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Abstract. We consider the problem of distribution-free property test-
ing of functions. In this setting of property testing, the distance between
functions is measured with respect to a fired but unknown distribution
D on the domain, and the testing algorithms have an oracle access to
random sampling from the domain according to this distribution D.
This notion of distribution-free testing was previously defined, but no
distribution-free property testing algorithm was known for any (non-
trivial) property. By extending known results (from “standard”, uniform
distribution property testing), we present the first such distribution-free
algorithms for two of the central problems in this field:

— A distribution-free testing algorithm for low-degree multivariate poly-
nomials with query complexity O(d2 +d- 6_1), where d is the total
degree of the polynomial.

— A distribution-free monotonicity testing algorithm for functions f :
[n]? — A for low-dimensions (e.g., when d is a constant) with query
complexity 0(13@).

The same approach that is taken for the distribution-free testing of low-
degree polynomials is shown to apply also to several other problems.

1 Introduction

The classical notion of decision problems requires an algorithm to distinguish
objects having some property P from those objects which do not have the prop-
erty. Property testing is a recently-introduced relaxation of decision problems,
where algorithms are only required to distinguish objects having the property
P from those which are at least “e-far” from every such object. The notion of
property testing was introduced by Rubinfeld and Sudan [35] and since then
attracted a considerable amount of attention. Property testing algorithms (or
property testers) were introduced for problems in graph theory (e.g. [2,23, 24,
30]), monotonicity testing (e.g. [9,13, 14, 18,19, 22]) and other properties (e.g. [1,
3-5,7,10,12,15,17,20,27-29,31, 32, 34]; the reader is referred to excellent sur-
veys by Ron [33], Goldreich [21], and Fischer [16] for a presentation of some of
this work, including some connections between property testing and other top-
ics). The main goal of property testers is to avoid “reading” the whole object
(which requires complexity at least linear in the size of its representation); i.e.,
to make the decision by reading a small (possibly, selected at random) fraction



of the input (e.g., a fraction of size polynomial in 1/¢ and poly-logarithmicin the
size of the representation) and still having a good (say, at least 2/3) probability
of success.

A crucial component in the definition of property testing is that of the dis-
tance between two objects. For the purpose of this definition, it is common to
think of objects as being functions over some domain X'. For example, a graph
G may be thought of as a function fg : V x V. — {0,1} indicating for each
edge e whether it exists in the graph. The distance between functions f and g is
then measured by considering the set Xr.,4 of all points z where f(z) # g(z) and
comparing the size of this set X, to that of X'; equivalently, one may introduce
a uniform distribution over X and measure the probability of picking x € X;2,.
Note that property testers access the input function (object) via membership
queries (i.e., the algorithm gives a value 2 and gets f(z)).

It is natural to generalize the above definition of distance between two func-
tions, to deal with arbitrary probability distributions D over X', by measuring the
probability of X;», according to D. Ideally, one would hope to get distribution-
free property testers. A distribution-free tester for a given property P accesses
the function using membership queries, as above, and by randomly sampling
the fixed but unknown distribution D (this mimics similar definitions from
learning theory and is implemented via an oracle access to D; see, e.g., [26] 1).
As before, the tester is required to accept the given function f with probability
at least % if f satisfies the property P, and to reject it with probability at least
% if f is at least e-far from P with respect to the distribution D.

Indeed, these definitions of distance with respect to an arbitrary distribu-
tion D and of distribution-free testing were already considered in the context of
property testing [23]. However, to the best of our knowledge, no distribution-free
property tester was known for any (non-trivial) property (besides testing algo-
rithms that follow from the existence of proper learning algorithms in learning-
theory [23]). Moreover, discouraging impossibility results, due to [23], show that
for many graph-theoretic properties (for which testers that work with respect to
the uniform distribution are known) no such (efficient) distribution-free tester
exists. As a result, most previous work focused on testers for the uniform distri-
bution; some of these algorithms can be generalized to deal with certain (quite
limited) classes of distributions (e.g., product distributions [23]), and very few
can be modified to be testers with respect to any known distribution (as was
observed by [16] regarding the tester presented in [28]), but none is shown to be
a distribution-free tester. Let us review some of the central problems, studied in
the context of property testing, which are relevant to the current work.

