosing the T most popular elements, and the 
one for (4) by simply picking the vertex that coordinate-wise 
agrees in sign with the cost vector. Since (2) has 2d vertices it 
can be solved in O((2d)‘n) time, which is polynomial when 
b is bounded. 

The NP-completeness reductions are surprisingly diverse: 
(1) is proved by a reduction from MAX CUT, (2) from HIT- 
TING SET, (3)from BIPARTITE CLIQUE, and(4)from ~IAX- 
IhlUhI SATISFIABILITY with clauses that are equations mod- 
ulotwo. Finally, for SPANNING TREE SEGMENTATION we 
useareductionfrom HYPERCUBE SEGMENTATION (&la& 
ter problem is essentially a special case of the former, in 
which the graph is a path with two parallel edges between 
each pair of consecutive nodes). 

Here we sketch only the proof of (1). Suppose that we 
have a graph G = (V, E); direct its edges arbitrarily, and 
consider the node-edge incident matris of G (the IV1 :< jE[ 
matrix with the (i, j)th entry equal to 1 if the jth edge enters 
the ith node, -1 if the jfh edge leaves the ith node, and 0 
otherwise). Let the IV] rows of this matrix define the cost 

vectors {VI, . . . , We} of the segmentation problem. Thus, we 
seek to divide these IV1 vectors into two sets, 5’1 and S’s, and 
choose an optimal solutionfor each set. Let ui = C wu’. 
Since ‘D is the unit ball, an optimal solution for Si i%$rp;y 
the unit vector in the direction of gi, and hence the value 
of the solution associated with (Sr , Ss) is simply the sum of 
theEuclidean norms, ]Iul]l+llasll. However, itiseasy tosce 
that for any partition (Sl, Ss) of the vertices, ]]u~]I + l]crs]j 
is twice the square root of the number of edges in the cut 
(,!?I, Sa) (because in the two sums the only entries that do 
not cancel out are the ones that correspond to edges in the 
cut); hence, solving the segmentation problem is the same as 
finding the maximum cut of the graph. n 

When the problem dimensionis fixed, most of these prob- 
lems be solved in polynomial time: 

Theorem 2.2 Segmentation problems (2-5) in the pwiotu 
theorem can be solved in linear time when the nwber of 
dimensions is fixed. Problem (I) (the unit ball) can bc solved 
in time O(n2h) in two dimensions, and is NP-complete Cfor 
variable k) in three dimensions. 

Proof Sketch. When the number of dimensions is a fixed 
constant d, the number of extreme solutions in each prob- 
lem (2-5) is constant (2d, (:), 2d, and ddM2, respectively). 
Thus the number of all possible sets of b solutions is also a 
bounded constant, call it c; obviously, such problems can be 
solved in time proportional to cn. For (l), the 2-dimensional 
algorithm is based on dynamic programming, while the NP- 
completeness proof ford = 3 is by a reduction from a facility 
location problem. n 

3 The Catalog Segmentation Problem 

3.1 Dense Instances 

The idea of sampling the customer base is pervasive in mar- 
keting. We now describe a natural sampling-based approxi- 
mation scheme for the catalog problem. We give a guarantee 
on its performance provided 3~ > 0 such that every customer 
likes at least a fraction E of the items; under a slightly weaker 
assumption (say, each customer likes C?(d/ log’(l) d) of the 
items) there are instances for which the algorithm does arbi- 
trarily badly. The algorithm runs in time O(n”(“)/(Sc)) and 
will, with probability 1 - o(l), produce a solution within 
1 - S of the optimal; the failure probability becomes close to 
1 as E drops below a constant. Here we outline the algorithm 
and analysis for X: = 2. 

Denote by P(A, S) the value of a catalog A to customer 
set S, given by the sum over the items in A of the number of 
customers of S who like each item of A. Any two catalogs 
A1 and A2 induce a partition of all customers into two sub- 
sets: those who like more items from AI than from Aa, and 
the rest. 

Sample clog n customers at random. Enumerate all par- 
titions of the sample into 2 subsets. For each subset, find 
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the P items most popular among the customers in that subset. 
This yields a pair of catalogs for each of the enumerated sam- 
pie subset pairs, Take the best of ail of these enumerations, 
yielding catalogs Bl and B2. 

