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LOW-DISTORTION EMBEDDINGS OF FINITE
METRIC SPACES

Piotr Indyk and Ji¥i Matousek

INTRODUCTION

An n-point metric space (X, D) can be represented by an n x n table specifying
the distances. Such tables arise in many diverse areas. For example, consider the
following scenario in microbiology: X is a collection of bacterial strains, and for
every two strains, one is given their dissimilarity (computed, say, by comparing
their DNA). It is difficult to see any structure in a large table of numbers, and so
we would like to represent a given metric space in a more comprehensible way.

For example, it would be very nice if we could assign to each x € X a point
f(z) in the plane in such a way that D(z,y) equals the Euclidean distance of f(x)
and f(y). Such a representation would allow us to see the structure of the metric
space: tight clusters, isolated points, and so on. Another advantage would be that
the metric would now be represented by only 2n real numbers, the coordinates
of the n points in the plane, instead of (’2‘) numbers as before. Moreover, many
quantities concerning a point set in the plane can be computed by efficient geometric
algorithms, which are not available for an arbitrary metric space.

This sounds too good to be generally true: indeed, there are even finite metric
spaces that cannot be exactly represented either in the plane or in any Euclidean
space; for instance, the four vertices of the graph K 3 (a star with 3 leaves) with the
shortest-path metric (see Figure 8.0.1a). However, it is possible to embed the latter
metric in a Euclidean space, if we allow the distances to be distorted somewhat.
For example, if we place the center of the star at the origin in R® and the leaves
at (1,0,0),(0,1,0), (0,0,1), then all distances are preserved approzimately, up to a
factor of v/2 (Figure 8.0.1b).

FIGURE 8.0.1

A nonembeddable metric space. a b

Approximate embeddings have proven extremely helpful for approximate solu-
tions of problems dealing with distances. For many important algorithmic problems,
they yield the only known good approximation algorithms.

The normed spaces usually considered for embeddings of finite metrics are the
spaces Eg, 1 < p < o0, and the cases p = 1,2, o0 play the most prominent roles.
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GLOSSARY

Metric space: A pair (X, D), where X is a set of points and D: X x X — [0, 00)
is a distance function satisfying the following conditions for all z,y,z € X:

(i) D(z,y) =0 if and only if z =y,
(ii) D(z,y) = D(y,x) (symmetry), and
(iii) D(z,y) + D(y,2) > D(z, z) (triangle inequality).
Separable metric space: A metric space (X, D) containing a countable dense

set; that is, a countable set Y such that for every x € X and every € > 0 there
exists y € Y with D(z,y) < e.

Pseudometric: Like metric except that (i) is not required.

Isometry: A mapping f: X — X', where (X, D) and (X', D") are metric spaces,
with D'(f(x), f(1)) = D(=,y) for all z,y.

(Real) normed space: A real vector space Z with a mapping || -||z: Z — [0, 0],
the norm, satisfying ||z|]|z = 0 iff z = 0, ||laz|lz = |o| - ||z]lz (@ € R), and
llz + yl|lz < |lz|lz + |lyl|z- The metric on Z is given by (z,y) + ||z — y||z-

£2: The space R? with the £,-norm |||, = (L, |x,~|p)1/p, 1 < p < oo (where
l[#]lco = max; |z4).

Finite £, metric: A finite metric space isometric to a subspace of ég for some d.

£,: For a sequence (z1,%2,...) of real numbers we set ||z, = (> e, |xi|p)1/p.
Then ¢, is the space consisting of all z with ||z||, < oo, equipped with the norm
Il - |lp- It contains every finite £, metric as a (metric) subspace.

Distortion: A mapping f: X — X', where (X, D) and (X', D') are metric spaces,
is said to have distortion at most ¢, or to be a c-embedding, where ¢ > 1, if there
is an r € (0,00) such that for all z,y € X,

r D(w,y) < Dl(f(x)af(y)) <ecr -D(a:,y).

If X' is a normed space, we usually require r = % orr =1.

Order of congruence: A metric space (X, D) has order of congruence at most
m if every finite metric space that is not isometrically embeddable in (X, D) has
a subspace with at most m points that is not embeddable in (X, D).

8.1

THE SPACES ¢,

8.1.1

THE EUCLIDEAN SPACES Eg

Among normed spaces, the Fuclidean spaces are the most familiar, the most sym-
metric, the simplest in many respects, and the most restricted. Every finite /5
metric embeds isometrically in £, for all p. More generally, we have the following
Ramsey-type result on the “universality” of /; see, e.g., [MS86]:
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THEOREM 8.1.1 Dvoretzky’s theorem (a finite quantitative version)

For every d and every € > 0 there ezists n = n(d,e) < 20(d/5*) gych that €3 can be
(14€)-embedded in every n-dimensional normed space.

Isometric embeddability in £» has been well understood since the classical works
of Menger, von Neumann, Schoenberg, and others (see, e.g., [Sch38]). Here is a brief
summary:

THEOREM 8.1.2

(i) (Compactness) A separable metric space (X, D) is isometrically embeddable
in € iff each finite subspace is so embeddable.

(ii) (Order of congruence) A finite (or separable) metric space embeds isometri-
cally in 0$ iff every subspace of at most d + 3 points so embeds.

(iii) For a finite X = {x0,%1,...,2n}, (X, D) embeds in €2 iff the nxn matriz
(D(z0, 2:)* + D(wo, x;)* — D(a, a:j)z)zjzl is positive semidefinite; moreover,
its rank is the smallest dimension for such an embedding.

