Sublinear Time Algorithms for Metric Space Problems

PIOTR INDYK ~
Computer Science Department
Stanford University
(650)-723-4532
indykQcs.stanford.edu

June 21, 2000

Abstract

In this paper we give approximation algorithms for the following problems on metric spaces:
Furthest Pair, k-median, Minimum Routing Cost Spanning Tree, Multiple Sequence Alignment,
Maximum Traveling Salesman Problem, Maximum Spanning Tree and Average Distance. The
key property of our algorithms is that their running times is linear in the number of points. As
the full specification of an n-point metric space is of size ©(n?), the complexity of our algorithms
is sublinear with respect to the input size. All previous algorithms (exact or approximate) for
these problems have running times Q(n?). We believe that our techniques can be applied to get
similar bounds for other problems.

1 Introduction

In recent years there has been a dramatic growth of interest in algorithms operating on massive
data sets. This poses new challenges for algorithm design, as algorithms which are quite efficient
on small inputs (for example, having quadratic running time) can become prohibitively expensive
for input sizes of, say, several gigabytes. Fortunately, applications like similarity search, clustering,
data visualisation and representation [8] often demand answers which are not necessarily entirely
accurate or complete. This makes approximate computation a promising tool for coping with large
data sizes.

There was a lot of recent algorithmic research along these lines. This includes research on
approximate nearest neighbor [5, 15, 13, 16, 12, 1] which shows that efficient algorithms can be
designed even for large high dimensional data sets. In particular, the results of [13, 12] show
that almost linear time/space algorithms can be designed for approximate proximity problems,
e.g., finding near(est) points, closest pair of points, minimum spanning tree or other variants of
hierarchical clustering (cf. [1]). Unfortunately, these algorithms are restricted to specific (usually
geometric) metric spaces, making them unsuitable for non-geometric ones like edit distance (used
in molecular biology) or other domain-specific measures. It is therefore desirable to consider these
problems in general metric spaces.

In this paper we address these issues by providing approximation algorithms for the following
metric space problems: k-median, Minimum Routing Cost Spanning Tree (MRCST)/Multiple Se-
quence Alignment (MSA), Maximum Traveling Salesman Problem (MaxTSP), Maximum Spanning

*Supported by Stanford Graduate Fellowship and NSF Grant 11S-9811904

problem running time | approximation factor | output objective

Furthest pair | O(n) % points p, ¢ max d(p, q)
k-median O(nk/8?) [(1+0)(2+4),28] | points ¢y ...cp | min 3 min; d(p, c;)
1-median O(n/8%) 1494

MaxTSP O(n/$) T - a tour T max) .7 d(e)
MaxST O(n/8) I - a tree T’ max) o7 d(e)
MRCST O(n/$) 2446 a tree T’ min ", dr(p, q)
AvgD O(n/87?) | 1+6 o1y L (0, 9)

Table 1: The result table. The notation [a, b] means the algorithm returns bk median with cost a
times the optimal k-median cost. Our algorithm assumes existence of a O(n?)-time algorithm with
[cr, B] approximation guarantees (where, as usual, the notation O() omits factors logarithmic in n
and other variables). In particular, Jain and Vazirani [14] give a (6, 1)-approximation algorithm,
while Charikar and Guha [2] give a (1+ v, 14 2/v)-approximation.

Tree (MaxST) and Average Distance (AvgD) (see the definitions in Section 2). The exact running
times of the algorithms are given in Table 1. The crucial property of our algorithms is that they run
in time linear' in n. As the size of the metric space is (Z), their complexity is in fact sublinear with
respect to the input size. We also provide lower bounds for sublinear time randomized algorithms
for several problems (see page 9). Notice that for MaxST, MaxTSP and Furthest Pair the upper
and lower bounds match.

