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ABSTRACT. Massive data sets with terabytes of data are becoming common-
place. There is an increasing demand for algorithms and data structures that
provide fast response times to queries on such data sets. In this paper, we
describe a context for algorithmic work relevant to massive data sets and a
framework for evaluating such work. We consider the use of “synopsis” data
structures, which use very little space and provide fast (typically approxi-
mated) answers to queries. The design and analysis of effective synopsis data
structures offer many algorithmic challenges. We discuss a number of concrete
examples of synopsis data structures, and describe fast algorithms for keeping
them up-to-date in the presence of online updates to the data sets.

1. Introduction

A growing number of applications demand algorithms and data structures that
enable the efficient processing of data sets with gigabytes to terabytes to petabytes
of data. Such massive data sets necessarily reside on disks or tapes, making even a
few accesses of the base data set comparably slow (e.g., a single disk access is often
10,000 times slower than a single memory access). For fast processing of queries to
such data sets, disk accesses should be minimized.

This paper focuses on data structures for supporting queries to massive data
sets, while minimizing or avoiding disk accesses. In particular, we advocate and
study the use of small space data structures. We denote as synopsis data structures
any data structures that are substantively smaller than their base data sets. Synop-
sis data structures have the following advantages over non-synopsis data structures:

e Fast processing: A synopsis data structure may reside in main memory,
providing for fast processing of queries and of data structure updates, by
avoiding disk accesses altogether.

e Fast swap/transfer: A synopsis data structure that resides on the disks
can be swapped in and out of memory with minimal disk accesses, for the
purposes of processing queries or updates. A synopsis data structure can
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be pushed or pulled remotely (e.g., over the internet) at minimal cost, since
the amount of data to be transferred is small.

e Lower cost: A synopsis data structure has a minimal impact on the overall
space requirements of the data set and its supporting data structures, and
hence on the overall cost of the system.

e Better system performance: A synopsis data structure leaves space in the
memory for other data structures. More importantly, it leaves space for other
processing, since most processing that involves the disks uses the memory
as a cache for the disks. In a data warehousing environment, for exam-
ple, the main memory is needed for query-processing working space (e.g.,
building hash tables for hash joins) and for caching disk blocks. The impor-
tance of available main memory for algorithms can be seen from the external
memory algorithms literature, where the upper and lower time bounds for
many fundamental problems are inversely proportional to the logarithm of
the available memory size [Vit98]. (See Section 2.3 for examples.) Thus
although machines with large main memories are becoming increasingly com-
monplace, memory available for synopsis data structures remains a precious
resource.

o Small surrogate: A synopsis data structure can serve as a small surrogate
for the data set when the data set is currently expensive or impossible to
access.

In contrast, linear space data structures for massive data sets can not reside in
memory, have very slow swap and transfer times, can increase the space require-
ments and hence the overall cost of the system by constant factors, can hog the
memory when they are in use, and can not serve as a small surrogate. Hence a tra-
ditional viewpoint in the algorithms literature — that a linear space data structure
is a good one — is not appropriate for massive data sets, as such data structures
often fail to provide satisfactory application performance.

On the other hand, since synopsis data structures are too small to maintain
a full characterization of their base data sets, they must summarize the data set,
and the responses they provide to queries will typically be approximate ones. The
challenges are to determine (1) what synopsis of the full data set to keep in the
limited space in order to maximize the accuracy and confidence of its approximate
responses, and (2) how to efficiently compute the synopsis and maintain it in the
presence of updates to the data set.

Due to their importance in applications, there are a number of synopsis data
structures in the literature and in existing systems. Examples include uniform and
biased random samples, various types of histograms, statistical summary informa-
tion such as frequency moments, data structures resulting from lossy compression
of the data set, etc. Often, synopsis data structures are used in a heuristic way, with
no formal properties proved on their performance or accuracy, especially under the
presence of updates to the data set. Our ongoing work since 1995 seeks to provide
a systematic study of synopsis data structures, including the design and analysis
of synopsis data structures with performance and accuracy guarantees, even in the
presence of data updates.

In this paper, we describe a context for algorithmic work relevant to massive
data sets and a framework for evaluating such work. In brief, we combine the PDM
external memory model [VS94] with input/output conventions more typical for the
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study of (online) data structure problems. Two general scenarios are considered:
one where the input resides on the disks of the PDM and one where the input
arrives online in the PDM memory. We describe some of our work on synopsis
data structures, and highlight results on three problem domains from the database
literature: frequency moments, hot list queries, and histograms and quantiles.
Outline. Section 2 describes our framework in detail. Results on frequency
moments, hot list queries and histograms are described in Sections 3, 4, and 5,
respectively. Related work and further results are discussed in Section 6.

