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Abstract

In this paper we consider the k-clustering problem for

a set S of n points pi = (~i) in the d-dimensional space

with variance-based errors as clustering criteria, moti-

vated from the color quantization problem of comput-

ing a color lookup table for frame buffer display. As

the inter-cluster criterion to minimize, the sum of intra-

cluster errors over every cluster is used, and as the int ra-

cluster criterion of a cluster Sj,

P, Es,

is considered, where 1] . II is the L2 norm and it(Sj) is

the centroid of points in Sj, i.e., (1/lSjl) ~P,e~j ~i. The

cases of Q = 1, 2 correspond to the sum of squared errors

and the all-pairs sum of squared errors, respectively.

The k-clustering problem under the criterion with

a = 1, 2 are treated in a unified manner by charac-

terizing the optimum solution to the k-clustering prob-

lem by the ordinary Euclidean Voronoi diagram and the

weighted Voronoi diagram with both multiplicative and

additive weights. With this framework, the problem

is related to the generalized primary shutter function

for the Voronoi diagrams. The primary shutter func-

tion is shown to be O(nOf~dJ ), which implies that, for

fixed k, this clustering problem can be solved in a poly-

nomial time. For the problem with the most typical

intra-cluster criterion of the sum of squared errors, we

also present an efficient randomized algorithm which,

roughly speaking, finds an e-approximate 2-clustering
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in 0(n(l/6)d) time, which is quite practiczd and may

be used to real large-scale problems such as the color

quantization problem.

1 Introduction

Clustering is the grouping of similar objects and a clus-

tering of a set is a partition of its elements that is cho-

sen to minimize some measure of dissimilarity. It is very

fundamental and used in various fields in computer sci-

ence such as pattern recognition, learning theory, im-

age processing and computer graphics. There are vari-

ous kinds of measure of dissimihwity, called criteria, in

compliance with the problem.

Definition of the k-clustering problem: The gen-

eral k-clustering problem can be defined as follows. A

k-clustering is a partition of the given set S of n points

pi = (xi) (i = 1 ,. ... n) in the d-dimensional spaxe into

k disjoint nonempty subsets S1,. . . . Sk, called clusters.

A k-clustering is measured by the following two criteria.

(Intra-cluster criterion) For each cluster Sj, the

measure (or error) Intra(Sj ) of Sj, representing how

good the cluster Sj is, is defined appropriately by

applications. Typical intra-cluster criteria are the di-

ameter, radius, variance, variance multiplied by lSj I

(sum of squared errors) and variance multiplied by

lSj12 (all-pairs sum of squared errors) of point set S’j.

(Inter-cluster criterion) The inter-cluster criterion

defines the total cost of the k-clustering, which is a

function of Intra(Sj) (j = 1,..., k) and is denoted

by Inter(yl, y2,. . . , y~) where yj = Intra(Sj). Typi-

csl function forms are max{ yj I j = 1, . . . . k } and

~t=, Yk.

Then, the k-clustering problem is to find a k-clustering

which minimizes the inter-cluster criterion:

rein{ Inter(Intra(Sl ),.. ., Intra(Sk)) I

k-clustering (Sl,. . . . Sk) of S }

Previous results concerning diameter and ra-

dius: In computational geometry, many results have
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been obtained for the clustering problem. The di-

ameter and radius problems are rather well studied.

They include an O(n log n)-time algorithm for finding

a 2-clustering of n points in the plane which mini-

mizes the maximum diameter (Asano, Bhattacharya,

Keil and Yao [1]), an O(n2 logz n)-time algorithm for

finding a 3-clustering of planar point set which mini-

mizes the maximum diameter (Hagauer and Rote [5]),

and an O(n logz n/ log log n)-time algorithm for finding

a 2-clustering which minimizes the sum of the two di-

ameters (Hershberger [10]). When k is regarded as a

variable, most k-clustering problems become NP-hard

(e.g., see Megiddo and Supowit [14], Feder and Greene

[4]). For fixed k, the k-clustering problem using the

diameter and radius as the intra-cluster criterion and

a monotone function, including taking the maximum

and the summation, as the inter-cluster criterion can

be solved in a polynomial time (Capoyleas, Rote and

Woeginger [3]).