Our techniques (described in more detail at the end of this section) are quite general and their
applicability does not seem restricted to the problems considered here. Therefore, we expect that
similar results can be obtain for other problems on metric spaces. We also note that our algorithms
are easy to implement and have small constants in the running time. In fact our k-median algorithm
is very similar to the Scatter/Gather clustering procedure by Cutting et al [4]. To the best of our
knowledge we provide the first formal analysis of that algorithm (or in fact of any sampling-based
clustering algorithm).

In the remainder of this section, we first motivate the problems considered in this paper. Then
we discuss the relation of our work to several notions developed recently in the theory of algorithms,
in particular to property testing and spot checking. Finally, we give an overview of our techiques.

The problems. The k-median problem is of interest in many areas such as facility location,
information retrieval and data mining. In the latter two areas the value of k£ is usually much
smaller than n and therefore our algorithm offers a significant improvement in running time over
previous (n?)-time algorithms. The next two problems (MaxTSP and MaxST) are maximization
versions of classical optimization problems; unlike the minimization problems (see page 9) they can
be approximated up to a small constant factor. They are included mainly because of theoretical
interest. The next problem (MRCST) has applications to network design [22] and molecular biology.
The latter application follows from its connection to Multiple Sequence Alignment (MSA), where
the goal is to find a common alignment of n genetic sequences. Specifically, Gusfield [9] showed
that any tree within cost at most ¢ times the sum of all distances between the sequences can be
used to find an alignment within factor ¢ away from optimal. The alignment computation step is
linear in » and thus our tree computation procedure speeds up Gusfield’s algorithm as well. Finally,
the last algorithm (for the Average Distance problem) is a useful tool for gathering statistics over

'If a constant probability of success is required; otherwise the running time is multiplied by log 1/p where 1 —p
is the required probability of success

the metric space. For example, we can apply it to estimate the gap between the actual solution to
MSA and its lower bound.

Property testing and spot checking. In the last two decades there has been significant work
on estimating the complexity of checking graph properties. In particular, Rivest and Vuillemin [21]
showed that the problem of deciding of any non-trivial monotone graph property requires inspection
of at least Q(n?) edges; the same bound is conjectured to hold for randomized algorithms as well.
Very few non-trivial graph properties have subquadratic complexity.

The notion of approximate property testing (introduced by Goldreich et al [7]) is a relaxation of
the above definition. Specifically, it is assumed that the input graph either satisfies a property P or
is within distance at least en? from any graph satisfying P; the distance between two graphs is the
Hamming distance between their adjacency matrices. Goldreich et al [7] showed many interesting
results on complexity of testing approximate properties; in particular they obtained poly(1/¢) and
exp(1/¢) bounds on the complexity of colorability, clique, cut and bisection problems. Their work
was later extended by Ergun et al [6], who introduced the notion of spot-checking. They applied
it to a variety of problems on graphs, sets and algebra obtaining algorithms with running times
varying from O (lognpoly(1/¢)) to O(y/npoly(1/¢)), where n is the input/output size and en is the
distance from the correct solution.

The main difference between approximate property testing/spot-checking and our approach is
that we do not need to relax the original problem w.r.t the “closeness” to the correct solution.
Rather than that, we relax the quality of the output, which is a more standard way of defining

approximate versions of problems.?

On the other hand, our techniques seem to be limited to
problems over metric spaces only.

Our techniques. All of our algorithms employ random sampling. There are two basic prop-
erties of a random sample of a metric space points which we use. The first property is that large
distances “cannot hide” in a metric space (more specifically, if there is any pair of vertices of dis-
tance A, then there are at least n other pairs of distance at least A/2 (by triangle inequality). Thus
we can spot one such a pair by random sampling or inspection of a neighborhood of one vertex
(this for example gives an immediate solution to the Furthest Pair problem). Another property we
use is that a randomly sampled edge e from a set S has expected length d(e) equal to the average
weight of edges in 5. This can be used for finding approximation of S or its cost, provided that we
can prove additional properties of the expectation or variance of w(e).