The optimal solution induces a partition of the customers 
into two subsets Sl and S2, and corresponding catalogs Al 
and Aa. If either P(Al, 5’~) or P(A2, S2) is less than S/5 
times the other, we ignore that Si and focus only on the other 
subset of customers, whose cardinaiity (by a sequence of pi- 
geonholing steps) is n(a). Otherwise, both ISlj and l&l are 
62(a), so each of Si and S2 gets (w.h.p.) a constant fraction 
of the samples, We will argue (from Lemma 3.1 below) that 
for i = $2 w,h,p. /3(&, SJ) 1 (1 - G)/3(&, Si). The cat- 
alogs Bg induce a partition whose value is p(B;, Si), where 
Sj are the customer subsets induced by the Bi; the value of 
the approximation is thus 

1 (l-&(Ai,Si). 
kl 

It remains to establish the second of the inequalities above. 
Let RI denote the samples intersecting Sl, and R2 the sam- 
ples intersecting S2. When we enumerate all 2-way parti- 
tions of the random sample, we will in particular reach a 
stage when WC look at RI and Ra and solve the l-catalog 
problem for each. The crucial observation is that the samples 
of & are uniformly distributed on Si, for i = 1,2. Note that 
we’re not making this argument for arbitrary sets Si; only for 
§‘I and S2 fixed in advance of the sampling. 

Lcmma3J Letal,.,., a, be the items in the optimal cat- 
alog Ai, listed in order of decreasing number of customers 
of S{ lildng the item (henceforth “degree”). Let al, . . . , a+ 
bc;i;,ltenrs of Ai wit/; degree > (6/5)P(Ai, Si) for 7’ < r. 

, , , , b,r be the T mostpopular items in the sample &, 
listed again in order of decreasing degree. With probability 
1 - 7+(l), for all 1 4 j 5 T’, 

degree(bj) 2 (1 - 6/2)degree(uj). 

The proof of the lemma is based on showing that for any 
item 31 with degree less than (1 - Qdegrec(uj), the probabii- 
ity that it beats out ai in the sample is small. Now, note that 
the lemma implies that with high probability, C&, p(B;, S;) 1 
(I- 4 C;z, P(Ar , St)- 

Thcorcm 3.2 On dense instances of the catalog segmenta- 
t/on problem the sampling algorithm will, with probability 
I- o(l), yield k catalogs of total value at least (1 - 6) times 
the optimal, in time O(n”(k)/(e~)). 

3.2 Variable Segmentation 

We now consider the catalog segmentation problem in the 
varlabb case, when the number of catalogs is not set in ad- 

Vance, but there is a fixed cost for each catalog that is pro- 
duced. For a set S of catalogs, let g(S) denote the utility of 
producing precisely the set S of catalogs; we are thus seek- 
ing to maximize the function g’(S) = g(S) - #I, for a 
fixed cost-y. 

A very interesting point that arises immediately is the 
foliowing: when T = 1, so that each catalog can contain a 
single item, g’(S) is simply the cardinality of a union of sets 
minus a fixed cost for each set. For larger values of T, it is 
easy to show that g is monotone- g(S) 5 g(T) when S c 
T-andsubmodular-g(S)+g(T) > g(StX!‘)+g(SUY’). 

Thus, we are seeking to maximize a monotone submodu- 
iar function minus a fixed-cost function; we call such a func- 
tion a profitfunction. The maximization of a profit function 
is a basic NP-complete problem whose approximabiiity ap- 
pears not to be understood at all; the performance of greedy 
algorithms for profit functions was raised by Berman, Hodg- 
son, and Krass as an open question [4]. 

In this section, we provide an analysis of the following 
greedy algorithm for profit functions arising from arbitrary 
monotone submodular functions. 

GREEDY ALGORITHM FOR PROFIT FUNCTIONS: At all times, 
maintain a candidate solution S. If there is an element t $ S 
for which the marginal gain g(S U {z}) - g(S) is at least 7, 
then add to S an element of maximum marginal gain. Other- 
wise, terminate and return S. 

By re-scaling g, we can assume without loss of generality 
that 7 = 1 henceforth. 

There is no absolute constant c such that the greedy al- 
gorithm provides a c-approximation for all profit functions. 
However, we show that a natural parametrization for analyz- 
ing the greedy algorithm turns out to be the quantity /.J, de- 
fined to be the profit-to-cost ratio of a minimum-size optimal 
solution T: 

CL - g’(T). 
ITI 

It turns out that the greedy algorithm achieves a constant ap- 
proximation ratio when p is constant - i.e., when g is such 
that a fixed percentage of profit can be made. 