Low-degree tests for polynomials. The first problem studied in the field of prop-
erty testing was that of low-degree testing for multivariate polynomials over a

! More precisely, distribution-free property testing is the analogue of the PAC4+MQ
model of learning (that was studied by the learning-theory community mainly via
the EQ+MQ model); standard property testing is the analogue of the uniform+MQ
model.



finite field, where one wishes to test whether a given function can be represented
by a multivariate polynomial of total degree d, or is it e-far from any such poly-
nomial. Later, the problem of low-degree testing played a central role in the
development of probabilistic checkable proofs (PCP), where the goal is to prob-
abilistically verify the validity of a given proof. For the problem of low-degree
testing, Rubinfeld and Sudan [35] presented a tester with query complexity of
O(d*+d -e71). This test was further analyzed in [8]. The reader is also referred
to [10], where a linearity test (which tests whether a given function acts as an
homomorphism between groups) is presented, and to [3,6, 7, 20] for other related
work.

Monotonicity testing. Monotonicity has also been a subject of a significant
amount of work in the property testing literature (e.g. [9,13-15,18,19,22]). In
monotonicity testing, the domain X is usually the d-dimensional cube [n]?. A
partial order is defined on this domain in the natural way (for y, z € [n]?, we say
that y < z if each coordinate of y is bounded by the corresponding coordinate
of z).2 A function f over the domain [n]?¢ is monotone if whenever z > y then
f(2) > f(y). Testers were developed to deal with both the low-dimensional and
the high-dimensional cases (with respect to the uniform distribution over the
domain). In what follows, we survey some of the known results on this problem.
In the low-dimensional case, d is considered to be small compared to n (and, in
fact, it is typically a constant); a successful algorithm for this case is typically
one that is polynomial in 1/¢ and in logn. The first paper to deal with this
case is by Ergtin et al. [14] which presented an O(lﬂfﬂ) algorithm for the line
(i.e., the case d = 1), and showed that this query complexity cannot be achieved
without using membership queries. This algorithm was generalized for any fixed
d in [9]. For the case d = 1, there is a lower bound showing that testing mono-
tonicity (for some constant ¢) indeed requires £2(logn) queries [15]. In the high
dimensional case, d is considered as the main parameter (and n might be as low
as 2); a successful algorithm is typically one that is polynomial in 1/¢ and d.
This case was first considered by Goldreich et al. [22] that showed an algorithm
for testing monotonicity of functions over the boolean (n = 2) d-dimensional
hyper-cube to a boolean range using O(g) queries. This result was generalized

in [13] to arbitrary values of n, showing that O(&sz—") queries suffice for testing
monotonicity of general functions over [n]?, which is the best known result so
far.

1.1 Owur Contributions

Our contributions are distribution-free testers for the two properties mentioned
above: low-degree multivariate polynomials and low-dimensional monotone func-
tions. We observe that the approach that stands behind the low-degree test can
also be applied to the testing of other properties such as dictatorship and juntas
functions [17,32]. These algorithms are the first known distribution-free testers

2 In the case d = 1 this yields a linear order.



for non-trivial properties. By this, we answer a natural question that has already
been raised explicitly by Fischer [16, Subsection 9.3] and is implicit in [23]. We
emphasize that our algorithms work for any distribution D without having any
information about D.

Distribution-free low-degree testing for polynomials (and more). We show how to
generalize the tester presented in [35] to a distribution-free tester with the same
(up to a multiplicative constant factor of 2) query complexity (O(d? +d - ¢~1)).
The algorithm and its analysis are presented in Section 3.