2 Preliminaries

Assume we are given a metric space (X, d), such that |X| = n. The problems are then defined as
follows.

Definition 1 (k-median): Find k medians ¢ ...c, € X which minimize the value of

Z min_d(p, ;).
peX i=1...k
The problem is MAX SNP-hard. Lin and Vitter [19, 20] gave a bicriterion [1 4+ ¢,2(1 + 1/¢)]-
approximation algorithm for any € > 0, i.e. the algorithm outputs 2(1 4 1/¢)k medians with cost

at most (1 + ¢€) times the minimum k-median cost. Their algorithm uses linear programming and
its running time is a large degree polynomial in n. Charikar et al [3] gave a [1, O(1)]-approximation

2In some cases these two approaches coincide; for example it was shown in [7] that by using their techniques one
can obtain a (1 + €)-approximation of MAX-CUT in dense graphs in time linear in the number of vertices.

algorithm for this problem, also via linear programming. Of particular importance to our pa-
per are two recently developed algorithms with O(n?)-time: the [1,6]-approximation by Jain and
Vazirani [14], and the [1 + v, 1+ 2/v]-approximation by Charikar and Guha [2].

We also mention that a related k-center problem (where the goal is to minimize the mazimum

cluster radius) can be solved in (sublinear) O(kn) time [11, 10].

Definition 2 (Maximum Spanning Tree - MaxST): Find a spanning tree T of X such that
the sum of its edge lengths is maximized.

This problem can be solved exactly in O(n?)-time by minimum spanning tree techniques.

Definition 3 (Maximum Traveling Salesman Problem - MaxTSP): Find a simple cycle of
length n such that the sum of its edge lengths is mazimized.

The problem is MAX SNP-hard. Kosaraju et al [18] gave a %—approximation algorithm for this
problem.

Definition 4 (Minimum Routing Cost Spanning Tree - MRCST): Find a spanning tree T
such that the metric dr induced by T minimizes the value of

> dr(p.q).

p,g€EX

The problem is NP-hard. Wong [23] showed how to construct (in O(n?)-time) a tree with cost
at most twice the sum of pairwise distances of the original metric, thus also at most twice of the
minimum RCST cost. Wu et al [22] gave a (14 ¢)-approximation algorithm running in time n©(1/¢),

Definition 5 (Average Distance - AvgD): Compute @queX d(p,q).
The problem can be solved trivially in O(n?)-time.

3 1-median

In this section we present an O(n/§°%)-time (1 + §)-approximation algorithm for the 1-median
problem.

For a given point p let S(p) = >, cx d(p, ¢). The main part of our algorithm is a O(1/8%)-time
procedure which given any two points p and ¢ performs an approximate comparison of S(p) and
S(q). More specifically, if S(p) > (1 + 6)S(g), then with probability 2/3 (say) the algorithm will
return p; if S(¢) > (1 + §)S(p) then with same probability the algorithm will return ¢; otherwise
the output is arbitrary. Using this probabilistic comparison as a subroutine, we can approximate
the smallest S(g) using O(n) comparisons.

The comparison procedure is as follows. Assume that § < % Let t = d(p,q), let r = 4t/5 + ¢t
and let B be the set of points within distance r from p. The algorithm starts from estimating the
value of v = Bl More specifically, it chooses uniformly at random a set S of s = O(1/§) points

from X and computes v/ = |S|';]|B|. Then it checks if v > §/5; if so, it concludes that v > /6,

otherwise, it concludes that v < §/4 (the constants are chosen mainly for clarity of exposition). It
is easy to see that with large constant probability the conclusions are correct. In the following, we
show that in both cases we can quickly approximately compare S(p) and S(g). In the first case

(if v > 6/6) then we can easily sample points from B. Moreover, the distances d(u, p) and d(u, q)
for u € B are bounded from above; also we show that the larger of S(p) and S(gq) can be bounded
from below. Therefore we can estimate the sum of the distances within B by random sampling
(the distances outside of B are again similar for p and ¢). In the second case, most points v € X
are so far away from both p and ¢ that the difference between d(p,) and d(q,) is relatively small,
which implies that S(p) and S(g) are close to each other and any choice is correct.