2. Framework

In this section, we first describe a context for data structure problems for
massive data sets. We then introduce synopsis data structures and present a cost
model for their analysis. Finally, we discuss two example application domains.

2.1. Problem set-up. In the data structure questions we consider, there are
a number of data sets, S1,S52,...,S¢, and a set of query classes, Q1,-..,Qk, Oon
these data sets. The query classes are given a priori, and may apply to individual
data sets or to multiple data sets. Data structure performance is analyzed on a
model of computation that distinguishes between two types of storage, fast and
slow, where the fast storage is of limited size. We equate the fast storage with
the computer system’s main memory and the slow storage with its disks, and use a
relevant model of computation (details are in Section 2.3). However, the framework
and results in this paper are also relevant to scenarios where (1) the fast storage is
the disks and the slow storage is the tapes, or (2) the fast storage is the processor
cache memory and the slow storage is the main memory.

In the static or offline scenario, the data sets are given as input residing on
the disks. Given a class of queries ), the goal is to design a data structure for
the class ) that minimizes the response time to answer queries from (), maximizes
the accuracy and confidence of the answers, and minimizes the preprocessing time
needed to build the data structure.

In the dynamic or online scenario, which models the ongoing loading of new
data into the data set, the data sets arrive online in the memory, and are stored on
the disks. Specifically, the input consists of a sequence of operations that arrive on-
line to be processed by the data structure, where an operation is either an insertion
of a new data item, a deletion of an existing data item, or a query. Given a class of
queries @, the goal is to design a data structure for the class () that minimizes the
response time to answer queries from (), maximizes the accuracy and confidence of
the answers, and minimizes the update time needed to maintain the data structure.
As we are interested in the additional overheads for maintaining the data structure,
there is no charge for updating the data sets.

This set-up reflects many environments for processing massive data sets. For
example, it reflects most data warehousing environments, such as Walmart’s multi-
terabyte warehouse of its sales transactions. For most data sets, there are far more
insertions than deletions. An important exception is a “sliding-window” data set,
comprised of the most recent data from a data source (such as the last 15 months of
sales transactions). In such data sets, batches of old data are periodically deleted
to make room for new data, making the number of insertions comparable to the
number of deletions.
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To handle many data sets and many query classes, a large number of synopsis
data structures may be needed. Thus we will assume that when considering any
one data structure problem in isolation, the amount of memory available to the
data structure is a small fraction of the total amount of memory. We evaluate the
effectiveness of a data structure as a function of its space usage or footprint. For
example, it is common practice to evaluate the effectiveness of a histogram in range
selectivity queries as a function of its footprint (see, e.g., [PTHS96]).

Finally, note that in some online environments, the data set is not stored along-
side with the data structure, but instead resides in a remote computer system that
may be currently unavailable [FJS97]. In such cases, the online view of the data
is effectively the only view of the data used to maintain the data structure and
answer queries. We denote this scenario the purely online scenario.

2.2. Synopsis data structures. The above set-up motivates the need for
data structures with small footprints. We denote as synopsis data structures any
data structures that are substantively smaller than their base data sets. Since such
data structures are often too small to maintain a full characterization of their base
data sets with regards to a class of queries, the responses they provide to queries
will typically be approximate ones. Synopsis data structures seek to characterize
the data using succinct representations.

A natural synopsis data structure is a uniform random sample, and indeed, it
is well known that a random sample of a data set can be quite useful to support a
variety of queries on the set. However, for many classes of queries, uniform sampling
is not the best choice. A trivial example is the class of “number of items in the set”
queries, for which a single counter is much better. More interesting examples can
be found in the rest of this paper.

We define an f(n)-synopsis data structure as follows.

DEFINITION 2.1. An f(n)-synopsis data structure for a class @ of queries is a
data structure for providing (exact or approximate) answers to queries from @ that
uses O(f(n)) space for a data set of size n, where f(n) = o(n¢) for some constant
e<1.

While any sublinear space data structure may be an important improvement
over a linear space data structure, the above definition demands at least a poly-
nomial savings in space, since only with such savings can most of the benefits of
synopsis data structures outlined in Section 1 be realized. For example, massive
data sets typically exceed the available memory size by a polynomial factor, so a
data structure residing in memory must have a o(n¢) footprint.