(iv) (Schoenberg’s criterion) A separable (X, D) isometrically embeds in s iff the
matriz (e*’\D(“’“”J')Q)?j:1 is positive semidefinite for allm > 1, for any points
T1,L2,...,Ln € X, and for any A > 0. (This is expressed by saying that the
functions x — e”\zz, for all A > 0, are positive definite on £5.)

Using similar ideas, the problem of finding the smallest ¢ such that a given finite
(X, D) can be c-embedded in ¢5 can be formulated as a semidefinite programming
problem and thus solved in polynomial time [LLR95] (but no similar result is known
for embedding in ¢4 with d given!).

8.1.2 THE SPACES ¢¢

GLOSSARY

Cut metric: A pseudometric D on a set X such that, for some partition X =
AUB, we have D(z,y) = 0 if both z,y € A or both z,y € B, and D(z,y) = 1
otherwise.

Hypermetric inequality: A metric space (X, D) satisfies the (2k+1)-point hy-
permetric inequality (also called the (2k+1)-gonal inequality) if for every multi-
set A of k points and every multiset B of K+ 1 pointsin X, >-, ., 4 D(a,a’) +
Yopen DO,V) <3 capen D(a,b). (We get the triangle inequality for k = 1.)

Hypermetric space: A space that satisfies the hypermetric inequality for all k.

Cocktail-party graph: The complement of a perfect matching in a complete
graph Ko,,; also called a hyperoctahedron graph.

Half-cube graph: The vertex set consists of all vectors in {0,1}" with an even
number of 0’s, and edges connect vectors with Hamming distance 2.

Cartesian product of graphs G and H: The vertex set is V(G) x V(H), and
the edge set is {{(u,v), (u,v")} | u € V(G), {v,v'} € E(H)} U {{(u,v), (u,v)} |
{u,u'} € E(G),v € V(H)}. The cubes are Cartesian powers of K.

Girth of a graph: The length of the shortest cycle.
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The £, spaces are important for many reasons, but considerably more compli-
cated than Euclidean spaces; a general reference here is [DL97]. Many important
and challenging open problems are related to embeddings in ¢; or in £¢.

Unlike the situation in £, not every n-point ¢;-metric lives in £7; dimension of
order n? is sometimes necessary and always sufficient to embed n-point ¢;-metrics
isometrically (similarly for the other £,-metrics with p # 2).

The ¢; metrics on an n-point set X are precisely the elements of the cut cone;
that is, linear combinations with nonnegative coefficients of cut metrics on X.

Another characterization is this: A metric D on {1,2,...,n} is an ¢; metric iff
there exist a measure space (2, X, ) and sets Ay,..., A, € ¥ such that D(i,j) =

Every £, metric is a hypermetric space (since cut metrics satisfy the hypermetric
inequalities), but for 7 or more points, this condition is not sufficient. Hyperme-
tric spaces have an interesting characterization in terms of Delaunay polytopes of
lattices; see [DL97].

ISOMETRIC EMBEDDABILITY

Deciding isometric embeddability in #; is NP-hard. On the other hand, the em-
beddability of unweighted graphs, both in ¢; and in a Hamming cube, has been
characterized and can be tested in polynomial time. In particular, we have:

THEOREM 8.1.3

(i) An unweighted graph G embeds isometrically in some cube {0,1}™ with the
£y -metric iff it is bipartite and satisfies the pentagonal inequality.

(ii) An unweighted graph G embeds isometrically in £y iff it is an isometric sub-
graph of a Cartesian product of half-cube graphs and cocktail-party graphs.

A first characterization of cube-embeddable graphs was given by Djokovic
[Djo73], and the form in (i) is due to Avis (see [DL97]). Part (ii) is from Shpectorov
[Shp93].

ORDER OF CONGRUENCE

The isometric embeddability in ¢2 is characterized by 6-point subspaces (6 is best
possible here), and can thus be tested in polynomial time (Bandelt and Chepoi
[BC96]). The proof uses a result of Bandelt and Dress [BD92] of independent
interest, about certain canonical decompositions of metric spaces (see also [DL97]).

On the other hand, for no d > 3 it is known whether the order of congruence
of #¢ is finite; there is a lower bound of d? (for odd d) or d? — 1 (for d even).

8.1.3

THE OTHER p

The spaces ¢%, are the richest (and thus generally the most difficult to deal with);
every n-point metric space (X, D) embeds isometrically in £2 . To see this, write
X ={z1,%2,...,2,} and define f: X — (2 by f(z;); = D(z;,x;).

The other p # 1,2, 00 are encountered less often, but it may be useful to know
the cases where all £, metrics embed with bounded distortion in £;: This happens
iff p=gqg,orp=2,0rq=o00,0r1<gq<p<2. Isometric embeddings exist in all
these cases. Moreover, for 1 < g < p < 2, the whole of Eg can be (14+¢) embedded
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in Zqu with a suitable C = C(p, g,¢) (so the dimension doesn’t grow by much); see,
e.g., [MS86]. These embeddings are probabilistic. The simplest one is £ — £{4,
given by z — Az for a random +1 matrix A of size Cdxd (surprisingly, no good
explicit embedding is known even in this case).

8.2

APPROXIMATE EMBEDDINGS OF GENERAL METRICS
IN ¢,

8.2.1

BOURGAIN’S EMBEDDING IN £,

The mother of most embeddings mentioned in the next few sections, from both
historical and “technological” points of view, is the following theorem.

THEOREM 8.2.1 Bourgain [Bou85|

Any n-point metric space (X, D) can be embedded in £y (in fact, in every £,) with
distortion O(logn).