There are also proposed approximate algorithms for

the diameter and radius whose approximation ratio is

theoretically guaranteed. Feder and Greene [4] gave op-

timal approximate algorithms whose running time is

O(n log k) for n points in the d-dimensional space for

fixed d, and whose worst-case ratio is 2.

Motivation for the variance-based clustering: In

this paper, we consider the k-clustering problem with

variance-based measures as an intra-cluster criterion.

This is motivated from the color quantization prob-

lem of computing a color lookup table for frame buffer

display. Typical color quantization problems cluster

hundreds of thousands of points in the RGB three-

dimensional space into k = 256 clusters. Since k is

large, a top-down approach to recursively divide the

point set into 2 clusters is mostly employed. In this

problem, the diameter and radius are not suited as an

intra-cluster criterion, and the variance-based (Wan,

Wong and Prusinklewicz [15]) and L1-based (median

cut; Heckbert [9]) criteria are often used. In [15], [9],

the top-down approach is used and in solving the 2-

clustering problem both only treat separating planes

orthogonal to some coordinate axis. These algorithms

are implemented in rlequant of Utah Raster Toolkit,

and ppmquent of X11R5 or t if f median of Tiff Soft. Al-

though these implementations run rather fsst in prac-

tice, roughly speaking in O(n log n) time, there is no

theoretical guarantee about how good their solution k-

clusterings are.

Rigorous definition of the variance-based clus-

tering: Therefore, it is required to develop a fast 2-
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clustering algorithm and to determine the complexity

of the k-clustering problem for the varianc(e-based case.

Before describing the existing computation&geometric

results concerning variance-based case, let us define the

variance-based intra-cluster criterion in a rigorous way.

The variance Var(S) of points pi = (zi) in S is defined

by .

where z(S) is the centroid of S:

For a parameter a, define Var”(S) by

Var”(s)= pyvar(s).
VarO is exactly the variance itself. Varl is represented

as

VS#(s)= ~ llz~ - Z(s)[y

and hence is the sum of squared errors with respect to

the centroid of S. Var2 is represented as

var2(s)=Isl~ lla?~ - Z(S)I12

yJt,pl Es, i-a

and hence is the all-pairs sum of squared, errors in S.

Adopting Var” as the intra-cluster metric, as a becomes

larger, the sizes of clusters in an optimum k-clustering

becomes more balanced.

Previous results on the variance-based cluster-

ing: For the variance-based criteria, unlike the di-

ameter and radius, the k-clustering problem adopting

the maximum function as the inter-cluster criterion be-

comes hard to solve. For this inter-cluster criterion

with the all-pairs sum of squared errors, only a pseudo-

polynomial approximation scheme is known (Ha.segawa,

Imai, Inaba, Katoh and Nakano [7]). Also, in applica-

tions such as the color quantization problem, the sum-

mation function is adopted as an inter-cluster crite-

rion [15]. In this paper, we consider only the summa-

tion case, that is, the k-clustering problem to minimize

the summation of variance-based intra-cluster costs over

clusters.

For the variance-based clustering problem with the

summation function as an inter-cluster m~etric, the fol-

lowing are known. Concerning Varl, the sum of squared

errors, it is well known that an optimum ~2-clustering is

linearly separable and that an optimum k-clustering is

induced by the Voronoi diagram generated by k points

(e.g., see [2, 7, 15]). Using this characterization together



with standard computational-geometric techniques, the

2-clustering problem with Varl as the intra-cluster met-

ric can be solved in 0(n2) time and O(n) space, and the

k-clustering problem is solvable in a polynomial time

when k, is fixed [7]. Concerning Var2, the all-pairs sum

of squared errors, an optimum 2-clustering is circularly

separable (Boros and Hammer [2]), and a finer charac-

terization by using the higher-order Voronoi diagram is

given in [7]. Using this characterization, the 2-clustering

problem with Var2 as the intra-cluster metric can be

solved in O(nd+l ) time, and also it is seen that the

k-clustering problem for this case can be solved in a

polynomial time 0(nfd+lJk(k-1)/2) when k is fixed [6].