As with traditional data structures, a synopsis data structure can be evaluated
according to five metrics:

e (Coverage: the range and importance of the queries in ().

o Answer quality: the accuracy and confidence of its (approximate) answers
to queries in Q.

e Footprint: its space bound (smaller f(n) is better).

o Query time.

o Computation/Update time: its preprocessing time in the static scenario, or
its update time in the dynamic scenario.

Ideally, f(n) is log2 n or better, queries and updates require a constant number of
memory operations and no disks operations, and the answers are exact.
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2.3. Cost model. Query times and computation/update times can be ana-
lyzed on any of a number of models of computation, depending on the target com-
puter system, including parallel or distributed models. For concreteness in this pa-
per, we will use the parallel disk model (PDM) of Vitter and Shriver [VS94, Vit98],
adapted to the scenarios discussed above.

In the PDM, there are P processors, D disks, and an (internal) memory of size
M (i.e., M/ P per processor). Each disk is partitioned into blocks of size B, and is
of unbounded size. The input of size N is partitioned (striped) evenly among the
disks, Dy, D1, ...,Dp_1, such that for i =0,1,..., N/B — 1, the ith block of input
data is the |i/D]th block of data on the (i mod D)th disk. The output is required
to be similarly striped. The size parameters N, M, and B are in units of the input
data items, M is less than NV, and 1 < DB < M/2. Thus the internal memory is
too small to hold the input but sufficiently large to hold two blocks from each of
the disks.

Algorithms are analyzed based on three metrics: the number of I/O operations,
the processing time, and the amount of disk space used. In a single I/O read (I/O
write), each of the D disks can simultaneously transfer a block to (from, respec-
tively) the internal memory. The processing time is analyzed assuming that each
processor is a unit-cost RAM for its in-memory computation times, and that the
processors are connected by an interconnection network whose properties depend
on the setting. Most of the algorithmic work on the PDM has focused on reducing
the number of I/O operations and proving matching lower bounds. As mentioned in
the introduction, the I/O bounds are often inversely proportional to the logarithm
of the available memory; specifically, they are inversely proportional to log(M/B).
Examples discussed in [Vit98] include sorting, permuting, matrix transpose, com-
puting the Fast Fourier Transform, and various batched problems in computational
geometry. For other problems, such as matrix multiplication and LU factorization,
the I/O bounds are inversely proportional to VM.

Our main deviation from the PDM is in the input and output requirements.
Query times and computation/update times are analyzed on a PDM with input and
output requirements adapted to the set-up described in Section 2.1. Our first devi-
ation is to supplement the PDM with a write-only “output” memory, of unbounded
size.

In our static scenario, the input resides on the disks as in the PDM, but we are
allowed to preprocess the data and store the resulting data structures in the internal
memory. In response to a query, the output is written to the output memory, in
contrast to the PDM. Thus processing the query may incur no I/O operations.

In our dynamic scenario, the input arrives online in the internal memory in
the form of insertions to the data set, deletions from the data set, or queries.
Data structures are maintained for answering queries. As in the static scenario,
data structures may be stored in the internal memory and responses to queries
are written to the output memory, and hence queries may be answered without
incurring any I/O operations.

Reducing the number of I/O operations is important since, as pointed out in
Section 1, an I/O operation can take as much time as 10,000 in-memory operations
on modern computer systems.

Note that any insertions and deletions in the dynamic scenario are applied to
the base data set, at no charge, so that the current state of the data set resides
on the disks at all times. However, the cost of reading this data depends on the
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setting, and needs to be specified for algorithms that perform such reads. One can
consider a variety of settings, such as cases where the base data is striped across the
disks or cases where there are various indices such as B-trees that can be exploited.
For the purely online scenario, the base data is unavailable.

With massive data sets, it will often be the case that the input size N is
not just larger than the memory size M, as assumed by the PDM, but is in fact
polynomially larger: N = M¢, for a constant ¢ > 1. Also, note that any algorithm
for the dynamic scenario in which updates incur (amortized) processing time ¢ per
update and no I/O operations yields an algorithm for computing the same synopsis
data structure in the static scenario in one pass over the data set, i.e., % I/0
operations and Nt processing time.

For simplicity, in the remainder of this paper, we will assume that the PDM
has only a single processor (i.e., P = 1).

2.4. Applications: Approximate query answering and cost estima-
tion. An important application domain for synopsis data structures is approxi-
mate query answering for ad hoc queries of large data warehouses [GM98]. In
large data recording and warehousing environments, it is often advantageous to
provide fast, approximated answers to complex decision-support queries (see the
TPC-D benchmark [TPC] for examples of such queries). The goal is to provide an
estimated response in orders of magnitude less time than the time to compute an
exact answer, by avoiding or minimizing the number of accesses to the base data.