We describe the embedding, which is constructed probabilistically. We set
m = |log, n| and ¢ = |Clogn] (C a suitable constant) and construct an embedding
in £3'?, with the coordinates indexed by ¢ = 1,2,...,m and j = 1,2,...,q. For
each such i, j, we select a subset A;; C X by putting each z € X into A4;; with
probability 277, all the random choices being mutually independent. Then we set
f(z)ij = D(z, A;j). We thus obtain an embedding in Eg(logz ") (Bourgain’s original
proof used exponential dimension; the possibility of reducing it was noted later),
and it can be shown that the distortion is O(logn) with high probability.

This yields an O(n?logn) randomized algorithm for computing the desired
embedding. The algorithm can be derandomized (preserving the polynomial time
and the dimension bound) using the method of conditional probabilities; this result
seems to be folklore. Alternatively, it can be derandomized using small sample
spaces [LLR95]; this, however, uses dimension ©(n?). Finally, as was remarked
above, an embedding of a given space in ¢, with optimal distortion can be computed
by semidefinite programming.

The O(logn) distortion for embedding a general metric in ¢ is tight [LLR95]
(and similarly for £,, p < oo fixed). Examples of metrics that cannot be embedded
any better are the shortest-path metrics of constant-degree expanders. (An n-vertex
graph is a constant-degree expander if all degrees are bounded by some constant
r and each subset of k vertices has at least 3k outgoing edges, for 1 <k < & and
for some constant 8 > 0 independent of n.)

Another interesting lower bound is due to Linial et al. [LMNOQ2]: The shortest-
path metric of any k-regular graph (k > 3) of girth g requires Q(,/g) distortion for
embedding in #5.

8.2.2

THE DIMENSION OF EMBEDDINGS IN £,

If we want to embed all n-point metrics in ¢2 , there is a tradeoff between the di-
mension d and the worst-case distortion. The following result was proved in [Mat96]
by adapting Bourgain’s technique.
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THEOREM 8.2.2

For an integer b > 0 set ¢ = 2b—1. Then any n-point metric space can be embedded
in 02 with distortion c, where d = O(bn'/®logn).

An almost matching lower bound can be proved using graphs without short
cycles, an idea also going back to [Bou85]. Let m(g,n) be the maximum possible
number of edges of an n-vertex graph of girth g + 1. For every fixed ¢ > 1 and
integer g > c there exists an n-point metric space such that any c-embedding in
¢ has d = Q(m(g,n)/n) [Mat96]. The proof goes by counting: Fix a graph Gy
witnessing m(g,n), and let G be the set of graphs (considered with the shortest-path
metric) that can be obtained from Gy by deleting some edges. It turns out that if
G,G' € G are distinct, then they cannot have “essentially the same” c-embeddings
in ¢4, and there are only “few” essentially different embeddings in ¢4 if d is small.

It is easy to show that m(g,n) = O(n'*1/19/2]) for all g, and this is conjectured
to be the right order of magnitude [Erd64]. This has been verified for g < 7 and
for g = 10,11, while only worse lower bounds are known for the other values of
g (with exponent roughly 1 + 4/3g for g large). Whenever the conjecture holds
for some g = 2b — 1, the above theorem is tight up to a logarithmic factor for the
corresponding b. Unfortunately, although explicit constructions of graphs of a given
girth with many edges are known, the method doesn’t provide explicit examples of
badly embeddable spaces.

DISTANCE ORACLES

An interesting algorithmic result, conceptually resembling the above theorem, was
obtained by Thorup and Zwick [TZ01]. They showed that for an integer b > 0,
every m-point metric space can be stored in a data structure of size O(n't'/?)
(with preprocessing time of the same order) so that, within time O(b), the distance
between any two points can be approximated within a multiplicative factor of 2b—1.

LOW DIMENSION

The other end of the tradeoff between distortion and dimension d, where d is fixed
(and then all £,-norms on R? are equivalent up to a constant) was investigated in
[Mat90]. For all fixed d > 1, there are n-point metric spaces requiring distortion
Q (n¥/Ud+1/2]) for embedding in ¢4 (for d = 2, an example is the shortest-path
metric of K5 with every edge subdivided n/10 times). On the other hand, ev-
ery n-point space O(n)-embeds in £} (the real line), and O(n??1log®/? n)-embeds
in ¢4,d > 3.

8.2.3

THE JOHNSON-LINDENSTRAUSS LEMMA: FLATTENING IN £,

The n-point £5 metric with all distances equal to 1 requires dimension n — 1 for
isometric embedding in #;. A somewhat surprising and extremely useful result
shows that, in particular, this metric can be embedded in dimension only O(logn)
with distortion close to 1.

THEOREM 8.2.3 Johnson and Lindenstrauss [JL84]
For every € > 0, any n-point €5 metric can be (1+¢)-embedded in eg’“"g n/en),

There is an almost matching lower bound for the necessary dimension, due to
Alon (see [Mat02a]): Q(logn/(e?log(1/g))).
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All known proofs (see, e.g., [Ach01] for references and an insightful discussion)
first place the metric under consideration in /% and then map it into £¢ by a random
linear map A:¢% — (4. Here A can be a random orthogonal projection (as in
[JL84]). It can also be given by a random nxd matrix with independent N (0, 1)
entries [IM98], or even one with independent uniform random =+1 entries. The proof
in the last case, due to [Ach01], is considerably more difficult than the previous ones
(which use spherically symmetric distributions), but this version has advantages in
applications.

An embedding as in the theorem can be computed deterministically in time
O(n?d(logn + 1/¢)°M) [E1002] (also see [Siv02]).