Consider first the case when v < 6/4. In this case we show that the difference between S(p)
and S(g) is negligible (i.e. smaller than ¢ - min(S(p), S(g))), so any choice made by the algorithm
is correct. The argument is as follows. For v € X define Si(v) = 3 ,cpd(v,u) and Sy(v) =
> ugp d(v,u). Observe that S(p) = S1(p) + S2(p) and S(q) = S1(q) +52(q). Notice that due to the
fact that for any u € X the triangle inequality implies |d(p,u) — d(q,u)| < d(p,q) =, we have

)
A=|S(p)—S(@))<n-t< T

On the other hand S(p) > Sa(p) > (1—y)n(r—t) > (1 - $)nr and the same bound holds for S(g).
Thus one can verify that indeed A < é min(S(p), S(q)).

Consider now the case when v > ¢/6. In this case we first choose a random sample R of [
points from B; notice that by choosing O(l/4) random elements of X and rejecting those which do
not belong to B, we can obtain such a sample in O(//§) time with constant probability. Then we
compute S’(p) = 3 ,erd(p,u) and S'(q) = 3 ,cr d(g, u) and choose p if S’(p) > S'(q) or ¢ in the
opposite case.

To prove correctness of the above procedure, we first observe that if (say) S(p) > (14 46)S(q),
then Si(p) > (14 8)S:1(g), as otherwise we would have

S(p) = S1(p) + S2(p) < (146)51(q) + (1 +6/4)52(q) < (1+8)S(q).

Thus if we show that S’(p) estimates |Té|51 (p) (and S’(q) estimates ﬁsl(q)) with an additive error
at most

6 1

378 max(S1(p), S1(q))

we are done. Since the expected value of S’(p) is equal to |Té|51 (p) and a similar fact holds for ¢, we

just need to bound the variance of S’'(p) and S’(q) with respect to their expectations. To this end
we observe that both variances D?[S’(p)] and D?*[S’(q)] are bounded by [r?. On the other hand,
we know that for any point u € X we have d(p, u)+ d(u, q) > d(p,q) =t and thus

max($1(p), $1(q)) > 2D

> Bli/2
and therefore max(E[S'(p)], E[S'(q)]) > t/2. Recall that we assume Sy(p) > S1(g). By Chebyshev
inequality

1
Pr|S'(p) £ (]| > a - VIr] < .
If we choose [> a24(4/6 4 1)?-9/6% then V151 > ar and the deviation of S'(p) from E[S’(p)] can

be bounded by
dt 8 8 [
: < —Z1< —E[S'(p)] = = —
a-Vir < 321_ 3E[S (»)] 351(p)|B|

which was to be shown. The same error bound can be obtained for S’(g) as well. This completes
the proof of correctness for the second case and the whole comparison procedure.

Using the probabilistic comparator as a subroutine, we can easily get an O(npoly(logn,1/6)-
time algorithm for (1 + é)-approximate 1-median in the following way. Construct a binary tour-
nament tree over the points in X, where each internal node performs a comparison of values of
the function S() of its children and selects the smaller one. Set the comparison quality parameter
d’" to §/logn and perform each comparison O(logn) times, thus achieving a high probability of
correctness of all comparisons. Since the smallest element S(p) is compared at most logn times,
the value of the selected element S(g) is bounded by (1 + d")!°8™ < 1+ O(9).

We can achieve a better running time by applying the randomized tournament technique by
Kleinberg [15]. The details are very similar, thus we omit the description here.

4 k-median

In this section we present an O(n)-time approximation algorithm for the k-median problem. Our
procedure uses a black-box [, 8]-approximation O(n?)-time algorithm, which we refer to as BB.

Let s = av/knlogk for a > 1 determined later. The algorithm is as follows.