In the Approzimate query answering (Aqua) project [GMP97a, GPAT98] at
Bell Labs, we seek to provide fast, approximate answers to queries using synopsis
data structures. Unlike the traditional data warehouse set-up depicted in Figure 1,
in which each query is answered exactly using the data warehouse, Aqua considers
the set-up depicted in Figure 2. In this set-up, new data being loaded into the
data warehouse is also observed by the approximate answer engine. This engine
maintains various synopsis data structures, for use in answering queries.

New Data New Data
Appr ox
Queries —_— Queries g;ﬁé <=
Dat a Data
War ehouse War ehouse
Responses <= Responses
FiGURE 1. Traditional FiGURE 2. Data warehouse set-up for
data warehouse providing approximate query answers

Queries are sent to the approximate answer engine. Whenever possible, the
engine promptly returns a response consisting of an approximated answer and a
confidence measure (e.g., a 95% confidence interval). The user can then decide
whether or not to have an exact answer computed from the base data, based on
the user’s desire for the exact answer and the estimated time for computing an
exact answer as determined by the query optimizer and/or the approximate answer
engine. There are a number of scenarios for which a user may prefer an approxi-
mate answer in a few seconds over an exact answer that requires tens of minutes or
more to compute, e.g., during a drill down query sequence in data mining [SKS97].
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Moreover, as discussed in Section 2.1, sometimes the base data is remote and cur-
rently unavailable, so that an exact answer is not an option, until the data again
becomes available.

Another important application domain for synopsis data structures is cost esti-
mation within a query optimizer. In commercial database systems, limited storage
is set aside for synopsis data structures such as histograms; these are used by the
query optimizer to estimate the cost of the primitive operations comprising a com-
plex SQL query (i.e., estimates of the number of items that satisfy a given predicate,
estimates of the size of a join operation [GGMS96], etc.). The query optimizer
uses these cost estimates to decide between alternative query plans and to make
more informed scheduling (allocation, load balancing, etc.) decisions in multi-query
and/or multiprocessor database environments, in order to minimize query response
times and maximize query throughput.

These two application domains highlight the fact that good synopsis data struc-
tures are useful either for providing fast approximate answers to user queries, or
for speeding up the time to compute an exact answer, or for both.

The next three sections of this paper highlight in detail our work on synopsis
data structures for three problem domains. These sections are not meant to be
comprehensive, but instead provide a flavor of the difficulties and the techniques.
Much of the details, including most of the proofs and the experimental results,
are omitted; the reader is referred to the cited papers for these details. The first
problem domain is that of estimating the frequency moments of a data set, such
as the number of distinct values or the maximum frequency of any one value. The
second problem domain is that of estimating the m most frequently occurring values
in a data set. The third problem domain is that of approximating the quantiles and
other types of histograms of a data set. Note that the emphasis in these sections
will be on what synopses to keep within the limited space, how to maintain these
synopses, and what can be proved about the quality of the answers they provide;
these are the challenges particular to synopsis data structures. Traditional data
structure issues concerning the representation used to store the synopsis and its
impact on query time and update time are important, but somewhat secondary to
the main emphasis. As can be seen by the techniques presented in these sections,
randomization and approximation seem to be essential features in the study of
synopsis data structures for many problems, and have been proven to be essential
for several problems.

3. Frequency moments

In this section, we highlight our results on synopsis data structures for estimat-
ing the frequency moments of a data set.

Let A = (a1, az2,...,a,) be a sequence of elements, where each a; is a member
of U = {1,2,...,u}. For simplicity of exposition, we assume that u < n.! Let
m; = |{j : a;j = i}| denote the number of occurrences of ¢ in the sequence A,

or the frequency of i in A. The demographic information of the frequencies in
the data set A can be described by maintaining the full histogram over U: H =
(my,ma,...,m,). However, when the desired footprint is substantially smaller
than u, then a more succinct representation of the frequencies is required.

LA more detailed analysis would show that for the f(n)-synopsis data structures reported in
this section, it suffices that u < 27" for some constant € < 1.
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Define, for each k > 0, F, = Y i, mF. In particular, Fy is the number of
distinct elements appearing in the sequence, Fi ( = n) is the length of the se-
quence, and Fj is the repeat rate or Gini’s index of homogeneity needed in order
to compute the surprise indez of the sequence (see, e.g., [Goo89]). Also define
F% = max;<j<um;. (Since the moment F} is defined as the sum of k-powers of
the numbers m; and not as the k-th root of this sum the last quantity is denoted
by FZ% and not by Fs.) The numbers F}, are called the frequency moments of A.