First, we can construct an example in which p sets a nat- 
ural limit on the performance of the greedy algorithm. 

Theorem 3.3 The greedy algorithm does not achieve a per- 
formance guarantee better than &. 

However, when p is a constant, the greedy algorithm 
achieves a constant performance guarantee. 

Theorem 3.4 The greedy algorithm achieves a pevonnance 
guarantee of at least 

This is 0 (p2) when p < 1 and 0 (&) when p 2 1. 
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The proof of this theorem is somewhat lengthy; for rea- 
sons of space we can only provide a brief sketch. When 
T, the minimum optimal set of catalogs, is large relative to 
S, then it contains many elements that the greedy algorithm 
chose not to add to S, this, together with the submodular 
property, puts an upper bound on g’(T). When T is not much 
larger than S, we consider two cases. If relatively many of 
the elements chosen by the greedy algorithm had a marginal 
gain significantly greater than 1 when they were added to S, 
then g’(S) is sufficiently large that the bound follows eas- 
ily. If relatively few of the elements had large marginal gain, 
then an argument similar to one of Comuejols, Fisher, and 
Nemhauser [IO] shows that g’(S) and g’(T) must be close. 

As a direct corollary of Theorem 3.4, we obtain eft!cient 
approximation algorithms for the variable catalog segmen- 
tation problem when f is fised - each step of the greedy 
algorithm can be implemented by evaluating the effect of 
producing each possible catalog. For general T, it appears 
that the greedy algorithm cannot be implemented efficiently. 
Specifically, given a set S of catalogs, and a cost 7, it is NP- 
complete to decide whether there is a catalog z for which 
!ds u -$3) - s(S) 3 Y* 

It is possible to extend the analysis in Theorem 3.4 to 
cover the case in which each step of the greedy algorithm is 
only implemented in an approximate sense; we omit the de- 
tails here. An interesting open question is whether there is 
an efficient implementation of a suitably strong approximate 
step of the greedy algorithm, in the case of catalog segmen- 
tation; there is some evidence that this will be difficult to 
obtain. 

4 The Hypercube Segmentation Problem 

III the HYPERCUBE SEGMENTATION PROBLEM we are given 
a set S of n customers, each a vertex of the d-cube. We seek 
b segments Sl,..., Sk and a policy Pi for each i so as to 
maximize xf=, CcES Pi @ c, where Pi is a vertex of the d- 
cube and 0 is the Hamding “overlap” operator between two 
vertices of the d-cube, defined to be the number of positions 
they have in common. Note that there is a trivial policy P 
that, without segmentation, yields a benefit of at least 50% 
of the optimum: pick the majority bit in each of the d coordi- 
nates. We give several algorithms that improve on this 50% 
figure. We first show that if we restrict ourselves to policies 
that are customers, the loss is modest. Consider any set T of 
m vertices of the d-cube, ~1, . . . , v,. 

Lemma 4.1 Let P denote the optimal policy for T. Then 
there exists a customer vi such that 

(1) 
j=l j=l 

The bound (2fi - 2) w A28 of Lemma 4.1 cannot 
be improved significantly; there are examples in which no 
customer gets better than 5/6 ti .833 of the benefit of the 

optimal policy. Let Tl , . . . , Tk denote the segments of the 
optimal segmentation; by Lemma 4.1, Vi there exists a cus- 
tomer ti E Ti such that using ti as the policy for Ti yields at 
least (24 - 2) of the contribution of Ti to the total benelit 
of the optimal segmentation. By enumerating all &subsets 
of S, we can find the policies tl, . . . , tk in time 0(/&t’), 
for a (24 - 2)-approximation to the optimal segmentation 
(note that the segmentation induced by tl, , . . , tr: need not 
beTI, . . ..Tk). 

The above is feasible for small Iz; for larger b, we have 
two additional approximation algorithms, whose details we 
omit. The idea is to use random sampling together with an 
analysis of the “occupancy problems” that result. Overall we 
can prove: 

Theorem 4.2 The HYPERCUBE SEGMENTATION PROBLEhf 

can be approximated as follows: 

1. Within .828 by an O&Z~+~) deterministic algorithm. 

2. Within 0.7, with high probabilit): by an O(c”n) ran- 
domized algorithm, where c is a constant independent 
of b and n. 