Brinkman and Charikar [BC03] proved that no flattening lemma of comparable
strength holds in ¢;. Namely, for every fixed ¢ > 1, and every n, they exhibit an
n-point ¢;-metric that cannot be c-embedded into £¢ unless d = n‘*(1/ ). A simpler
alternative proof was found later by Lee and Naor (manuscript).

In contrast, [Ind00] showed that for every 0 < € < 1 and any ¢;-metric over
X C 44, there is a k x d real matrix [a; ...ax]T, k = O(log |X|/e?), such that for

any p,q € X, [|p— ¢lls < median(|ai(p —g),---,lar(p — ¢)]) < (1 +€)llp—qlls-

8.2.4

VOLUME-RESPECTING EMBEDDINGS

Feige [Fei00] introduced the notion of volume-respecting embeddings in £5, with
impressive algorithmic applications. While the distortion of a mapping depends
only on pairs of points, the volume-respecting condition takes into account the
behavior of k-tuples. For an arbitrary k-point metric space (S, D), we set Vol(S) =
SUPponexpanding f:5— ¢, EVOL(f(S)), where Evol(P) is the (k—1)-dimensional volume
of the convex hull of P (in #3). Given a nonexpanding f: X — ¢5 for some metric
space (X, D) with |X| > k, we define the k-distortion of f to be

Vol(s) \'/*=Y
SCx St (Evol(f(S))>

If the k-distortion of f is A, we call f (k, A)-volume-respecting.

If f: X — {3 is an embedding scaled so that it is nonexpanding but just so,
the 2-distortion coincides with the usual distortion. But note that for k£ > 2, the
isometric “straight” embedding of a path in /5 is not volume-respecting at all. In
fact, it is known that for any k > 2, no (k, o(y/log n))-volume-respecting embedding
of a line exists [DVO01].

Extending Bourgain’s technique, Feige proved that for every k > 2, every n-
point metric space has a (k, O(log n++/klogn log k))-volume-respecting embedding
in gz.

8.3

APPROXIMATE EMBEDDING OF SPECIAL METRICS
IN ¢,

GLOSSARY

G-metric: Let G be a class of graphs and let G € G. FEach positive weight
function w: E(G) — (0,00) defines a metric D,, on V(G), namely, the shortest-
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path metric, where the length of a path is the sum of the weights of its edges.
A metric space is a G-metric if it is isometric to a subspace of (V(G), D,,) for
some G € G and some w.

Tree metric, planar-graph metric: A G-metric for G, the class of all trees or
all planar graphs, respectively.

Minor: A graph G is a minor of a graph H if it can be obtained from H by
repeated deletions of edges and contractions of edges.

8.3.1 TREE METRICS, PLANAR-GRAPH METRICS, AND FORBIDDEN
MINORS

A major research direction has been improving Bourgain’s embedding in /> for
restricted families of metric spaces.

TREE METRICS

It is easy to show that any tree metric embeds isometrically in £;. Any n-point tree
metric can also be embedded isometrically in Qo) [LLR95]. For £, embeddings,
the situation is rather delicate:

THEOREM 8.3.1

Distortion of order (loglogn)™™(1/21/P) s sufficient for embedding any n-vertex
tree metric in £, (p € (1,00) fized) [Mat99], and it is also necessary in the worst
case (for the complete binary tree; [Bou86]).

Gupta [Gup00] proved that any n-point tree metric O(n'/(?=1))-embeds in £¢
(d > 1 fixed), and for d = 2 and trees with unit-length edges, Babilon et al.
[BMMV02] improved this to O(y/n ).

PLANAR-GRAPH METRICS AND OTHER CLASSES WITH A
FORBIDDEN MINOR

The following result was proved by Rao, building on the work of Klein, Plotkin,
and Rao.

THEOREM 8.3.2 Rao [Rao99]

Any n-point planar-graph metric can be embedded in £y with distortion O(/logn).
More generally, let H be an arbitrary fixed graph and let G be the class of all graphs
not containing H as a minor; then any n-point G-metric can be embedded in €2 with
distortion O(+/logn ).

This bound is tight even for series-parallel graphs (no K4 minor) [NRO2]; the
example is obtained by starting with a 4-cycle and repeatedly replacing each edge
by two paths of length 2.

A challenging conjecture, one that would have significant algorithmic conse-
quences, states that under the conditions of Rao’s theorem, all G-metrics can be
c-embedded in ¢; for some ¢ depending only on G (but not on the number of points).
Apparently, this conjecture was first published in [GNRS99], where it was verified
for the forbidden minors K4 (series-parallel graphs) and K> 3 (outerplanar graphs).
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8.3.2 METRICS DERIVED FROM OTHER METRICS

In this section we focus on metrics derived from other metrics, e.g., by defining a
distance between two sets or sequences of points from the underlying metric.

GLOSSARY

Uniform metric: For any set X, the metric (X, D) is uniform if D(p,q) = 1 for
allp#q,p,g € X.

Hausdorff distance: For a metric space (X, D), the Hausdorff metric H on the
set 2% of all subsets of X is given by H(A, B) = min(H (A4, B), H(B, A)), where
H(A, B) = sup,c 4 infre g D(a,b).

Earth-mover distance: For a metric space (X, D) and an integer d > 1, the
earth-mover distance of two d-element sets A, B C X is the minimum weight of
a perfect matching between A and B; that is, minyjective r:4—B Y, 4 D(a,7(a)).