The frequency moments of a data set represent useful demographic informa-
tion about the data, for instance in the context of database applications. They
indicate the degree of skew in the data, which is of major consideration in many
parallel database applications. Thus, for example, the degree of the skew may de-
termine the selection of algorithms for data partitioning, as discussed by DeWitt
et al [DNSS92] (see also the references therein).

We discuss the estimation of frequency moments when the available memory is
smaller than v (i.e., when the full histogram H is not available). We first consider
the problem of estimating Fp, which demonstrates the advantages of viewing the
input online versus ad hoc sampling from the data set. In particular, we present
results showing that Fy can be effectively estimated using a synopsis data structure
with footprint only O(logu), but it cannot be effectively estimated based solely on
a random sample of the data set unless (u) memory is employed. We then discuss
space-efficient algorithms for estimating Fy for all k > 2, using (n'~'/*logn)-
synopsis data structures, and an improved (logn)-synopsis data structure for esti-
mating F5. Finally, lower bounds on the estimation of F}, and F% are mentioned,
as well as results showing that that both randomization and approximation are
essential for evaluating Fy, k # 1.

3.1. Estimating the number of distinct values. Estimating the number
of distinct values in a data set is a problem that frequently occurs in database
applications, and in particular as a subproblem in query optimization. Indeed, Haas
et al [HNSS95] claim that virtually all query optimization methods in relational
and object-relational database systems require a means for assessing the number of
distinct values of an attribute in a relation, i.e., the function Fy for the sequence
consisting of the attribute values for each item in the relation.

When no synopsis data structure is maintained, then the best methods for
estimating Fp are based on sampling. Haas et al [HNSS95] consider sampling-
based algorithms for estimating Fy. They propose a hybrid approach in which the
algorithm is selected based on the degree of skew of the data, measured essentially
by the function F». However, they observe that fairly poor performance is obtained
when using the standard statistical estimators, and remark that estimating Fy via
sampling is a hard and relatively unsolved problem. This is consistent with Olken’s
assertion [O1k93] that all known estimators give large errors on at least some
data sets. In a recent paper, Chaudhuri et al [CMN98] show that “large error is
unavoidable even for relatively large samples regardless of the estimator used. That
is, there does not exist an estimator which can guarantee reasonable error with any
reasonable probability unless the sample size is very close to the size of the database
itself.” Formally, they show the following.

THEOREM 3.1. [CMN98] Consider any estimator d for the number of distinct
values d based on a mnc{om sample of size r frf)m a relatign withAn tuples. Let the
error of the estimator d be defined as error(d) = max{d/d,d/d}. Then for any
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T

v > e ", there ezists a choice of the relation such that with probability at least v,

error(d) > 1/ "1“71/7

In contrast, the algorithm given below demonstrates a (logn)-synopsis data
structure which enables estimation of Fy within an arbitrary fixed error bound
with high probability, for any given data set. Note that the synopsis data structure
is maintained while observing the entire data set. In practice, this can be realized
while the data set is loaded into the disks, and the synopsis data structure is
maintained in main memory with very small overhead.

Flajolet and Martin [FM83, FM85] described a randomized algorithm for esti-
mating Fy using only O(log u) memory bits, and analyzed its performance assuming
one may use in the algorithm an explicit family of hash functions which exhibits
some ideal random properties. The (logn)-synopsis data structure consists of a bit
vector V initialized to all 0. The main idea of the algorithm is to let each item
in the data set select at random a bit in V and set it to 1, with (quasi-)geometric
distribution; i.e., V[i] is selected with probability () 1/2¢. The selection is made
using a random hash function, so that all items of the same value will make the
same selection. As a result, the expected number of items selecting V'[i] is &~ F/2?,
and therefore 27, where i’ is the largest i such that V[i] = 1, is a good estimate for
Fy. Alon et al [AMS96] adapted the algorithm so that linear hash functions could
be used instead, obtaining the following.

THEOREM 3.2. [FM83, AMS96] For every ¢ > 2 there exists an algorithm
that, given a sequence A of n members of U = {1,2,...,u}, computes a number Y
using O(logu) memory bits, such that the probability that the ratio between Y and
Fy is not between 1/c and c is at most 2/c.