3. Within .828 - .328e-Lf2’Z, with high probability, by an 
O(n-!?) randomized algorithm that will apprositrtate the 
optimum b-segmentation by k’ policies. (This ratio is 
roughly 0.63 for l = b, .7 when e = 2k, and is asymp- 
totic to .828.) 

5 Weakly Submodular Functions 

In this section, we consider a general framework for ana- 
lyzing fixed segmentation problems. We will find that the 
definition of a submodular function is too restrictive to cover 
the objective functions for general segmentation problems; 
thus we introduce the notion of ;I weakly submodular ftrnc- 
tion and analyze a natural greedy algorithm in terms of such 
functions. 

As before, let ‘D be a set of possible decisions, and C a 
set of customers with associated functions f;. If S C ‘V, we 
define a(S) to be CTz1 rnGES fi(z). We call a function cr 
arising in this way a segmentation function. 

Now, the fixed segmentation problem for (D, f) can be 
phrased as follows: for the associated segmentation func- 
tion Q, find a set S of size Iz that (approximately) maximizes 
a(S). This phrasing of the problemresembles the masimizn- 
tion problem for monotone submodular functions, studied 
by Comuejols, Fisher, and Nemhauser [ 101 and Nemhauser, 
Wolsey, and Fisher [ 191; we drew a different but related con- 
nection to this work in Section 3.2. 

However, it turns out that segmentation functions need 
not be submodular. As an example, let D be the LZ unit 
ball, let v be a unit vector in Rd, and let C consist of two 
customers, so that fi(a) = v . o and fi(z) = -v . a. Then 

u({v}) + 4(-v>> = 0 + 0 < u(d) + a((v, 43) = 0 + 2, 
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which violates the submodular property. 
WC show here that segmentation functions can be mean- 

ingfully studied in terms of a more general notion, which 
WC call the weak submodularity property. We say that a set 
function g is weakly submodular if g(S) + g(T) 3 g(S fl 
T) + g(S U T) for all pairs of sets S, T that have non-empty 
intersection. 

First we show 

Lemma 5.1 Every segmentation function u is weakly sub- 
modular: 

Another issue to deal with is that segmentation functions 
are not necessarily monotone - specifically, on singleton 
sets, WC thus say that a set function g satisfying g(4) = 0 
in rron-dcgerrerute if there exists a singleton set S = (cc) for 
whichg(S) > 0, 

Using these properties, WC analyze the following basic 
greedy algorithm. 

aREEDY ALGORITHM FOR SEGMENTATION FUNCTIONS: 
At all times, maintain a candidate solution S. While ISI < L, 
add an clement o # S which maximizes the marginal gain 
o(S u G3) - dS). 

We can now show 

Tlworcm 5.2 Let g be a non-degenerate segmentationfunc- 
t/on, Then the greedy algorithm achieves a pelformance 
guarantee of 1 - (1 - l/k)“-l, which converges to 1 - l/e 
from below as k increases. 

The proof is based heavily on the weak submodularity prop- 
erly, 

If we can only approximate each step of the greedy al- 
gorithm to within a factor of c > 1, then the analysis in the 
proof of Theorem 5.2 can be adapted to show a performance 
guarantee of 1 - (l- ’ k-1, which converges to 1 - l/ellc 
from below as I incre& . 

Although Georem 5.2 applies to all non-degenerate seg- 
mentation functions, we observed in Section 3.2 that the im- 
plementation of a single step of the greedy algorithm can 
sometimes be an NP-complete in its own right; thus, this 
theorem does not directly yield an eficient approximation 
algorithm, However, Theorem 5.2 does provide an efficient 
approximation algorithm for segmentation problems arising 
from optimization over polyhedra that contain the origin and 
have a polynomial number of vertices. In such a case, the 
greedy algorithm need only examine vertex solutions, and 
thus can run in polynomial time; one can also verify that 
non-degeneracy holds here. A basic example captured by 
this setting is an arbitrary segmentation problem on the L;1 
unit ball, which generalizes the HITTING SET problem. 