1. Choose a set S of s points sampled without replacement from X
2. Run the BB k-median algorithm on S, let C" = ¢} ...cj, denote the output

3. Assign each point p € X to a point in C”’ within smallest distance from p; let d(p,C") denote
that distance

4. Select the set M containing the points p with m = bks—”log k largest values of d(p,C"), for b
determined later

5. Run the BB algorithm on M, let C" denote the output

6. Output C’ and C”

In the following we will use a = ©(1/8+/log1/5) and b = ©(1/%log 1/5). It is easy to verify

that the running time of the algorithm is O(kn/§?). It remains to prove its correctness.

Theorem 1 For any constant § > 0 the above algorithm computes a [(14-8)3(2+«), 2[]-approzimate
solution for the k-median problem with probability ©(3).

By running the above procedure O(1/4) times and taking the solution with the smallest cost,
we can reduce the error probability to any constant.

Proof: The 27 factor is clear, thus we focus on proving the first bound. Let ¢;...c; denote
the optimal medians and let D denote the optimal cost. Let C; denote the set of points in X closer
to ¢; than to any other ¢; (for simplicity assume there are no ties). Also, let C! = SN C;. Let

t=>0%logk. Let L = {i:|C;| > t}, 1 =3 |Ci| and I' = 37, |C]]. Clearly [> n — kt.
Claim 1
1

Py D dleip) 2 (140 Y Y dlenp)] € 1

i€L peC! i peCi

€

Proof: Consider any sampled element p. With a probability of this element belongs to C}
for i € L. Conditioned on this event, the expected value of d(p,C) is Y1, > pec, d(ci, p). Thus

the expected value of 37,7 3" ccrd(ci, p) is sty > pec, d(ci; p). The Claim follows from Markov
inequality. |

Claim 2 For any v > 0 we have

Cil
e =

Pr[for every i € L, (1 +9)]>1- leﬁ
Proof: Follows from Chernoff bound. 0

Assume that both assertions of the above Claims hold (which is true with probability ©(¢) for
a proper choice of ¢ and b). We show that the centers C’ provide a good solution for all points
from U;er,C;. Fix any such C; and consider any function ¢; : C; — C! such that any element from

C! has at most Igi} elements assigned to it. For any ¢ € C! let ¢/(¢q) denote the median ¢} closest to

g. By triangle ineauality

d(p,C") < d(p, ;) + d(ci, ¢ (p)) + d(gi(p), ' (4:(p)))-

Thus
S de,C) < YUY dpe)
€L peC; €L peC;
ICI
|C’| ;/ (ciyq) +d(q,c ()))]
< D+ - (1—1—7)(1—}—204 SN dlei,p)
€L peC!
< D-l—g(l—I—’y)(l—}—Qoz)(l—l—e)gD
= (1+7)(1+(2+2a)D
= (1+6)(2+2a)D

As | = |Uijer, Ci| > n—kt, we know that the cost of the points in X — M with respect to medians
C' does not exceed (1+ 6)(2 + 2a) as well. Thus it is sufficient to bound the cost of clustering of
M. To this end notice, that there exists a clustering of M with a cost at most 2D (just replace
each ¢; by its closest neighbor in M). Thus the algorithm will find a clustering of M with cost 2aD
and the total cost does not exceed (1+ 6)(2 4 4a)D.]

5 Maximum Spanning Tree

In this section we present two approximation algorithms for MaxST, both running in O(n) time.
The first one outputs a tree of cost at least % times the optimal, while the second one improves the
factor to %

Let T denote the tree with maximum cost C'(7T") and let A be the diameter of the graph. The
first algorithm follows from the following Lemma.

Lemma 1 A tree T of cost at least T A can be found in O(n) time.