The generalization of the uniform tester to a distribution-free one is done,
in this case, by adding another stage to the uniform tester. In this new stage,
after verifying that the input function f is close to some low-degree polynomial
g with respect to the uniform distribution, we check that f is also close to
this specific polynomial g with respect to the given distribution D. For this
purpose, our approach requires that we will be able to calculate the values of
g efficiently based on the values on f. This is a generalization of the notion of
self-correctors for single functions (see [10]) to classes of functions (which was
previously introduced in [35]). We observe that the same approach can be used
for distribution-free testing of every property that is testable in the uniform
distribution and has a self-corrector in the above sense. The full details of this
generalization appear in Section 4.

Distribution-free monotonicity testing. We present a distribution-free mono-
tonicity tester in the low-dimensional hyper-cube case. Specifically, we present

an algorithm whose complexity is O(M) queries. This is done by first con-
sidering the one-dimensional case (the “line”). In this case, we prove that an
algorithm of [14] can be slightly modified to deal with the distribution-free case
with the same query complexity of O(lﬂfﬁ) Though it is possible to modify
the original analysis for the distribution-free case, we choose to present a whole
different analysis. We then show how to appropriately generalize this algorithm
to deal with higher (yet, low) dimensions (a similar generalization approach was
used in [9] for the uniform distribution case). The tester for the one-dimensional
case and its generalization for higher dimensions appear in Section 5. Finally,
we remark that it can be shown that distribution-free testing of monotonicity in
the high-dimensional case cannot be done efficiently [11].

It is typical for known property testers to be quite simple and the analysis of
why these algorithms work is where the property P in question requires under-
standing; indeed, Goldreich and Trevisan [25] proved that in certain settings this
is an inherent phenomena: they essentially showed (with respect to the uniform
distribution) that any graph-theoretic property that can be tested can also be
tested (with a small penalty in the complexity) by a “generic” algorithm that
samples a random subgraph and decides whether it has some property. Our work
is no different in this aspect: our algorithms are similar to previously known al-
gorithms and the main contribution is their analysis; in particular, that for the
distribution-free case. Moreover, it is somewhat surprising that our distribution-
free testers require no dramatically-different techniques than those used in the



construction and the analysis of previous algorithms (that work for the uniform
distribution case). We remark, however, that although all the distribution-free
testers presented in this work can be viewed as variations of testers for the uni-
form distribution, the modifications of the uniform-distribution testers in the
various problems are different.?

2 Definitions

In this section, we formally define the notion of being e-far from a property P
with respect to a given distribution D defined over X', and of distribution-free
testing. Assume that the range of the functions in question is A.

Definition 1. Let D and X be as above. The D-distance between functions

fr9: X = A is defined by distp (f,g) < Prop{f(z) # g(z)}.

The D-distance of a function f from a property P (i.e., the class of functions

satisfying the property P) is distp(f,P) £ mingep distp(f, g

).
We say that f is (¢, D)-far from a property P if distp(f,P) > .

When the distribution in question is the uniform distribution over X', we
either use U instead of D or (if clear from the context) we omit any reference to
the distribution.

Next, we define the notion of distribution-free tester for a given property P.

Definition 2. A distribution-free tester for a property P is a probabilistic oracle
machine M, which is given a distance parameter ¢ > 0, and an oracle access
to an arbitrary function f : X — A and to sampling of a fired but unknown
distribution D over X, and satisfies the following two conditions:

1. If f satisfies P, then Pr{M/P = Accept} = 1.

2. If f is (¢, D)-far from P, then Pr{M/P = Accept} < 1.

We note that a more general definition of testers that allows two-sided errors
(as discussed in the introduction) is not needed here; all our testers, like many
previously known testers, have one-sided error and always accept any function
that satisfies the property P in question.

The definition of a uniform distribution tester for a property P can be derived
from the previous definition by omitting the sampling oracle (since the tester
can sample in the uniform distribution by itself) and by measuring the distance
with respect to the uniform distribution.

Notice that since the distribution D in question is arbitrary, it is possible that
there are two different functions f and g such that distp(f, g) = 0. Specifically,
it is possible that f ¢ P and g € P. Since the notion of testing is meant
to be a relaxation of the notion of decision problems, it is required that the
algorithm accepts (with high probability) functions that satisfy P, but may reject
functions that have distance 0 from P (but do not satisfy P). This definition

# Indeed, in light of [23], there can be no generic transformation of uniform-distribution
testers into distribution-free ones.



of distribution-free testing was introduced in [23, Definition 2.1]. In addition,
note that the algorithm is allowed to query the value of the input function also
in points with probability 0 (which is also the case with membership queries in
learning theory)*.