There is also proposed an approximate algorithm for

the k-clustering problem with Varl as an intra-cluster

metric. Hasegawa, Imai, Inaba, Katoh and Nakano [7]

gave an O(nk+l )-time algorithm for fixed d whose worst-

case ratio is 2. This algorithm solve the k-clustering

problem with constraining the representative point of

each cluster to be one of points in the cluster.

Our results: In this paper, the k-clustering problem

under the intra-cluster criterion Var” with a = 1,2 is

treated in a unified way by characterizing the optimum

solution to the k-clustering problem by the ordinary

Voronoi diagram and the weighted Voronoi diagrams

with both multiplicative and additive weights.

With this framework, the problem is related to the

generalized primsxy shutter function for the Voronoi

diagrams, which is roughly the number of parti-

tions of n points in the d-dimensional space induced

by the Voronoi diagram generated by k generator

points. The primary shutter function of the Eu-

clidean Voronoi diagram is shown to be O(ndk ), and

that for the Voronoi diagram with additive and multi-

plicative weights O(n(d+2Jk). Bssed on these, the k-

clustering problem for n points in the d-dimensional

space with a variance- bssed criterion can be solved in
O(n(d+z)k+l ) time. This greatly improves the previous

bound 0(n0(dk2)). We have thus given a polynomial-

time algorithm for the case of fixed k, but its degree is

large even for moderate vaJues of d and k.

To develop a practically useful 2-clustering slgorithm,

for the problem with the most typiczd intra-cluster crite-

rion of the sum of squared errors, we present an efficient

randomized algorithm which, roughly speaking, finds an

c-approximate 2-clustering in O(n(l/c)d) time, which is

quite practical and may be used to real large-scale prob-

lems such as the color quantization problem. In the

analysis, a fact that this intra-cluster cost has its statis-

tical meanings by definition is used. This randomized

algorithm can be easily generalized to the k-clustering

problem.

2 A unified approach to the

variance-based k-clustering by

weighted Voronoi diagrams

The vsriance-based k-clustering problem is described as

follows:

k

rein{ ~ Vara(Sj) I k-clustering (S1,. ... Sk) of S }
j=l

In [7], a parametric characterization wss given for the

case of a = 2 (all-pairs case) by using a general paramet-

ric technique for minizing quasiconcave functions de-

veloped by Katoh and Ibaraki [12], which enabled us

to characterize an optimal 2-clustering for a = 2 by

means of higher-order Voronoi diagram, and to obtain

a pseudo polynomial approximation scheme for the 2-

clustering problem for Var2 and the maximum function

as the inter-cluster metric.

In this paper, we concentrate on the case where the

summation function is adopted for the inter-cluster cri-

terion, and give a more direct characterization for the

problem with a = 1,2.

We may make use of partitions of n points induced

by weighted Voronoi diagrams. Consider k points

qj = (Pj) in the d-dimension~ space with multiplicative
weight ~j and additive weight ~j (~ = 1, . . . . k). Define

the Voronoi region Vor(qj) of qj by

Vor(qj) = fi{p = (~) I

For any point in Vor(qj), qj is the closest point among

ql(l= l,.. ., k) with respect to the weighted distance.

VOr(qj) (J’ = 1,..., k) partitions the space, which is

called the weighted Voronoi diagram generated by these

k points qj. When flj =Oandvj =l(~=l,..., k),

this weighted Voronoi diagram reduces to the ordinary

Euclidean Voronoi diagram.

By the Voronoi diagram generated by these k

weighted points, n points in the given set S are nat-

urally partitioned into k clusters (we here ignore the

case in this definition where a point in S is equidistant

from two points among these k weighted points). We

call this partition a Voronoi partition of n points in S by

k weighted generators. Apparently, not all k-clusterings

are Voronoi partitions. In fact, we can characterize op-

timal k-clusterings by the Voronoi partition. The csse

Of cl= 1 is well known, and we here state only the
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theorem,

Theorem 1 ([2, 7, 15]) Suppose that (SJ,.. ., S;) is

an optirnurn k-clustering for the k-clustering problem

with Varl (a = 1) as the intra-cluster metric. Then,

an optimum k-clustering is a Vorono~ partitton by the

ordinary Euclidean Voronoz diagram for k points qj =

(P;) (P; = ~(s;)). ❑

Now, we prove the following theorem for the case of

Var2, i.e., all-pairs sum of squared errors.