6 Further Results 

6.1 The k-fold Simplex Method 

If ‘D is a linear programming problem described by a con- 
vex polytope, then there is a very natural extension of the 
simplex algorithm [ll, 201 that can be used to attack the seg- 
mentation problem corresponding to 2). In the description of 
the algorithm, if (21, . . . , 2k) is a Ltuple of vertices of V, 
~yv(~l,..., z:k) we denote their total utility, that is, 

n 
+1 ,..-,xk) =C rns v; .zj. 

i=l 139 

b-fold simplex method: 

let xl,...,Xk := the optimum vertex of 
2) under objective VI +. . . + v,, 

while there is a j</~ and a vertex 
xi of I) adjacent to y such that 

V(Xl xc ,---I ,,"" 215) > V(Xl,...,Xjcj,...,~k) 

do 

Xj := x? 3 

That is, we start with all h solutions coinciding with the op- 
timum single solution, and we keep improving the ensemble 
of solutions by sliding them one-by-one along edges of the 
polytope. We halt when a local optimum has been identified. 
Unfortunately, we cannot prove much about the worst-case 
performance of this algorithm - beyond the obvious fact 
that it cannot do worse than l/rl: times the optimum - and 
we feel that a non-trivial analysis for some concrete segmen- 
tation problem is an interesting open question. 

We have performed some preliminary experiments with 
the K-fold simplex method in the context of the catalog seg- 
mentation problem with It: = 2; these suggest that for certain 
ranges of the parameters, the algorithm achieves fairly strong 
performance. In this setting, the method degenerates to the 
2-opt local search heuristic. That is, we maintain two sets of 
size T, and repeatedly try to improve the total revenue from 
the two sets by taking some element out of one of the sets, 
and replacing it with another element. In a number of ex- 
periments on randomly-generated instances, 2-opt beat (by 
between 10 and 40%) the initial solution, in which both cat- 
alogs were set to contain the d most popular items. This begs 
the following open question: can 2-opt do better than 50% of 
the optimal solution in the worst case? 

6.2 Segmentation in a Model of Competition 

So far we have considered the problem faced by a single en- 
Thcorcm 5.3 There is an efficient [l-( l- ~)k-l]-approximation teqise trying to optimize iti utility. But it is natural to Q 
al~orlthm for a k-segmentation problem in which the under- incorporating the notion of segmentation problem into a set- 
lyln~: objective function is a linear program over a polyhe- ting that involves competition among several enterprises; to 
dron that contains the ori& and has a polynomial number indicate some of the issues that arise, we consider the classi- 
of vertices, cal framework of two-player games. 
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Thus, consider the following type of segmented matrix 
game. There are n customers, each with an ml x ma pq- 
eff matrix Mi. Let C denote the set of matrices. There are 
two players, PI and Pz. PI partitions C! into Izl sets, and 
chooses a row-strategy for each set. We will consider both 
pure strategies (choosing a single row) and mixed strategies 
(choosing a distribution over rows). P2 then does the same, 
using ka column-strategies. We will assume throughout that 
PI is trying minimize the pay-off, while player P2 is trying 
is to maximize it. 

It is possible to consider models with either one round or 
several rounds; and in which the players move either sequen- 
tially or simultaneously. For the sake of concreteness here, 
let us consider a one-round game in which PI moves first - 
revealing his move - and P2 then moves. 

First consider the problem faced by P2. Once PI reveals 
his move (whether it is pure or mixed), each matrix I& is 
collapsed to a single row vector vi (either the selected row 
or a weighted average of rows). Consider the problem now 
faced by P2 in choosing ha mixed strategies: she must de- 
termine ba non-negative vectors each of whose coordinates 
sum to 1. Thus, we have an LP segmentation problem over 
the intersection of the hyperplane al + . . . zCma = 1 with 
the positive orthant. Note that the ka vectors may as well be 
vertex solutions, i.e., pure strategies. There is a difficulty in 
analyzing the performance of the greedy algorithm for this 
particular segmentation problem (c.f. Section 5): the polyhe- 
dron defining the feasible region does not contain the origin, 
and so it is possible that no single solution has non-negative 
pay-off for P2. As such, we do not have the non-degeneracy 
condition needed for the 1 - (1 - l/k)k-l bound. Indeed, 
it can be NP-complete to decide whether there is a set of 12s 
pure strategies for PZ that produce a non-negative pay-off. 
For consider an instance of the HITTING SET problem, with 
sets&,..., Zn~U={ul,..., urn,). Map Zi to a vector 
vi, whose jth entry is 0 if ~j E Zi, and is -1 otherwise. 
Then there is a collection of ba elements hitting all the sets 
Zi if and only if P2 can achieve a pay-off of 0 (the maximum 
possible). 