3 Distribution-free Low-Degree Testers for Polynomials

The first problem studied in the field of property testing was that of testing
of multivariate polynomials (see [3,6,7,10,20,35]). Let F be a finite field. In
the problem of low-degree testing, with respect to the uniform distribution, the
tester is given access to a function f : F™™ — F, a distance parameter ¢, and
a degree d, and has to decide whether f is a multivariate polynomial of total
degree d, or is at least e-far (with respect to the uniform distribution) from any
degree d multivariate polynomial (i.e., one has to change the values of at least
€ X |F|™ points in order to transform f into a degree d multivariate polynomial;
this implies that, for every degree d multivariate polynomial g, the probability
that a uniformly drawn point z has a value g(z) different than f(z), is at least
¢). Rubinfeld and Sudan ([35]) presented a tester for this problem with query
complexity O(d? +d - e~!). We show how to modify this tester to a distribution-
free tester with the same query complexity (up to a constant factor of 2).

3.1 Preliminaries

Fix some value for d and assume from now on that |F| > 10d. To describe the
testers (both the one for the uniform distribution and our distribution-free one),
we use the following terminology, from [35]:

A linein F™ is a set of 10d + 1 points of the form {z,z+ h,...,z + 10dh}
for some x, h € F. The line defined by z and h is denote £; 5.

We say that a line £, ; s an f-polynomaal, if there exists a univariate poly-
nomial Py 5 (i) of degree d, such that f(z 4 ih) = Py »(i), for every 0 < ¢ < 10d.

Notice that if f is a multivariate polynomial of total degree at most d, then
for every z and h, the line £; , is an f-polynomial ®. Given the values of f on a
line £ p,, testing whether this line is an f-polynomial can be done as follows:

— find, using interpolation, a univariate polynomial P (i) of degree d, consistent
with the values of f at the d+1 points z, z+h, ..., z+dh (i.e., P(i) = f(z+hi)
for every 0 <7 < d).

* It is not known whether MQ are essential in general for testing even in the uniform
case (see [33]); this is known only for specific problems such as monotonicity testing
(see [14]).

5 To see that, assume flz) = Z] a; szil a:klj, where a; is the coefficient of the j'th
term in f, d; is the degree (d; < d), and k] is the index of the I'th variable in
that term (note that kljl is not necessarily different than klj2 for 1 # lg). In this
case, for every fixed z = (z1,...,2m) and h = (h1,..., hy) the value f(z 4+ 1h) =

dj . . . L L
Z] a; Hlil(:cklj + zhklj), which, of course, is a degree d univariate polynomial in z.



— check, for every (d + 1) < i < 10d, that f(z + ¢h) = P(i). If so accept;
otherwise reject.

We show how this basic test is used to build a uniform and a distribution-free
low-degree test.

3.2 Low-degree test for the uniform distribution

The low-degree test for the uniform distribution is done by randomly sampling
O(d + €7 ') lines (i.e., by uniformly choosing z,h € F™), and checking that
each of these lines is an f-polynomial. The correctness of this algorithm follows
immediately from the following theorem ([35, Theorem 9]).

Theorem 1. There exists a constant cy such that for 0 < § < CU%d, if fis
a function from F™ to F, such that all but at most § fraction of the lines
{lz nlz, h € F™} are f-polynomials, then there exists a polynomial g : F™ — F
of total degree at most d such that disty(f,g) < (1 + o(1))d (provided that
|F| > 10d).

3.3 Distribution-free low-degree tester

Denote the class of multivariate polynomials of total degree d by P(‘iieg. In this
section we show that the tester described in the previous subsection can be
modified into a distribution-free tester for low-degree multivariate polynomials.
That is, we present an algorithm with query complexity O(d*+d-¢~!) that, given
a distance parameter €, a degree parameter d, and access to random sampling
of F™ according to D and to membership queries of a function f : F™ — F|
distinguishes, with probability at least %, between the case that f isin Pjeg, and
the case that f is (e, D)-far from P(‘feg.