Levenshtein distance (or edit distance): For a metric space M = (X, D), the
distance between two strings w,w’ € ¥* is the minimum cost of a sequence of
operations that transforms w into w’. The allowed operations are: character
insertion (of cost 1), character deletion (of cost 1), or replacement of a symbol
a by another symbol b (of cost D(a,b)), where a,b € X. The total cost of the
sequence of operations is the sum of all operation costs.

Fréchet distance: For a metric space M = (X, D), the Fréchet distance (also
called the dogkeeper’s distance) between two functions f,g:[0,1] — X is
defined as

inf sup D(f(t),g(n(t
o0 5P (f(t),g(x(t)))

where 7 is continous, monotone increasing, and such that 7(0) = 0,7 (1) = 1.

HAUSDORFF DISTANCE

The Hausdorff distance is often used in computer vision for comparing geometric
shapes, represented as sets of points. However, even computing a single distance
H(A, B) is a nontrivial task. As noted in [FCI99], for any n-point metric space
(X, D), the Hausdorff metric on 2% can be isometrically embedded in £7 .

The dimension of the host norm can be further reduced if we focus on em-
bedding particular Hausdorff metrics. In particular, let H§, be the Hausdorff
metric over all s-subsets of M. Farach-Colton and Indyk [FCI99] showed that
if M = ({1,...,A}* £,), then H, can be embedded in ¢% with distortion 1 + ¢,
where d' = O(s%(1/¢)°® log A). For a general (finite) metric space M = (X, D)

O(1) a
they show that Hj; can be embedded in /5, IX|"1og A 01 any @ > 0 with constant

distortion, where A = (minp.cx D(p,q))/(maxp 4ex D(p,q))-

EARTH-MOVER DISTANCE (EMD)

A very interesting relation between embedding EMD in normed spaces and em-
beddings in probabilistic trees (discussed below in Section 8.4.1) was discovered
in [Cha02]: If a finite metric space can be embedded in a convex combination of
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dominating trees with distortion ¢ (see definitions in Section 8.4), then the EMD
over it can be embedded in #; with distortion O(c). Consequently, the EMD over
any n-point metric can be embedded in ¢; with distortion O(logn).

LEVENSHTEIN DISTANCE AND ITS VARIANTS

The Levenshtein distance is used in text processing and computational biology.
The best algorithm computing the Levenshtein distance of two strings w,w’, even
approximately, has running time of order |w|-|w'| (for a constant-size ¥). Not much
is known about embeddability of this metric in normed spaces, even in the simplest
(but nevertheless quite common) case of the uniform metric over ¥ = {0,1}. It is
known, however, that the Levenshtein metric, restricted to a certain set of strings,
is isomorphic to the shortest path metric over K» , [ADG"03]; this implies that it
cannot be embedded in #; (or even the square of £3) with distortion better than
3/2—0(1/n).

However, if we modify the definition of the distance by permitting the move-
ment of an arbitrarily long contiguous block of characters as a single operation,
and if the underlying metric is uniform, then the resulting block-edit metric can
be embedded in ¢; with distortion O(log! - log* I), where [ is the length of the em-
bedded strings (see [MS00, CM02] and references therein). The modified metric has
applications in computational biology and in string compression. The embedding
of a given string can be computed in almost linear time, which yields a very fast
approximation algorithm for computing the distance between two strings (the exact
distance computation is NP-hard!).

FRECHET METRIC

The Fréchet metric is an interesting metric measuring the distances between two
curves. From the applications perspective, it is interesting to investigate the case
where M = ¢§ and f, g are continuous, closed polygonal chains, consisting of (say)
at most d segments each. Denote the set of such curves by Ck. It is not known
whether Cc’f, under Fréchet distance, can be embedded in ¢, with finite dimension
(for infinite dimension, an isometric embedding follows from the unversality of the
{+ norm). On the other hand, it is easy to check that for any bounded set S C £2,
there is an isometry f:S — C3,.

8.3.3

OTHER SPECIAL METRICS

GLOSSARY

(1,2)-B metric: A metric space (X, D) such that for any z € X the number of
points y with D(z,y) = 1 is at most B, and all other distances are equal to 2.
Transposition distance: The (unfortunately named) metric Dy on the set of

all permutations of {1,2,...,n}; Dr(m,m2) is the minimum number of moves of
contiguous subsequences to arbitrary positions needed to transform 7; into ms.
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BOUNDED DISTANCE METRICS

Trevisan [Tre01] considered approximate embeddings of (1,2)-B metrics in £§ (in a
sense somewhat different from low-distortion embeddings). Guruswami and Indyk

[GI03] proved that any (1,2)-B metric can be isometrically embedded in (Q(Blogm)

PERMUTATION METRICS

It was shown in [CMS01] that Dy can be O(1)-embedded in ¢;; similar results
were obtained for other metrics on permutations, including reversal distance and
permutation edit distance.

8.4

APPROXIMATE EMBEDDINGS IN RESTRICTED
METRICS

GLOSSARY

Dominating metric: Let D, D’ be metrics on the same set X. Then D’ domi-
nates D if D(z,y) > D'(z,y) for all z,y € X.

Convex combination of metrics: Let X be a set, T1,T5,...,T; metrics on
it, and ag, ..., ay nonnegative reals summing to 1. The convex combination of
the T; (with coefficients ;) is the metric D given by D(z,y) = Ele a;Ti(z,y),
z,y € X.