PROOF. Let d be the smallest integer so that 2¢ > u, and consider the members
of U as elements of the finite field F = GF(2%), which are represented by binary
vectors of length d. Let a and b be two random members of F', chosen uniformly and
independently. When a member a; of the sequence A appears, compute 2z; = a-a;+b
, where the product and addition are computed in the field F'. Thus z; is represented
by a binary vector of length d. For any binary vector z, let p(z) denote the largest r
so that the r rightmost bits of z are all 0 and let r; = p(z;). Let R be the maximum
value of r;, where the maximum is taken over all elements a; of the sequence A.
The output of the algorithm is ¥ = 2. Note that in order to implement the
algorithm we only have to keep (besides the d = O(logu) bits representing an
irreducible polynomial needed in order to perform operations in F) the O(logu)
bits representing a and b and maintain the O(loglog u) bits representing the current
maximum r; value.

Suppose, now, that Fy is the correct number of distinct elements that appear
in the sequence A, and let us estimate the probability that Y deviates considerably
from Fy. The only two properties of the random mapping f(z) = ax + b that maps
each a; to z; we need is that for every fixed a;, z; is uniformly distributed over F’
(and hence the probability that p(z;) > r is precisely 1/2"), and that this mapping
is pairwise independent. Thus, for every fixed distinct a; and a;, the probability
that p(z;) > r and p(z;) > r is precisely 1/2%".

Fix an r. For each element x € U that appears at least once in the sequence A,
let W,, be the indicator random variable whose value is 1 if and only if p(az+b) > r.
Let Z = Z,. =)  W,, where x ranges over all the Fy elements x that appear in the
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sequence A. By linearity of expectation and since the expectation of each W, is
1/2"7, the expectation E(Z) of Z is Fy/2". By pairwise independence, the variance
of Z is Fy5-(1 — 5) < Fy/2". Therefore, by Markov’s Inequality, if 2" > cFp
then Prob(Z, > 0) < 1/¢, since E(Z,) = Fy/2" < 1/c. Similarly, by Chebyshev’s
Inequality, if ¢2" < Fy then Prob(Z, = 0) < 1/¢, since Var(Z,) < Fy/2" = E(Z,)
and hence Prob(Z, = 0) < Var(Z,)/(E(Z,)?) < 1/E(Z,) = 2"/F,. Since our
algorithm outputs Y = 2%, where R is the maximum r for which Z, > 0, the two
inequalities above show that the probability that the ratio between Y and Fj is not
between 1/c and c is smaller than 2/¢, as needed. O

Thus we have a (logn)-synopsis data structure for the class of Fy queries,
designed for the dynamic scenario of both insertions and queries. Analyzed on the
cost model of Section 2, both the query and update times are only O(1) processing
time per query/update and no I/O operations.

3.2. Estimating F}, for k£ > 2. Alon et al [AMS96] developed an algorithm
which, for every sequence A and a parameter &, can estimate F} within a small con-
stant factor with high probability, using an (n'~'/* logn)-synopsis data structure.
The description below is taken from [AGMS97], which considered implementation
issues of the algorithm and showed how the algorithm, coined sample-count, could
be adapted to support deletions from the data set.

The idea in the sample-count algorithm is rather simple: A random sample of
locations is selected in the sequence of data items that are inserted into the data
set. This random selection can be easily done as the items are being inserted. Once
we reach an item that was chosen to be in the sample, we will count from now on
the number of incoming items that have its value. It turns out that the count r for
each sample point is a random variable which satisfies E(nkr*~!) ~ F}, and that
the variance is reasonably small, for small k. The desired accuracy and confidence
of the final estimate are obtained by applying averaging techniques over the counts
of sample items.

More specifically, the number of memory words used by the algorithm is s =
81 - 8o, where s; is a parameter that determines the accuracy of the result, and so
determines the confidence; e.g., for any input set, the relative error of the estimate Y’
for F exceeds 4u'/*/,/s1 with probability at most 2~*2/2. The algorithm computes
so random variables Y7, Ya,...,Y;, and outputs their median Y. Each Y; is the
average of s; random variables X;; : 1 < j < s1, where the X;; are independent,
identically distributed random variables. Averaging is used to reduce the variance,
and hence the error (Chebyshev’s inequality), and the median is used to boost the
confidence (Chernoff bounds). Each of the variables X = Xj; is computed from the
sequence in the same way as follows:

e Choose a random member a, of the sequence A, where the index p is chosen
randomly and uniformly among the numbers 1,2, ..., n; suppose that a, =
I (eU={12,...,u}).
o Let r = |{¢g : ¢ > p,a; = l}| be the number of occurrences of [ among the
members of the sequence A following a, (inclusive).
e Define X = n(r* — (r — 1)¥), e.g., for k =2 let X = n(2r — 1).
For k = 2, it is shown in [AMS96] that the estimate ¥ computed by the above
algorithm satisfies E(Y) = F, and Prob (|Y — Fy| < 4ul/*/\/51) > 1 —27%2/2,
An accurate estimate for F, can therefore be guaranteed with high probability by
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selecting s; = O(y/u) and s3 = ©(logn). More generally, by selecting s; = 8’“‘;7;1/’6

and sy = 2log(1/e€), one can obtain the following.