The natural generalization of the uniform-distribution tester above for the
distribution-free case would be to replace the sampling of the tested lines by
sampling according to the distribution Dj; i.e. sample the O(d + ¢~1) lines by
choosing z ~ D and h ~ U and check that these lines are f-polynomials. How-
ever, we do not know whether this modification actually works. Instead, the
algorithm we present consists of two stages — in the first stage we simply run the
uniform distribution test as is, and check that the function f is e-close to ’Pjeg
with respect to the uniform distribution; the second stage is the generalization
suggested above. We prove that this combined strategy actually works.

Poly(e,d)
Set k = max{e~', cy - d}. Repeat 5k times:
— Choose z,h €r F™. If the line ¢, 5 is not an f-polynomial, return FAIL.

— Choose ¢ €p F™, h €r F™. If the line £; 5, is not an f-polynomial, return
FAIL.

return PASS



Theorem 2. Algorithm Poly(e,d) is a distribution-free tester for Péieg:' its query
complezity is O(d* +d -7 1).

The correctness of the algorithm relies on the following lemma:

Lemma 1. Let cy be the constant as above. For every 0 < § < CU%d, if fisa
function from F™ to F' such that

— Pry pat{le,n is not an f polynomial} <4, and
— Proap hnt{lo,n is not an f polynomial} <6,

then there exists a polynomial g : F™ — F of total degree at most d such that
distp(f,g) < 1—6W = (14 o(1))d (provided that |F| > 10d).

The proof of the above lemma is omitted for lack of space. The proof is
similar to ones presented in [35] and will appear in the full version of the paper.

Proof. of theorem 2.
To prove that the algorithm is indeed a distribution-free tester for ”P(‘iieg, we prove
the following two facts:

1. If fisin Pjeg, then the algorithm accepts f with probability 1.
2. If fis (e, D)-far from Pgeg, then the algorithm Poly(e, d) rejects f with
probability at least %

As explained before, if f is indeed a multivariate polynomial of total degree
d, then every line 1s an f-polynomial. Hence, it follows that such f i1s accepted
by the tester with probability 1. Assume from now on that f is (e, D)-far from
Pjeg: Notice that, by the definition of k, for ¢/ = %, fis (¢', D)-far from P(‘iieg.
Based on Lemma 1, either Pry pov{fs n is not an f polynomial} >

, 2+ZOEI ’
or Proap hat {€s,n is not an f polynomial} > m (otherwise, it follows that
EI

. . . < _
there exists a degree d polynomial g such that distp (f, g) < @107 (- 10,02

62—1 < €, contradicting the fact that the D-distance of f from any such polyno-
mial is at least €’). Assume that the first event occurs. Therefore, the probability

that a randomly chosen line £, is an f-polynomial is at most (1 — HET’OE')'

€ )Sk _
. 2+40e’ ) —
(1— %_1%0)5’“ < % < % (the first inequality follows since ey > 100 [35] implying
that & > 100). Similarly, if the second event occurs, the probability that a ran-

domly chosen line £; ,, where x ~ D and h ~ U , is an f-polynomial is at most

Hence, the probability that the algorithm accepts f is at most (1 —

(1-— HETIOE,). Hence, as before, the probability that the algorithm accepts f is at

most (1 — ﬁloy)s‘k <i O



4 Distribution-Free Testing of Properties with
Self-Corrector

A careful examination and manipulation of the distribution-free tester presented
in the previous section shows that, in fact, the only two features of low-degree
multivariate polynomials used in the construction are:

— the existence of a one-sided error uniform distribution tester for low-degree
polynomials, and

— the ability to efficiently compute (with high probability), in every point z of
the domain, the correct value of the polynomial g that is close to the input
function f, if f is indeed close to a multivariate low-degree polynomial. We
refer to this ability as ” property self-correction”.