Hierarchically well-separated tree (k-HST): A 1-HST is exactly an ultra-
metric; that is, the shortest-path metric on the leaves of a rooted tree T' (with
weighted edges) such that all leaves have the same distance from the root. For
a k-HST with k > 1 we require that, moreover, A(v) < A(u)/k whenever v is
a child of w in T, where A(v) denotes the diameter of the subtree rooted at v
(w.l.o.g. we may assume that each non-leaf has degree at least 2, and so A(v)
equals the distance of v to the nearest leaves). Warning: This is a newer
definition introduced in [BBMO01]. Older papers, such as [Bar96, Bar98], used
another definition, but the difference is merely technical, and the notion remains
essentially the same.

8.4.1

PROBABILISTIC EMBEDDINGS IN TREES

A convex combination D = Y7_, o;T; of some metrics Ti,...,T, on X can be
thought of as a probabilistic metric (this concept was suggested by Karp).
Namely, D(z,y) is the expectation of T;(z,y) for i € {1,2,...,7} chosen at random
according to the distribution given by the «;. Of particular interest are embed-
dings in convex combinations of dominating metrics. The domination requirement
is crucial for many applications. In particular, it enables one to solve many prob-
lems over the original metric (X, D) by solving them on a (simple) metric chosen
at random from T, ..., T, according to the distribution defined by the «;.

The usefulness of probabilistic metrics comes from the fact that a sum of metrics
is much more powerful than each individual metric. For example, it is not difficult to
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show that there are metrics (e.g., cycles [RR98, Gup01]) that cannot be embedded
in tree metrics with o(n) distortion. In contrast, we have the following result:

THEOREM 8.4.1 Fakcharoenphol, Rao, and Talwar [FRT03]

Let (X, D) be any n-point metric space. For every k > 1, there exist a natural
number r, k-HST metrics Ty, T, ..., T. on X, and coefficients oy, .. .,a, > 0 sum-
ming to 1 such that each T; dominates D, and the (identity) embedding of (X, D)
into(X, D), where D =Y., a;T;, has distortion O((k/logk) -logn).

The first result of this type was obtained by Alon et al [AKPW95]. Their

embedding has distortion 20(v1egnloglogn) anq yses convex combinations of the
metrics induced by spanning trees of M. A few years later Bartal [Bar96] improved
the distortion bound considerably, to O(log” n) and later even to O(logn loglogn)
[Bar98]. The bound on the distortion in the theorem above is optimal up to a
constant factor for every fixed k, since any convex combination of tree metrics
embeds isometrically into ¢;.

The constructions in [Bar96, Bar98, FRT03] generate trees with Steiner nodes
(i.e., nodes that do not belong to X). However, one can get rid of such nodes in
any tree while increasing the distortion by at most 8 [Gup01].

An interesting extra feature of the construction of Alon et al. mentioned above
is that if the metric D is given as the shortest-path metric of a (weighted) graph
G on the vertex set X, then all the T; are spanning trees of this G. None of the
constructions in [Bar96, Bar98, FRT03] share this property.

The embedding algorithms in Bartal’s papers [Bar96, Bar98] are randomized
and run in polynomial time. A deterministic algorithm for the same problem was
given in [CCG198]. The latter algorithm constructs a distribution over O(n logn)
trees (the number of trees in Bartal’s construction was exponential in n).

8.4.2

RAMSEY-TYPE THEOREMS

Many Ramsey-type questions can be asked in connection with low-distortion em-
beddings of metric spaces. For example, given classes X and ) of finite metric
spaces, one can ask whether for every n-point space Y € Y there is an m-point
X € X such that X can be a-embedded in Y, for given n,m, a.

Important results were obtained in [BBMO1], and later greatly improved and
extended in [BLMNO3], for X" the class of all k-HST and Y the class of all finite
metric spaces; they were used for a lower bound in a significant algorithmic problem
(metrical task systems). Let us quote some of the numerous results of Bartal et al.:

THEOREM 8.4.2 Bartal, Linial, Mendel, and Naor [BLMNO03]

Let Rum(n, a) denote the largest m such that for every n-point metric space Y there
exists an m-point 1-HST (i.e., ultrametric) that a-embeds in Y, and let Ra(n,q)
be defined similarly with “ultrametric” replaced with “Fuclidean metric.”

(i) There are positive constants C,Cy,c such that for every a > 2 and all n,

nt=C1llog®)/® < Ryyi(n,a) < Ry(n,a) < Cn' />

(ii) (Sharp threshold at distortion 2) For every o > 2, there exists c(a) > 0 such
that Ry(n,a) > Rum(n,a) > n@ for all n, while for every a € (1,2), we
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have c'(a)logn < Ruym(n,a) < Ra(n,a) < 2logn + C'(a) for all n, with
sustable positive ¢'(a) and C'(a).

For embedding a k-HST in a given space, one can use the fact that every
ultrametric is k-equivalent to a k-HST. For an earlier result similar to the second
part of (ii), showing that the largest Euclidean subspace (1+¢)-embeddable in a
general n-point metric space has size ©(logn) for all sufficiently small fixed £ > 0,
see [BFM86].

8.4.3 APPROXIMATION BY SPARSE GRAPHS

GLOSSARY

t-spanner: A subgraph H of a graph G (possibly with weighted edges) is a ¢-
spanner of G if Dy (u,v) <t- Dg(u,v) for every u,v € V(QG).

Sparse spanners are useful as a more economic representation of a given graph
(note that if H is a t-spanner of G, then the identity map V(G) — V(H) is a
t-embedding).

THEOREM 8.4.3 Althofer et al. [ADD93]

For every integert > 2, every n-vertex graph G has a t-spanner with at most m(t,n)
edges, where m(g,n) = O(n*1t1/19/2]Y is the mazimum possible number of edges of
an n-vertezx graph of girth g + 1.