THEOREM 3.3. [AMS96] For every k > 1, every A > 0 and every € > 0 there

exists a randomized algorithm that computes, given a sequence A = (ay,...,a,) of
members of U = {1,2,...,u}, in one pass and using
klog(1/e) ,_
0 (TU1 Yk (log u + logn)

memory bits, a number Y so that the probability that Y deviates from Fy by more
than \F}, is at most €.

Thus for fixed k, A, and €, we have an (n'~'/*logn)-synopsis data structure
for the class of F}, queries, designed for the dynamic scenario. Waiting until query
time to compute the averages Y; would result in O(s;) = O(n'~'/*) query time on
our cost model. However, these averages can be maintained as running averages as
updates arrive, resulting in O(1) processing time per query, and no I/O operations.
Moreover, by representing the samples a,, as a concise sample (defined in Section 4)
and using a dynamic dictionary data structure, the update time can likewise be
reduced to O(1) processing time per update and no I/O operations.

3.3. Improved estimation for F>. An improved estimation algorithm for
F, was also presented in [AMS96]. For every sequence A, F» can be estimated
within a small constant factor with high probability, using a (logn)-synopsis data
structure. Again, the description below is taken from [AGMS97], which considers
implementation issues of the algorithm and shows how the algorithm, coined tug-
of-war, can be adapted to support deletions from the data set.

The tug-of-war algorithm can be illustrated as follows: Suppose that a crowd
consists of several groups of varying numbers of people, and that our goal is to
estimate the skew in the distribution of people to groups. That is, we would like
to estimate F5 for the set {a;}? ,, where a; is the group to which the i’th person
belongs. We arrange a tug-of-war, forming two teams by having each group as-
signed at random to one of the teams. Equating the displacement of the rope from
its original location with the difference in the sizes of the two teams, it is shown
in [AMS96] that the expected square of the rope displacement is exactly F», and
that the variance is reasonably small. This approach can be implemented in small
memory, using the observation that we can have the persons in the crowd come one
by one, and contribute their displacement in an incremental fashion. In addition
to the updated displacements, the only thing that requires recording in the pro-
cess is the assignment of groups to teams, which can be done succinctly using an
appropriate pseudo-random hash function.

As with sample-count, the number of memory words used by tug-of-war is s =
s1 - 89, where s1 is a parameter that determines the accuracy of the result, and s
determines the confidence. As before, the output Y is the median of s; random
variables Y1,Y5,...,Ys,, each being the average of s; random variables X;; : 1 <
J < s1, where the X;; are independent, identically distributed random variables.
Each X = X;; is computed from the sequence in the same way, as follows:

e Select at random a 4-wise independent mapping i —> ¢€;, where i € U =
{1,2,...,u} and ¢; € {—1,1}.
o Let Z =730, eimy.
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o Let X = Z2.
For accurate estimates for Fy of fixed error with guaranteed fixed probability,

constant values suffice for s; and sy. Specifically, by selecting s; = ;-2 and sy =
21log(1/€), the following is obtained.

THEOREM 3.4. [AMS96] For every A > 0 and € > 0 there exists a randomized
algorithm that computes, given a sequence A = (a1,...,a,) of members of U, in
log /g/ 6)(

one pass and using O < logu + log n)) memory bits, a number Y so that

the probability that Y deviates from Fs by more than AF5> is at most €. For fized
A and €, the algorithm can be implemented by performing, for each member of the
sequence, a constant number of arithmetic and finite field operations on elements
of O(logu + logn) bits.

Thus for fixed A and €, we have a (logn)-synopsis data structure for the class
of F; queries, designed for the dynamic scenario. Both the query and update times
are only O(1) processing time per query/update and no I/O operations.

3.4. Lower bounds. We mention lower bounds given in [AMS96] for the
space complexity of randomized algorithms that approximate the frequency mo-
ments Fj. The lower bounds are obtained by reducing the problem to an appro-
priate communication complexity problem [Yao83, BFS86, KS87, Raz92], a set
disjointness problem, obtaining the following.