Theorem 2 Suppose that (S:,..., S; ) is an optimum

k-clustering for the k-clustering problem with Var2 (a =

2) as the intra-cluster metric. Then, an optimum lc-

clw.stering is a Voronoi partition by the weighted Voronoi

diagram for k points qj = (p;) (P; = z(S~)) with multi-

plicative weight v; = IS; [ and additive weight aj defined

bY ‘j = EP,ES; ]/2, - Z(S;)[12.

Proof: First, observe the following relation.

~ lpi -412

PIES,

where it should be noted that ~p, ~S, (Z; – z(Sj )) = 0.

Now, suppose that, in the weighted Voronoi diagram

above, a point pi c S; is not contained in Vor(qj)

for qj = (z(S~)), and is in Vor(qj, ). Then, moving

pi from S; tO SJ,, the total cost is strictly reduced

from the above formula (note that Var2 is the all-pairs

sum of squared errors), which contradicts the optimsl-

ity Of(Sf, ..., S~). Hence, each pj c S; is contained in

Vor(qj) for j’ = 1,..., k, and the theorem follows. IJ

By Theorem 1 and Theorem 2, the variance-based

k-clustering problem with a = 1,2 can be solved by

enumerating all the Voronoi partitions of n points gen-

erated by k weighted points, and finding a partition with

minimum one.

The number of distinct Voronoi partitions has strong

connection with the generalized primary shutter func-

tion for k-label space introduced by Hasegawa [6, 8]

which hss applications in computatiomd learning the-

ory. We here anslyze this number by showing that

Voronoi partitions are duals of arrangements of alge-

brsic surfsces in the O(a%)-dimensional space.

Theorem 3 The number of Voronoi partitions of n

points by the Euclidean Voronoz diagram generated by

k points in the d-dimensional space is O(ndk), and all

the Voronoi partitions can be enumerated :in O(ndk+l )

time.

Proofi In the ordinary Voronoi diagram, all multiplica-

tive weights are one and all additive weights are zero,

i.e., vj =1, aj=o(j=l ,..., k). Parameters are ~j

(j=l ,. ... k). Consider the (dk)-dimensional vector

space consisting of p with P = (pl, p2, . . . ,Pk). In this

(dk)-dimensiomd space, we can define an equivalence

relation among points such that two points are in the

equivalence relation if their corresponding Voronoi par-

titions are identical. The equivalence relation produces

a subdivision of this space into equivalence classes.

For each pair of distinct Pjl and Pj, among Pj

(j=l ,. ... k) and each point pi = (Zi) among pi

(2 =1,... , n), consider an slgebraic surface in this dk-

dimensional space defined by

[Izi - Pjl [12- l]~i - ~j,[12 = O

where ~i is regarded sa a constant vector,, The num-

ber of such surfaces is nk(k – 1)/2. The arrangement

of these nk(k – 1)/2 algebraic surfaces coincides with

the subdivision defined by the equivalence relation from

Voronoi partitions. The number of Vorormi partitions

is bounded by the combinatorial complexity of the ar-

rangement of nk (k —1)/2 constant-degree algebraic sur-

faces, and the theorem follows. Q

A further detailed analysis about the primary shut-

ter function of the k-Voronoi space is done by Ishiguro

[11]. In that paper, the linearization technique is ap-

plied in the analysis, and an algorithm using hyperplane

arrangements is given based on it. Also, an application

of the primary shutter function to learning an unknown

k-Voronoi space from examples is shown.

Theorem 4 The number of Voronoi partitions of n

points by the weighted Voronoi diagram generated by k

wetghted points with a multiplicative weight and an ad-

ditive weight in the d-dimensional space is 0(n(d+2Jk),

and all the Voronoi partitions can be enumerated in
O(n(d+’)k+l ) time. •l

The proof is similar, and is omitted in this version.

Combining these results, we have the following.

Theorem 5 (1) The k-clustering problem ,for Var~ can

be solved in O(ndk+l ) time.

(2) The k-clustering problem for Var2 can be solved

in 0(n(d+2)k+1) time.