The proof is extremely simple: Start with empty H, consider the edges of G
one by one from the shortest to the longest, and insert each edge into the current
H unless it creates a cycle with at most ¢ edges. It is also immediately seen that
the bound m(t,n) is the best possible in the worst case.

Rabinovich and Raz [RR98] proved that there are (unweighted) n-vertex graphs
G that cannot be t-embedded in graphs (possibly weighted) with fewer than
m(Q(t),n) edges (for t sufficiently large and n sufficiently large in terms of ¢).
Their main tool is the following lemma, proved by elementary topological consider-
ations: If H is a simple unweighted connected n-vertex graph of girth g and G is a
(possibly weighted) graph on at least n vertices with x(G) < x(H), then H cannot
be c-embedded in G for ¢ < g/4—3/2; here x(G) denotes the Euler characteristic
of a graph G, which, for G connected, equals |E(G)| — |[V(G)| + 1.

8.5

ALGORITHMIC APPLICATIONS OF EMBEDDINGS

In this section we give a brief overview of the scenarios in which embeddings have
been used in the design of algorithms and for determining computational complex-
ity. For a more detailed survey, see [Ind01].

The most typical scenario is as follows. Suppose we have a problem defined
over a set of points in a metric space M. If the metric space is “complex” enough,
the problem is likely to be NP-hard. To solve the problem, we embed the metric in
a “simple” metric M', and solve the problem there. This gives an approximation
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algorithm for the original problem, whose approximation factor depends on the
distortion of the embedding.

The implementation of this general paradigm depends on “complex” and “sim-
ple” metrics M and M'. The most frequent scenarios are as follows:

1. General metrics — tree metrics. 'This approach uses the theorems of [Bar98,
FRTO03], which enable the embedding of an arbitrary finite metric space, in a
“probabilistic” way, in tree metrics, with low distortion. It is not difficult to
see that if the goal of the original problem is to minimize a linear function of
the interpoint distances, then the properties guaranteed by the above embed-
ding are sufficient to show that given a c-approximation algorithm for HST’s
(or trees, resp.), one can construct an O(clogn loglogn)-approximation (or
O(clogn)-approximation, resp.) algorithm for the original metric. Since the
random choice of a tree does not depend on the function to be optimized, this
approach works even if the optimization function is not known in advance.
Thus, this approach has been very successful for both offline and online prob-
lems. In particular, it led to a polylog(n)-competitive algorithm [BBBT97]
for metrical task systems, resolving a long-standing conjecture. In the latter
paper, the embedding in HST’s (as opposed to general trees) is crucial to
obtain the result.

2. General metric — low-dimensional normed spaces. In this case we use Bour-
gain’s or Matousek’s theorem to obtain a low-dimensional approximate rep-
resentation of a metric. Since the host metric is low-dimensional, each point
can be represented using a small number of bits. This has interesting conse-
quences for approximate proximity-preserving labeling [Pel99, GPPRO1].

3. Specific metrics — normed spaces. This approach uses the results of Sec-
tion 8.3.2, which provide embeddings of certain metrics (e.g., Hausdorff or
Levenshtein metrics) in normed spaces. This enables the use of algorithmic
tools designed for normed spaces (see, e.g., Chapter 39 of this Handbook) for
problems defined over more complex metrics.

4. High-dimensional spaces — low dimensional spaces. Here, we use dimen-
sionality reduction techniques, notably the Johnson-Lindenstrauss theorem.
In this way, we reduce the dimension of the original space to O(logn), which
yields significant savings in the running time and/or space. The improve-
ment is particularly impressive if an algorithm for the original problem uses
space/time ezponential in the dimension (see, e.g., Chapter 39).

We note, however, that for most applications, the embedding properties listed
in the statement of Theorem 8.2.3 are not sufficient. Instead, one must often
use additional properties of the embedding, such as:

e The embedding is chosen at random, independently of the input point
set. This property is crucial in situations where not all points are known
in advance (e.g., for the nearest neighbor problem).

e The mapping is linear. This property is used, e.g., for dimensionality
reduction theorems for hyperplanes (i.e., when the input set can consist
of points, lines, planes etc.) [Mag02], and for low-space computation as
described below.
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e The coefficients of the mapping matrix are chosen independently of each
other (this property holds for some but not all proofs of dimensionality
reduction theorems). This property is useful, e.g., if we want to ob-
tain deterministic versions of dimensionality reduction theorems [Ind00,
Siv02, EIO02], which have applications to the derandomization of ap-
proximation algorithms based on semidefinite programming.

5. “Complex” normed spaces — “simple” normed spaces. The “complexity” of
a normed space clearly depends on the problem we want to solve. For exam-
ple, if we want to find the diameter of a set of points, it is very helpful if the
interpoint distances are induced by the 4 norm. In this case, the diameter of
the point set is equal to the maximum diameter of all one-dimensional point
sets, obtained by projecting the (d-dimensional) points onto one of the coor-
dinates. Thus approach gives an O(nd) time for computing the diameter in
12 . However, from Section 8.1 we know that the space [{ can be isometrically
embedded in lgz_l. Thus, we obtain a linear-time (assuming constant dimen-
sion) algorithm for computing the diameter in the /; norm. Other embedding
results described in Section 8.2 have similar algorithmic applications as well.

A second type of result involves using the embeddings in the “reverse” direc-
tions, in order to derive lower bounds. Specifically, in order to show a hardness
result for a metric M', it suffices to show that a given problem is hard (to approx-
imate) in a metric M that can be embedded in M'. This approach has been used
to prove the following results:

e In [Tre01, GIO3], it was shown that certain geometric problems (e.g., TSP)
are hard to approximate even in ©(logn) dimensions. This was achieved by
embedding (1,2)-B metrics (known to be the “hard” cases) in 15(°8™.