We argue that it is possible to construct a distribution-free tester for every
property P that satisfies these two conditions. We first define the notion of a
”property self-correction” formally (it has already been defined implicitly and
used in [35]), and then introduce a general scheme for obtaining distribution-free
testers for a variety of properties that satisfy the conditions.

The notion of ”property self-corrector” is a generalization of the notion of
self-correctors for functions introduced by Blum, Luby and Rubinfeld in [10].
A self-corrector for a specific function f is a randomized algorithm that given
oracle access to a function g which is e-close to f, is able to compute the value
of f in every point of the domain. This definition can be generalized to classes
of functions, specifically demanding that all the functions in the class are self-
correctable using the same algorithm.

Definition 3. An ¢ self-corrector for a property P is a probabilistic oracle ma-
chine M, which is given an oracle access to an arbitrary function f : X — A
and satisfies the following condition:

If there exists a function g € P such that disty(f,g) < € (i.e., f is e-close to
P), then Pr{M/(z) = g(=)} > %, for every x € X. If f € P, then Pr{M/(z) =
f(x)} =1 for every xz € X.

Note that the definition of ”property self-corrector” refers to distance mea-
sured only with respect to the uniform distribution, however, we still use these
correctors for the construction of distribution-free testers. Observe that a neces-
sary condition for the existence of an e-self-corrector for a property P is that for
every function f such that disty (f,P) < € (i.e., f is e-close to P with respect to
the uniform distribution), there exists a unique function g € P that is e-close to
P (implying that ¢ cannot be too large). Notice that the property of monotonic-
ity does not fulfill this requirement®. Hence, the distribution-free monotonicity
tester that is presented in the next section requires a different approach.

¢ Consider for example the following function f : [n] = {0, 1}: for every 1 < i < 5 set
f(i) =1, and for every 5 + 1 <:<mset f(i) =0. fis %—far from monotone, and it
is %—close to both constant functions: 0 and 1.



Next, we describe the generalized distribution-free testing scheme. Let P be
a property, let T» be a uniform distribution tester for P with query complexity
Q7 that has one-sided error, and let C'p be an ¢ property self-corrector for P
with query complexity Q¢c. Let e < ¢, and f: X — A.

Testerp (€)
Run T} (). If Tf(e) = FAIL, then return FAIL
Repeat % times:
Choose z €p X.
Repeat twice: Run C’,fj(:n); If f(z) # ij(:n:), then return FAIL .
return PASS

Theorem 3. Algorithm Testerp(c) is a distribution-free tester for P with query
complerity Qr () + % “Qc.

Proof. Tt is obvious that the query complexity of the algorithm Testerp (¢) is
indeed as required. Hence, we only have to prove the correctness of the algorithm.
To do so, we prove the following two facts:

— if f € P then f is accepted by the algorithm with probability 1.
— if f is (¢, D)-far from P, then f is rejected by Testerp (¢) with probability
at least %

If f is indeed in P, then it passes the uniform test with probability 1, and the
value returned by the self-corrector is always identical to the value of f. Hence,
it is clear that in this case f is accepted by the algorithm. Assume from now on
that f is (¢, D)-far from P. In this case we distinguish between two possibilities:

If f is (¢, U)-far from P, then the probability that it passes the uniform test
is at most %

If f is (¢,U)-close to P, then there exists a function ¢ € P such that
dist(f,g) < e. However, since distp(f,P) > ¢, we deduce that distp(f,g) > ¢
(in other words, Pry.p{f(z) # g(z)} > €). If f is accepted by the algorithm
then one of the two following events happened: either we failed to sample a point
in which f and g differ, or we succeeded to sample such a point, but both runs of
the self-corrector failed to compute the value of ¢ in this point. The probability

of the first event is at most (1 —6)% < %2 < %, and by the definition of a property

self-corrector the probability of the second event is at most %2 < %. Therefore,
the total probability that f is accepted by the algorithm is at most %

Hence, in both cases the probability that f is accepted by the algorithm is
at most % O

Remark 1. We used the assumption that there exists a uniform distribution test
for the property P that has one-sided error. However, the same transformation
can be applied also when the uniform distribution tester has two-sided error,
only that the resulting distribution-free tester as well has two-sided error.