It should be noted that, from the linear separability

or circular separability, of an optimum 2-clustering for

335



Varl aid Var2, respectively, as shown by [2, 7], the k-

clustering problem for Varl and Var2 is readily seen to

be solvable in O(n ~~(~-l)/z) and o(n(~+l)~(~–l)jz) time,

respectively, using similar arguments in [3] for the diam-

eter and radius. Only with the linear/circular separa-

bility for the 2-clustering, an algorithm of order n“tdkz)

may be best possible for the k-clustering problem. Our

algorithms run in O(n”(dk) ) time, and improve the

) ound greatly. This becomes possible byO(nO(@) b

the fine characterization of optimum k-clusterings by

the weighted Voronoi diagram, and by evaluating the

primary shatter function of the weighted Voronoi parti-

tions in a tighter manner.

3 Randomized algorithms for

the case of the sum of squared

errors

The results in the previous section are interesting from

the theoretical viewpoint, and the time complexity is

polynomizd when k is considered as a constant. How-

ever, even for k = 3,4,5, its polynomizd degree is

quite high, which makes it less interesting to implement

the algorithms for practical problems such as the color

quantization problem. The k-clustering problem is NP-

complete in general when k is regaxded ss a variable,

and in this respect the results are best possible we may

expect to have.

To develop a practically useful algorithm, utilizing

randomization may be a good candidate, since the intra-

cluster metric we are using has its intrinsic statistical

meanings. In this section, we develop randomized algo-

rithms for the k-clustering problem with Varl, the sum

of squared error, as the intra-cluster metric.

In this extended abstract, we mainly consider the 2-

clustering problem with VSX1, but most of the follow-

ing discussions carry over to the k-clustering problem.

First, let us consider how to estimate Varl (S) for the

set S of n points pi = (zi) (i = 1,. ... n) by random

sampling. Let T be a set of m points obtained by m

independent draws at random from S. If the original

point set S are uniformly located, (n/(m – l))Varl (T)

may be a good estimate for Varl (S). However, this is

not necessarily the case. For example, suppose that a

point pi in S is far from the other n – 1 points in S,

and the other n – 1 points are very close to one another.

Then, Varl (S) is nearly equal to the squared distance

between pi and a point in S – {pi}, while with high

probability Var* (T) is almost zero. This indicates that

Varl (T) cannot necessarily provide a good estimate for

Vd (s).
On the other hand, the centroid z(T) of T is close to

the centroid z(S) of S with high probability by the law

of large numbers, and we obtain the following lemma.

Lemma 1 With probability 1 – 6,

[Iz(T) - Z(S)112 < ##rO(S).

Proof: First, observe that

E(z(T)) = z(S), E(/lz(T) – 5(S)[12) = -&arO(S)

and then apply the Markov inequzdity to obtain the fol-

lowing.

Pr([lZ(T) – Z(S)I]2 > &VarO(S)) <b. ❑

Lemma 2 With probability 1 – 6,

~ ll~i - Z(T)I]2 < (1 + &)Varl(S).

P*CS

Proof: Immediate from Lemma 1 and the following,

~ /[~i-~(T)112 = Varl(s)+lsl. IIz(T)-z(S)112. ❑

p,es

Thus, we can estimate Varl (S) by random sam-

pling. For the 2-clustering problem, we have to estimate

Varl (S1 ) and Varl (S2) for a 2-clustering (S1, S2) by es-

timating the centroids of S1 and S2. Now, consider the

following algorithm.

A randomized algorithm for the 2-clustering:

1.

2.

3.

Sample a subset T of m points from S by m inde-

pendent draws at random;

For every linearly separable 2-clustering (Tl, T2) of

T, execute the following:

Compute the centroids tland t2of T1 and T2,

respectively;

Find a 2-clustering (S1, S2) of S by dividing S

by the perpendicular bisector of line segment

connecting tland t2;

Compute the value of Varl (Sl )+Varl (S2) and

maintain the minimum among these values;

Output the 2-clustering of S with minimum value

above.
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The idea of this randomized algorithm is to use all

pairs of centroids of linearly separable 2-clusterings for

the sampled point set T. Let (S;, S; ) be an optimum

2-clustering of S for Varl, and let s; and s; be the

centroids of S? and S;, respectively. By considering

all linearly separable 2-clusterings for T, the algorithm

handles the 2-clustering (T{, Tj) obtained by dividing T

by the perpendicular bisector of line segment connecting

s; and s;. Then, from the centroids of T: and T;, we

obtain a 2-clustering (S{, S~) in the algorithm.