¢ In [BBMO1], it was shown that certain online problems (metrical task systems)
do not have Q(log n/log®® log n)-competitive algorithms. This was achieved
by showing that “large” HST metrics can be embedded in arbitrary finite
metrics, and proving a lower bound for HST metrics.

Finally, embeddings can be used for problems that, at first sight, do not seem to
be “metric” in nature. Notable examples of such an application are approximation
algorithms for graph problems, such as the algorithm of [LLR95] for the sparsest
cut problem and for graph bandwidth [Fei00]. In particular, the former problem
can be phrased as finding a cut metric minimizing a certain objective function.
Although the problem is NP-hard, its relaxation that requires finding just a metric
(minimizing the same objective function) can be solved in polynomial time via linear
programming. The algorithm proceeds by embedding the solution metric in /; (with
low distortion) and decomposing it into a convex combination of cut metrics. It
can be shown that that one of those cut metrics provides an approximate solution
to the sparsest cut problem.

Another area whose relation to embeddings is not a priori apparent is low-
space computing. A prototypical example of such a problem is a data structure
that maintains a d-dimensional vector z (under increments/decrements of z’s coor-
dinates). When queried, the data structure reports an approximate value of ||z||p.
In particular, the case p = 0 corresponds to maintaining an approximate number
of nonzero coordinates. Alternatively, one could request a succinct (e.g., piecewise
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constant with few pieces) approximation of z, viewed as a function from {1, ...,
into the reals. Such problems are motivated by database applications.

In order to obtain low-storage algorithms solving such problems, we can ap-
ply dimensionality reduction techniques to reduce the dimension, while approxi-
mately preserving important properties of z (e.g.,
approximation). In this way, we only need to store the image Az of z. Since the
update operations on x are linear, they can be easily transformed into operations
One also has to ensure that there is no need to store the description of
pseudorandom” matrix A is good

on Az.

A explicitly; this is done by showing that a

enough [AMS99, Tnd00).

«

its norm, or its best succinct

TABLE 8.5.1 A summary of approximate embeddings

FROM TO DISTORTION REFERENCE
any lp, 1<p< o0 O(logn) [Bou85]
constant-degree expander Ly, p < oo fixed Q(logn) [LLR95]
k-reg. graph, k > 3, girth g 12 Q(/9) [LMNO2]
1/b
any £Qbn """ logn) 2—1,b=1,2,... | [Mat96]
some Q(n1/®)-dim’lL. 2b—1, b=1,2,. .. [Mat96]
normed space (Erdds’s conj.!)
any o O(n) [Mat90]
any EZ, d fixed O(nz/d log®/%n [Mat90]
( 1/1(dF1)/2])
2
£ metric Qs /™) 1+e [JL84]
£1 metric g 0<a<1 Qa—1/2) [BCO3]
planar or forbidden minor 123 O(4/logn) [Ra099]
series-parallel 123 Q(4/logn) [NRO2]
2
planar Eooo(log ) 0(1) implicit in [Ra099]
outerplanar or series-parallel I 0(1) [GNRS99]
tree 21 1 (folklore)
tree Q1o ™) 1 [LLRY5]
tree £o O((loglogn)1/2) [Bou86, Mat99]
tree o O(nl/(d—1)) [Gup00]
tree, unit edges 2 o(v/n) [BMMV02]
Hausdorff metric over (X, D) X 1 [FCI99]
sOM) | X|* log A
Hausd. over s-subsets of (X, D) | {o c(a) [FCI99]
2 o(k)
Hausd. over s-subsets of £ Efx,(l/g) log & 1+e [FCI99]
EMD over (X, D) 0 O(log | X ) [Cha02, FRT03]
Levenshtein metric 4 > 3/2 [ADG103]
block-edit metric over $¢ 4 O(logd - log* d) [MS00, CM02]
(1,2)-B metric £Q(Blogm) 1 [c103];
or £p cf. [Tre01]
any convex comb. of O(logn) [FRTO03]
dom. trees (HSTs)
any convex comb. of 20(Vlognloglogn) | [AKPWY5]

spanning trees
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8.6

OPEN PROBLEMS AND WORK IN PROGRESS

The time of writing of this chapter (2002) seems to be a period of particularly rapid
development in the area of low-distortion embeddings of metric spaces. Many sig-
nificant results have recently been achieved, and some of them are still unpublished
(or not yet even written). We have tried to mention at least some of them, but it
is clear that some parts of the chapter will become obsolete very soon.

Instead of stating open problems here, we refer to a list recently compiled by
the second author [Mat02b]. It is available on the Web, and it might occassionally
be updated to reflect new developments.

8.7

SOURCES AND RELATED MATERIAL

Discrete metric spaces have been studied from many different points of view, and
the area is quite wide and diverse. The low-distortion embeddings treated in this
chapter constitute only one particular (although very significant) direction. For
recent results in some other directions the reader may consult [Cam00, DDL9S,
DD96], for instance. For more detailed overviews of the topics surveyed here, with
many more references, the reader is referred to Chapter 15 in [Mat02a] (including
proofs of basic results) and [Ind01] (with emphasis on algorithmic applications), as
well as to [Lin02]. Approximate embeddings of normed spaces are treated, e.g., in
[MS86]. A recent general reference for isometric embeddings, especially embeddings
in 44, is [DLOT].

RELATED CHAPTERS

Chapter 39: Nearest neighbors in high-dimensional spaces
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