Proof: Let a,b € X be points such that d(a,b) = A. Consider arbitrary point ¢. As A =
d(a,b) < d(a,q) + d(q,b), we can find a vertex u such that d(g,u) > £. Consider now two stars:
S, centered at ¢ and S, centered at u. We can lower bound the sum of their costs by

qup)+ d(u,p) > qu, >n%

Thus one of S, and S, has cost at least & N a
The second algorithm uses similar idea, but the pair (¢,) is found by random sampling rather
than using the above algorithm. Specifically, we prove that the longest among the O(n) sampled
edges has length close to %_le The bound then follows from the above argument.
In order to analyze the sampling algorithm, we need the following Lemma (which can be thought
of as a reverse version of Markov inequality).

Lemma 2 Let X be a random variable with values from the set [0, B] such that F[X] > % for
some a > 1. Then for any o > 0

PrIX > (1 - a)E[X]] >

2|e

Proof: Similar to the proof of Markov inequality. O

We can now proceed with the proof of correctness of the sampling procedure. Let e;...ée.p
denote cn edges sampled at random; let X = max;d(e;). As for any € > 0 and ¢ = O(log1/e)

we have the probability of 1 — ¢ of hitting a (random) edge from 7', we have F[X] > (1 — e)%
Therefore (by Lemma 2) we conclude that with a probability of Q(a) we have X > (1 —a —¢) Z(_Tl)
Thus we have proven the following theorem.

Theorem 2 Foranyé > 0 there isa %i-approximation algorithm for MazS'T running in O(n%)

time.

6 Maximum TSP

Let 7" denote the tour with maximum cost C'(T') and let 7”7 be tour chosen uniformly at random
from the space of all (n — 1)! tours.

Lemma 3 E[C(T")] > (T)

Proof: We can write F[C(T")] as >3-, >, 4pa) Fix p and let T(p) denote the successor of p in

n—1

the tour 7'. By triangle inequality we know that for any ¢ we have d(p,T'(p)) > d(p,q)+ d(T(p), q)

which implies
) > > d(p,q) + d(T(p), q).

Therefore
c(r)y = Y dpT
P

< Z%Zd(p,q)er(T(p)’q)
= %sz(p,tﬂ
< 28[C(T")]

Thus by Lemmas 2 and 3 we have the following theorem.

Theorem 3 For any & > 0 there is a g;é-approximation algorithm for MaxTSP running in O(%)
time.

7 Minimum Routing Cost Spanning Tree

In this section we describe the approximation algorithm for the MRCST problem. The algorithm
proceeds by choosing ¢ € X at random and reporting a star S, rooted at that vertex. Below we
show that the probability the cost C'(S,) exceeds C' =23 d(p,q)(1+4) is at most 1 — llﬁ, thus
by repeating this procedure O(1/§) times and taking best star we obtain a constant probability of
success.

The probability bound is obtained as follows. Consider the expectation E[C(S,)]. We know
that

E[C(S,)]

IN

1 .

;Zc(bq)

= QZd (p,r)
P,

The probability bound follows by Markov inequality.

8 Average Distance

In this section we give an approximation algorithm for the Average Distance problem. The algo-
rithm finds the value of the sum of all the distances (call it A) with multiplicative error (1 + ¢)
in time O(n/67/%). The actual algorithm is simple - we sample a set S (of cardinality s = an) of
edges by including each edge with probability =, compute the sum of their length and multiply
by 2, where m = (3). The running time of the algorithm is clearly O(s) with high probability.
Below we prove that for s = O(n/57/2) the result is a good approximation of A. Note that the
assumption of (X, d) being a metric is crucial for this result: otherwise one could assign arbitrarily
large weight (say w) to one edge, which would not be included in S with high probability and
thus the estimation of A would be incorrect. The metric space assumption allows us to avoid this
problem, as we know that if d(p, ¢) > w then for each a € X either d(p, z) or d(q, z) is greater than
w/2, thus with a good probability we hit one of these edges.