Now let us consider the problem faced by PI, assum- 
ing that PZ is computationally unbounded (while PI runs in 
polynomial time). To make the discussion more combinato- 
rial, let us suppose that each matrix Mi has fl entries: so at 
the end of the game, each customer is “won,” in a discrete 
way, by either PI or P2. Let us also assume that both players 
are restricted to pure strategies. 

The SET UNION problem asks, given a collection of sets 
&a-.., St, to form a sub-collection of 12 of these sets whose 
union is as large as possible. In these terms, PI is faced with 
the following problem. First, he chooses bl indices between 
1 and ml. He then maps each customer i to one of the k1 
rows of the matrix M; corresponding to the chosen indices. 
Suppose that i is mapped to ‘~ri, and let Sj denote the set of 
i for which vi has a +l in column j. P2 can then choose 
b2 column indices; her pay-off is determined by the cardi- 

nality of the union of the corresponding sets Sj. Thus, PI is 
attempting to create an instance of the SET UNION problem 
whose optimum is as small as possible. 

Thus we are dealing with an optimization problem in 
which the objective is to create problem instances with poor- 
quality optima. Perhaps the cleanest version of the above 
situation is the one in which 121 = ml; for then PI can con- 
struct a SET UNION problem by picking one set from the op- 
tions provided by each customer, rather than having to deal 
with the additional constraint that they must come from a 
small number (kl) of distinct rows. Thus, if kl = ml and 
ka = 1, we have the following problem: PI must choose one 
&l-vector from among the options provided by each cus- 
tomer in such a way that the sum of the resulting vectors 
has a maximum coordinate that is minimum, This is NP- 
complete, by a reduction from e.g. the INDEPENDENT SET 
problem. 

A number of interesting issues arise if we drop the as- 
sumption that P2 is computationally unbounded, assuming 
instead, for example, a polynomial-time limitation. Intu- 
itively, one could imagine that PI need no longer only pro- 
duce problem instances that have poor-quality optima, but 
could alternatively try to produce instances which are com- 
putationally difficult (even if the optimum is good for Pz). 
We intend to explore these issues in further research. 

6.3 Data Mining as Sensitivity Analysis 

There are a number of problems involving the aggregation of 
customer data that do not appear to fall within the framework 
of segmentation problems. We consider one hem, based on 
correlations among consumer preferences, 

A motivating example: Beer and Diapers? Suppose 
that a retailer stocks two products in quantities ~1 and ~2; the 
amounts (~1, $2) to be stocked are the only decision vari- 
ables, bounded above by capacity: 01 + ~2 5 c. The profit 
margins in the two products are ml and ma. We have a table 
with O-l values (yl,;, y.42) for each customer i E C, indi- 
cating whether the customer will buy a unit of each of the 
products. That is, in this toy example demand is known de- 
terministically. 

In the first scenario, customers arrive in random order, 
and buy whatever part of their desired basket is available. 
The revenue of the enterprise is in this case a function of al, 
as, ml, ma, and the aggregate demands Yl = Cifc yl,i and 
Ya = Ciec 9~. Aggregation would not distort the optimal 
decision, and data mining is moot. 

But suppose that the customers arrive in random order, 
and buy their desired basket in an all-or-nothing fashion; if 
not all items are available, the customer buys nothing. The 
expected profit for the enterprise from customer i is now of 
the form B1 . yl,i + B2 . ye + B3 q yl,i . ye. Because of 
the nonlinear term, associations between the yi,i and the SJJ 

‘The correlation between the amount of beer and the amount of dinpca 
bought by consumers is one of the delightful nuggets of data mining lore, 
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columns arc now important, and the optimum decision by 
the enterprise depends critically on them. Aggregation will 
no longer do the trick, and data mining is desirable, even 
necessary. 

WC propose that associations and correlations between 
attributes In a table are interesting if they correspond to non- 
linear terms in the objective function of the enterprise, that 
is, whenever & # 0 for the cost function g and some 
attributes w, yj, We now turn to a formulation that makes 
this notion precise. 

A concrete formulation. The field of sensitivity analy- 
s/s in optimization seeks to develop principles and method- 
ologies for determining how the optimum decision changes 
as the data change, In this section we give an extensive ex- 
ample suggesting that many common data mining activities 
can be fruitfully analyzed within this framework. 