As was previously stated, the algorithm that was explicitly presented in
Section 3 can actually be described as an application of this scheme for the



class of low-degree multivariate polynomials. Hence, instead of fully describing
the distribution-free tester and proving its correctness, it was enough to show
that this property can be tested in the uniform distribution and that it can be
self-corrected. This scheme, however, also implies the existence of distribution-
free testers for other properties. Among these properties are low-degree multi-
variate polynomials over GF'(2), juntas and dictatorships functions. A function
f:{0,1}* — {0, 1} is said to be a k-junta if there exists a subset of {z1,...,z,}
of size k that determines the value of f (i.e., f is independent of the other vari-
able). A special case of juntas are dictatorship functions, where a single variable
determines the value of the function. These properties (and other related prop-
erties) have uniform distribution testers, as was shown in [3,17,32]. In addition,
they are all subsets of the class of low-degree polynomials over GF(2) which is
self correctable (for example, k juntas are a special case of degree k multivariate
polynomials), and thus are self correctable (see [3] and [10]). Therefore, we can
apply the scheme described in this section to obtain distribution-free testers for
these properties.

Remark 2. Notice that given two properties P and P’ such that P’ C P, the
fact that P is testable in the uniform distribution does not imply that P’ is
thus testable (to see this observe, for example, that every property is a subset
of the class of all functions that is clearly testable). However, the fact that P
is self-correctable implies that P’ is self-correctable (using the same correction
algorithm).

5 Distribution-free Monotonicity Testing on the
d-Dimensional Cube

In this section, we present testers for monotonicity over the d-dimensional hyper-
cube with respect to an arbitrary distribution D. As before, we assume D to
be fixed but unknown, and beside the ability to sample according to D we
assume no knowledge of D. For simplicity, we begin our discussion with the
case d = 1, and show that given access to random sampling according to D
and to membership queries, there is a distribution-free tester for monotonicity
over [n], whose query complexity is O(lﬂfﬁ) This algorithm can be generalized
to a distribution-free tester for monotonicity over the d-dimensional hyper-cube
whose query complexity is O(M)

We begin with a few notations and definitions. Denote by [n] the set {1,...,n},
and by [n]? the set of d-tuples over [n]. For every two points ¢ and 5 in [n]? we

say that ¢ < g if for every 1 <k < d, ix < ji. Let (A, <a) be some linear order.
Definition 4. We say that a function f : [n]* — A is monotone if for every i
and j if i < j then f(3) <a f(5).
Definition 5. Let f : [n]? — A be a function. A pair (3,3) is said to be an
f-violation if ¢ < g and f(i) >a f(7).

Let D be any distribution on [n]¢, and let S be a subset of [n]?. Define
Prp{i} = Prx~p{X =i}, and Prp{S} = Y ics Pro{z}.



5.1 Testing monotonicity for the line (d = 1)

In this section we consider the case d = 1. Our algorithm is a variant of the
algorithm presented in [14] for testing monotonicity, with respect to the uniform
distribution. However, the analysis presented here for this algorithm is quite dif-
ferent. The algorithm works in phases, in each phase a “center point” is selected
according to the distribution D (in the original algorithm, the center point is
selected uniformly), and the algorithm looks for a violation of the monotonicity
with this center point. The search for a violation is done by randomly sam-
pling in growing neighborhoods of the center point. In other words, in the case
d = 1, the only change made in the original algorithm in order to adjust it to
be distribution-free is that the choice of center points is made according to D.
However, the search for violations remains unchanged. It is important to observe
that, when dealing with an arbitrary distribution, there is no connection between
the distance of the function from monotone (or the probability of the violation)
and the number of pairs that form a violation of monotonicity”. Hence, the cor-
rectness of the algorithm for the uniform distribution (i.e., the fact that in a
function that is far from monotone we find a violation of monotonicity with high
probability) does not imply its correctness for the general case.