Let A be the diameter of the metric and assume that the minimum interpoint distance is 1.
Let ¢ = 1+ ¢, for some 0 < € < §. Split the interval [1...A] of possible distances into intervals
I, = [ci, ci+1), for ¢ > 0. Let n; be the number of distances falling into interval I; and let s; be the
number of distances from § falling into I;. Define A = S etng, Al = Ycesd(e) and Al = = S e's;.
Clearly, A = A(14¢) and A’ = fl’(l + ¢€), thus it is sufficient to show that A’ well approximates
A. To this end notice that E[A’] = A, thus it is sufficient to bound the variance of A’ and use
Chebyshev inequality. The variance DQ[/NV] can be bounded by

2
m . s m :
— E A — = — E 'n;.
2
s? & m s

Thus by Chebyshev inequality we get

P

Il
5
=
|
s
=
v
=
=

AN

€2E2[A']
D2[A"]
D?[AT]

EE2AT

As F2[AN > % c¥n?, it is sufficient to bound from the above the ratio

_ ZC%M
= —.
> c¥n;

In order to do this we make the following observation (this is the only place where we use the
fact that d is a metric). Let a,b € X be a pair of points such that d(a,b) = A. Then for any
p € X we know that d(a,p)+ d(p,b) > A, thus at least one of d(a,p) and d(p,b) is greater than
A/2. Let k be such that ¢* = A. By pigeonhole principle there exists 0 < j < log,2 such that
ng—j > n/log, 2. This enables us to bound I as follows. Let P = {i:n; >t} — {k j} fort = an,
where « is chpsen later. We can write I’ as ﬁii%, where My = Y, cpc®n?, My =Y, &P cin?,
Ny = ZzePC n; and No =", Pc in,;.

Now we observe that Nl < + (from the definition) and

S A1+

N2<t202"<t

-1~ €
while A
n
My > (=——)2
22 (5 1og32)
thus
Na 14log? 2a(1 4 ¢)?
My, — n ¢ '
Therefore))
F < max (N1 NQ) lmax(—4logc 20+ ¢) a,l)
Ml My n € o
and by setting o = ©(¢%/?) we obtain that F = O(E 52). Thus
1m 11 1
P=0lamany = °Gan)

and by setting e = ©(4) and a = O(#) we prove the approximation bound. In this way we proved
the following Theorem.

Theorem 4 For any § > 0, there is a (1 + 6)-approzimation algorithm for the Average Distance
problem running in O(577) time.

10

problem approx. factor | not achievable in time
Closest Pair any o(n?)
Furthest Pair > 4 o(n?)
MaxST/MaxTSP | > 1 o(n?)
MinST/MinTSP | O(1) o(n?)

Table 2: Lower bounds for metric space problems

9 Lower bounds

In this section we investigate limitations of sublinear time algorithms in metric spaces. Our results
are depicted in the Table 9; they hold for randomized algorithms. When combined with our bounds,
one can observe interesting phenomenon: the minimization problems are difficult to approximate,
while the maximization problems are approximable to within a small constant factor. Intuitively,
this is due to the fact that small distances can be easily “hidden” in the metric space, while the
triangle inequality prevents large distances from “hiding”.

Proof: The proofs are as follows

Closest pair : Set all distances to 1 except for one edge chosen at random, which is set to ¢ > 0
Furthest pair : Set all distances to 1 except for one edge chosen at random, which is set to 2

MaxST/MaxTSP : Set all distances to 1 except for edges on a random path of length n — 1,
which are set to 2. The optimal cost of both MaxST and MaxTSP is (2 — ¢)n, but finding dn
edges set to 2 for any fixed § > 0 requires Q(n?) time.

MinST/MinTSP : For any B = O(1) choose a random path of length n — 1, set all edges on
that path to 1 and consider the metric obtained by taking the shortest paths metric induced
by the unit edges and limiting the maximum distance to some B. One can observe that the
optimum solution has cost n+ B. On the other hand, finding dn edges with cost < B for any
fixed § > 0 requires Q(n?/B) time.

a

Acknowledgments: The author would like to thank Ashish Goel, Howard Karloff and Sudipto
Guha for helpful comments.