Since T is obtained from m independent draws,

E(IW= :1s;1 (~= L 2).

From Lemma 2, Varl (S;) can be estimated by using

ITjl. The sizes lTjl (j = 1,2) are determined by inde-

pendent Bernoulli trials, and is dependent on the ratio

of ISJ I and IS; 1. For the sampling number m, we say

that S is f(m) -balanced if there exists an optimum 2-

clustering (S:, S;) with

and the optimum 2-clustering is called an j(m)-

balanced optimum 2-clustering. We then have the fol-

lowing.

Lemma 3 Suppose there exists a (log, m)-balanced op-

timum 2-clu-stering (S;, S; ). Then, with probability

l– ~ for a constant /3 (O < ~ < 1), the follow-

ing holds.

rein{ IT;I, ITJI }> (1 - ~)~min{ lS~l, lS~l }

~ (1 – /?) logm.

Proofi Set ~’ = ~ rein{ IS: 1, IS; I }. For m indepen-

dent Bernoulli trials Xl, X2,. ... X~ with Pr(X~ = 1) =

p’/m S Pr(Xi = O) = 1 – p’/m, the Chernoff bound

implies, for X = Xl + “”” + Xm,

Pr(X < (1 – 13)p’) < exp(–p’~2/2).

From the assumption,

exp(–p’D2/2) s exp(–(log m) P2/2) = &. R

Theorem 6 Suppose that the point set S is f(m)-

balanced with f(m) z log m. Then, the randomized al-

gorithm finds a 2-clustering whose total value is within
1

‘factor‘f 1+6(1– ;Jf (m)
to the optimum value with

probability 1 – b – & in O(nmd) time.

Proof: From Lemmas 2 and 3, with probability 1 – 6 –
2

m?

holds. Furthermore, the left hand side is bolunded from

below by x~=l Varl (S;), whose value is computed in

the algorithm. Hence, the minimum value found in the

algorithm is within the factor.

Concerning the time complexity, all linearly separable

2-clusterings for T can be enumerated in O(md) time.

For each 2-clustering (Tl, Tz ) of T, finding a pair of

centroids and a 2-clustering of S generated by the psir

together with its objective function value can be done

in O(n) time. Thus the theorem follows. ❑

We have developed a randomized algorithm only for

the 2-clustering problem so far, but this can be directly

generalized to the k-clustering problem. If there ex-

ists a bzdanced optimum k-clustering, similar bounds

can be obtained. It may be noted that the technique

employed here has some connection with the technique

used to obtain a deterministic approximate algorithm

with worst-case ratio bounded by 2 for the k-clustering

problem in [7].

The above theorem assumes some balancing condi-

tion. In some applications, a very small cluster is use-

less even if its intra-cluster is small. For example, when

we apply a 2-clustering algorithm recursively in a top-

down fashion to solve the k-clustering prolblem, a bal-

ancing condition on 2-clusterings may be imposed to 2-

clustering subproblems so that the sizes of subproblems

may become small quickly and the total clustering may

have nicer properties. In such a case, the randomized al-

gorithm naturslly ignores such small-size clluster. Also,

for the case of finding a good and balanced 2-clustering,

we have only to apply a slightly modified v(ersion of the

randomized aJgorithm directly. This is tylpical for the

clustering problem in VLSI layout design. See, for ex-

ample, Kernighan and Lin [13]. Generalizing Theorem

6 for such cases, we have the following.

Theorem 7 For the problem of finding an optimum 2-

clu&ering among (-yin) -balanced 2-clusterings for a con-

stant y, the randomized algorithm finds a 2-cl~te~ng

which is almost at least (yin) -balanced and whose value

is wzthm a factor of 1+0(1 /(c5m)) to the opt?mum value

of this problem with probability y 1 – b for small b. ❑

In the proof of this theorem, we use results concern-

ing the c-net and ~-approximations. The details will be
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given in the full version. We here restate the theorem

in a rough way so that its essence can be understood

direclty.