Algorithm-monotone-1-dimp ( f, €):

repeat % times
choose 1 €p [n]
for k < 0...[logi] do
repeat 8 times
choose a €x [2’“]
if f(i —a) >a f(i) then return FAIL
for k « 0...[log(n —1)] do
repeat 8 times
choose a € [2¥]
if f(i) >a f(i 4+ a) then return FAIL
return PASS

Theorem 4. Algorithm monotone-1-dimp 1is a distribution-free monotonicity
tester over the line with query complexity O(lﬂfﬂ)

To prove this theorem, we need the following definitions and lemmas.

Lemma 2. Let f: [n] — A be a function, and let S C [n] be a set. If for every
f-violation (i,j) eitheri € S or j € S, then there exists a monotone function f’
that differs from f only on points in S.

A similar claim was proved in [13]; proof omitted. An immediate conclusion
of the above lemma is the following;:

" Observe, for example, the function f : [n]
we set f(i) = i, f(n—1) = n and f(n)
D(n—1)=D(n)= 1.

— [n] such that for every 0 <1 < n — 2
= n — 1. Set the distribution D to be



Lemma 3. Let f : [n] & A be a function (¢, D)-far from monotone. Given
S C [n], if for every f-violation (i,j) eitheri € S or j € S, then Prp{S} > .

Definition 6. For an f-violation (i, ), we say that i is active in this violation
of

. . . j—1i—1

[k i<k <, fG) >a fR) > T

similarly, j is active in this violation if |{k @ i<k <j, f(j) <a f(K)} >
j—i—1
imizt

That is, i is active in an f-violation (i, 7), if for at least half of the points

i<k<yj, (i,k) is also an f-violation (i.e., f(i) >a f(k)).

Observation 1: For every f-violation (i, ), at least one of 7 and j is active in
(,7). (Proof omitted)

Define the active set of f (denoted Ay) as the set of all points that are active
in some f-violation. Following this observation and applying Lemma 3 to the set
Ag, if f is (e, D)-far from monotone then Prp{A;} > e. We turn now to prove
Theorem 4.

Proof. 1t is easy to see that the query complexity of the algorithm is as required.
Hence, we are left to prove that it is indeed a distribution-free tester. The fact
that every monotone function f is accepted by the algorithm follows immediately
from its definition. From now on, assume that f is (¢, D)-far from monotone; we
prove that f is rejected with probability at least % Our algorithm may fail to
detect that f is not monotone if either one of the following two events occurs:

1. None of the points sampled by the algorithm according to D isin A;.

2. The algorithm picked at least one point ¢ € Ay, but failed to detect that
¢ belongs to some f-violation.

Tt is easily verified that the probability of the first event is at most (1 — e)g <
61—2 < 1/6. We now turn to bound the probability of the second event. By the
definition of Ay, for every i € Ay there is a j such that either (7,j) or (j,7) is
an f-violation and 7 is active in this violation. Assume w.l.o.g. that (¢, j) is an
f-violation. For & = min{l : 2' > j —i} (i.e., k is the smallest integer s.t.
j < i+ 2%), we can claim that [{l | i <! < i+ 2% f(i) >a f()}| is more than

i - 2% This is due to the fact that j —i > 2F~1 and since i is active in the
2k—1

J-violation (i, j), for at least half the points [ between i and j (i.e., at least %
points) the pair (4,1) is an f-violation. The probability that the algorithm fails
to find an f-violation for this k is at most (%)8 < %, and hence the probability
of the second event is at most %, implying that the total probability that the

algorithm will wrongly accept f is at most % a

Remark 3. In the journal version of [14], an additional tester for monotonicity
on the line, called ”Sort-Check-11", is presented. This algorithm can also be
transformed to be a distribution-free monotonicity tester over the line. However,
we do not know if it can be generalized to higher dimensions.



We saw how to test monotonicity over the one-dimensional hyper-cube (the
line) when the distance is measured with respect to an arbitrary distribution. It
is possible to generalize this algorithm to the d-dimensional case. The full details
of the generalized algorithm and its analysis are omitted from this version and
will appear in the full version of this paper.
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