References

[1] A. Borodin, R. Ostrovsky, Y. Rabani, “Subquadratic Approximation Algorithms For Cluster-
ing Problems in High Dimensional Spaces”, STOC’99.

[2] M. Charikar, S. Guha, “Improved Combinatorial Algorithms for the Facility Location and
k-Median Problems”, FOCS’99.

[3] M. Charikar, S. Guha, E. Tardos, D. Shmoys, “A Constant Factor Approximation for the
k-Median Problem”, STOC’99.

[4] D.R. Cutting, D.R. Karger, J.O. Pedersen and J.W. Tukey, “Scatter/Gather: A Cluster-based
Approach to Browsing Large Document Collections”, SIGIR’92.

11

[5] E. Cohen, D. Lewis, “Approximating matrix multiplication for pattern recognition tasks”,

SODA’97, pp. 682-691.

[6] F.Ergun, S.Kannan, S.R.Kumar, R. Rubinfeld and M. Viswanathan, “Spot-Checkers”,
STOC’98, pp. 259-268.

[7] O. Goldreich, S. Goldwasser and D. Ron, “Property testing and its connection to Learning
and Approximation”, FOCS’96, pp. 339-348.

[8] W. B. Frakes, R. Baeza-Yates, Information Retrieval - Data Structures and Algorithms, Pren-
tice Hall, New Jersey, 1992.

[9] D. Gusfield, “Efficient methods for multiple sequence alignments with guaranteed error
bounds”, Bulletin of Mathematical Biology, 55 (1993), pp. 141-154.

[10] T. Gonzales, “Clustering to Minimize the Maximum Inter-Cluster Distance”, Theoretical Com-
puter Science 38 (1985), pp. 293-306.

[11] D. Hochbaum, D. Shmoys, “A unified approach to approximate algorithms for bottleneck
problems”, Journal of the ACM, 33(1986), pp. 533-550.

[12] P. Indyk, “On Approximate Nearest Neighbors in Non-Euclidean Spaces”, FOCS’98, pp. 148-
154.

[13] P. Indyk, R. Motwani, “Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality”, STOC’98, pp. 604-613.

[14] K. Jain and V. Vazirani, “Primal-Dual Approximation Algorithms for Metric Facility Location
and k-Median Problems”, FOCS’99.

[15] J. Kleinberg, “Two Algorithms for Nearest Neighbor Search in High Dimensions”, STOC’97,
pp. 599-608.

[16] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “ Efficient search for approximate nearest neigh-
bor in high dimensional spaces”, STOC’98, pp. 614-623.

[17] M. R. Korupolu, C. G. Plaxton, R. Rajamaran, “Analysis of a Local Search Heuristic for
Facility Location Problems”, SODA’98, pp. 1-10.

[18] S.R. Kosaraju, J.K. Park, C. Stein, “Long Tours and Short Superstrings”, FOCS’94.

[19] J. Lin, J.S. Vitter, “e-Approximations with Minimum Packing Constraint Violation”,
STOC92, pp. 771-782.

[20] J. Lin, J.S. Vitter, “Approximation Algorithms for Geometric Median Problems”, IPL 44
(1992), pp. 245-249.

[21] R.L. Rivest, J. Vuillemin, “On recognizing graph properties from adjacency matrices”, Theo-
retical Computer Science 3 (1976), pp. 371-384.

[22] B. Y. Wu, G. Lancia, V. Bafna, K Chao, R. Ravi, C. Y. Tang, “A Polynomial Time Approxi-
mation Scheme for Minimum Routing Cost Spanning Trees”, SODA’98, pp. 21-32.

[23] R. Wong, “Worst-case Analysis of Network Design Problem Heuristics”, SIAM .J. Alg. Discr.
Meth. 1 (1980), pp. 51-63.

12