Corollary 1 When there is an optimum 2-ch.w!ering

(S;, S;) Of S such that

lS~l, lS~l z TISI = n

for some constant ~ (O < ~ ~ 1/2), the randomized

algorithm, which samples m points from S, jinds a 2-

cludering whose expected value is 1 +0( l/m) with high

probability. ❑

Corollary 2 For the problem of finding an optimum

Z-clustering among 2-clv,sterings (S1, S’z) of S such that

p,/, Is,l 2 ‘y[s]= ‘n
fo~ some constant -y (O < ~ < 1/2), the randomized

algorithm, which samples m points from S, can be easily

modified to find an approximate balanced 2-clustering

whose expected value is 1+0(1/m) with high probability y.

•1

On the other hand, if very small clusters with small

intra-cluster metric should be found, we may enumer-

ate such small clusters deterministiczdly or in a random-

ized manner, since the number of such small clusters is

relatively small. For the 2-clustering problem in the

two-dimensional case, the number of linearly separable

2-clustering such that one cluster consists of at most k’

points is O(k’n) and can be enumerated efficiently. By

enumerating k’-sets for an appropriate value of k’, we

obtain the following theorem.

Theorem 8 The 2-clustering problem for n points in

the plane with Varl as the intra-cluster metric can be

solved in 0(ns13 (log n)3) time with the approxtmataon

ratio within a factor of 1 + 0(1/log n) with probability

1 – 0(1/log n).

Proofi Set m = n1i3 log n. For this m, by the ran-

domized zdgorithm, we find a good (log m)2-bahnced

2-clustering. Also, by the deterministic algorithm enu-

merating (< n2i3 log n)-sets, we find a best unbalanced

2-clustering. Setting b = 1/ log m and ~ to a con-

stant, the time complexity of the randomized zdgorithm

is 0(n(n1t3 log n)2) = 0(n5i3 (log n)2) and the approxi-

mation ratio is bounded by 1 + 0(1/ log m) with proba-

bility 1 – 0(1/ log m). The deterministic algorithm runs

in 0(n(n2t3 log n)(log n)2) = 0(n5f3(log n)3) time. ❑

It should be noted that the time complexity in this

theorem is subquadratic, compared with the determin-

istic quadratic exact algorithm.

4 Concluding remarks

We have demonstrated that optimum solutions to the

variance-based k-clustering can be characterized by the

(weighted) Voronoi diagram generated by k points, and

have evaluated the primary shutter function of the k-

Voronoi space. This primary shutter function can be

used in computational learning theory in learning k-

Voronoi spaces.

We have then presented a simple randomized algo-

rithm for the k-clustering problem with Varl as an

intra-cluster metric. This algorithm is practically useful

when k is small and balanced k-clusterings are prefer-

able. For example, for the problem of finding an op-

timum 2-clustering for n planar points among almost

completely balanced 2-clusterings, an approximate 2-

clustering which is approximately balanced and whose

cost is within a factor of 1 + 1/3 = 4/3 on the average to

the optimum cost can be found by sampling 10 points

from n points and spending 0(102n) = O(n) time with

probability ~~=3 (l,?) /210 x 0.89, or by sampling 20

points and spending 0(202n) = O(n) time with proba-

bility z~~3 (2:)/220 % 0.9996.

The randomized algorithm, however, is not so suit-

able to find a good unbalanced 2-clustering. Also,

aJthough the randomized algorithm itself is valid for

large k, the running time becomes inherently large since

the primary shutter function for m sampled points is

O(m”tdk)). This implies that the variance-based k-

clustering problem is harder in such a situation com-

pared with the diameter- or radius-bssed k-clustering

to which a good and fast approximate sJgorithm with

worst-case ratio 2 is known [4].

Therefore, to solve the variance-baaed k-clustering for

large k practically, say for k = 256 of the typiczd color

quantization problem, we may apply the randomized 2-

clustering algorithm proposed in this paper recursively

in a top-down manner with sampling only a small num-

ber of points at each stage as mentioned above. We plan

to implement this approach and experimentally evalu-

ate its efficiency.
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