To fix ideas, we shall consider the case in which the op- 
timization problem facing the enterprise is a linearprogram 
[ 11,201, that is, we have an m x n matrix A (the constraint 
matrix, rn < n), an m-vector b (the resource bounds), and an 
n-row vector c (the objective function coe@cients), and we 
seek to 

max c-2. 
Ao=b,s>O (1) 

The columns of A -the components of z- are called activ- 
Ities, and the rows of A arc called constraints. Extensions to 
non-linear inequalities and objectives are possible, with the 
Kuhn-Tucker conditions [3] replacing the sensitivity analysis 
below, 

WC assume, as postulated in the introduction, that the 
entries of A and b are fixed and given (they represent the 
endogenous constraints of the enterprise), while the coeffi- 
cients of c depend in complex ways on a relation, which we 
denote by C (we make no distinction between the relation 
C, and its set of rows, called customers). The ith tuple of 
C -the ith customer- is denoted yi, and we assume that 
cj is just ‘&c f’(w), where fj is a function mapping the 
product of the domains of C to the reals. We noted in the 
introduction that the desirability of data mining depends on 
whether the functions fj are “non-linear”, that is, on whether 
the derivatives & # 0 for some Iz and 1. 

Assume for the sake of concreteness that all attributes 
of the relation C are real numbers in the range [0, 11, and 
that fd depends on two attributes, call them Izj and ej. We 
also assume that we have an estimate Dj 3 0 on the abso- 
lute value of the derivative bh. Dj > 0 means that 
fj is nonlinear, We investigate under what circumstances 
it Is worthwhile to measure the correlations of the pair of at- 
tributes corresponding to the coefficient cj -that is to say, to 
data mine the two attributes related to the jth activity. With- 
out dnta mining, the coefficient cj will be approximated by 
the function fj of the aggregate values of the attributes 5 
and Q, 

Suppose that we have solved the linear program (1) of 

the enterprise, based on the aggregate estimation of the cj’s, 
and let B-lA = X be the simplex tableau at optimality, 
andE= c - CBB-IA > 0 its zeroth row, where B is the 
optimum basis. The theory of sensitivity analysis of linear 
programming [ 11,201 then implies the following qualitative 
notion of interestingness of activity j (intuitively, the degree 
to which it is worthmining the correlations of the data related 
to activity j; we omit from this version the precise formal 
definition): 

An activity j is interesting ifthefunction fj has a highly non- 
linear cross-tenn, and eitherq is small, or the jth row of the 
tableau has large positive coeflcients at columns with small 
T$S. 

As the above analysis suggests, our point of view, com- 
bined with classical linear programming sensitivity analysis, 
may lead to a quantitative theory for determining when data 
mining can affect decisions, ultimately to a theory for pre- 
dicting the value of data mining operations. 

7 Conclusions and Open Problems 

The class of segmentation problems arises from the aspects 
of data mining that can be viewed as “clustering with an 
economic objective function.” Our hope in introducing this 
model is to offer a particular algorithmic perspective on the 
value of ‘mined data,” in terms of this underlying objec- 
tive function, and to indicate the surprisingly wide range of 
concrete optimization problems that arise from this point of 
view. 

There are many open questions arising from this work, 
and we suggest some that seem to be among the most inter- 
esting. First, obtaining good approximation algorithms for 
the general CATALOG SEGMENTATION PROBLEM appears t0 

quite difficult; for example, in the general case, we do not 
know how to improve on the trivial $-approximation when 
k = 2. We also do not know very much about the approx- 
imability of segmentation problems arising from traditional 
graph optimization problems such as the MST and TSP. 

One can also formulate versions of the basic segmenta- 
tion problem different from the two (fixed and variable) that 
were studied here. For example, suppose each customer has 
a function f. and a threshold si; the customer is satisfied 
by a policy z if fii(~) 2 si. We may then be required to 
implement 12 policies so as to satisfy as many customers as 
possible. Again, many optimization problems can be studied 
in this setting. 

We have suggested two general-purpose approaches for 
approximating segmentation problems: the greedy algorithm 
of Section 5, and the k-fold simplex method. In the former 
case, it is unfortunate that the implementation of a single step 
of the greedy algorithm can sometimes be an NP-complete 
problem; we are interested in determining the range of set- 
tings in which an approximate greedy algorithm can be use- 
fully applied. In the latter case, we feel it would be inter- 
esting - both in the context of segmentation problems and 
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as a natural problem for the analysis of local search heuris- 
tics - to find a setting in which one could prove non-trivial 
approximation bounds for the &fold simplex method. 

Finally, the models proposed in Section 6.2 and 6.3 sug- 
gest a number of directions to explore. 
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