THEOREM 3.5. [AMS96] For any fized k > 5 and v < 1/2, any randomized
algorithm that outputs, given one pass through an input sequence A of at most n
elements of U = {1,2,...,n}, a number Zy, such that Prob(|Z, — Fy| > 0.1F) < 7,
requires Q(n'—5/%) memory bits.

THEOREM 3.6. [AMS96] Any randomized algorithm that outputs, given one
pass through an input sequence A of at most 2n elements of U = {1,2,...,n}, a
number Y such that Prob(|Y — FX| > FX /3) <7, for some fized v < 1/2, requires
Q(n) memory bits.

The first theorem above places a lower bound on the footprint of a synopsis
data structure that can estimate F}, to within constant factors in the purely online
scenario, over all distributions. The second theorem shows that no synopsis data
structure exists for estimating F to within constant factors in the purely online
scenario, over all distributions. As will be discussed in the next section, good
synopsis data structures exist for skewed distributions, which may be of practical
interest.

The number of elements F; can be computed deterministically and exactly using
a (logm)-synopsis data structure (a simple counter). The following two theorems
show that for all k¥ # 1, both randomization and approximation are essential in
evaluating Fy,.

THEOREM 3.7. [AMS96] For any nonnegative integer k # 1, any randomized
algorithm that outputs, given one pass through an input sequence A of at most 2n
elements of U = {1,2,...,n} a numberY such thatY = F}, with probability at least
1 —¢, for some fized € < 1/2, requires Q(n) memory bits.

THEOREM 3.8. [AMS96] For any nonnegative integer k # 1, any deterministic
algorithm that outputs, given one pass through an input sequence A of n/2 elements
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of U=1{1,2,...,n}, a numberY such that |Y — F}| < 0.1F}, requires (n) memory
bits.

PROOF. Let G be a family of t = 2%(") subsets of U, each of cardinality n/4
so that any two distinct members of G have at most n/8 elements in common.
(The existence of such a G follows from standard results in coding theory, and
can be proved by a simple counting argument). Fix a deterministic algorithm that
approximates F}, for some fixed nonnegative k # 1. For every two members G; and
G2 of G let A(G1,G2) be the sequence of length n/2 starting with the n/4 members
of G1 (in a sorted order) and ending with the set of /4 members of G2 (in a sorted
order). When the algorithm runs, given a sequence of the form A(G:,G2), the
memory configuration after it reads the first n/4 elements of the sequence depends
only on GG;. By the pigeonhole principle, if the memory has less than logt bits,
then there are two distinct sets G; and G2 in G, so that the content of the memory
after reading the elements of GG; is equal to that content after reading the elements
of 2. This means that the algorithm must give the same final output to the two
sequences A(G1,G1) and A(Gs,G1). This, however, contradicts the assumption,
since for every k # 1, the values of Fj, for the two sequences above differ from
each other considerably; for A(G1,G1), Fo = n/4 and Fy, = 2¥n/4 for k > 2,
whereas for A(G2,G1), Fy > 3n/8 and F}, < n/4 + 2¥n /8. Therefore, the answer
of the algorithm makes a relative error that exceeds 0.1 for at least one of these
two sequences. It follows that the space used by the algorithm must be at least
logt = Q(n), completing the proof. O

4. Hot list queries

In this section, we highlight our results on synopsis data structures for answer-
ing hot list and related queries.

A hot list is an ordered set of m (value, count) pairs for the m most frequently
occurring “values” in a data set, for a prespecified m. In various contexts, hot lists
are denoted as high-biased histograms [IC93] of m + 1 buckets, the first m mode
statistics, or the m largest itemsets [AS94]. Hot lists are used in a variety of data
analysis contexts, including:

e Best sellers lists (“top ten” lists): An example is the top selling items in a
database of sales transactions.

e Selectivity estimation in query optimization: Hot lists capture the most
skewed (i.e., popular) values in a relation, and hence have been shown to be
quite useful for estimating predicate selectivities and join sizes (see [Ioa93,
IC93, IP95]).

e Load balancing: In a mapping of values to parallel processors or disks, the
most skewed values limit the number of processors or disks for which good
load balance can be obtained.

o Market basket analysis: Given a sequence of sets of values, the goal is to
determine the most popular k-itemsets, i.e., k-tuples of values that occur to-
gether in the most sets. Hot lists can be maintained on k-tuples of values for
any specified k, and indicate a positive correlation among values in itemsets
in the hot list. These can be used to produce association rules, specifying
a (seemingly) causal relation among certain values [AS94, BMUT97|. An
example is a grocery store, where for a sequence of customers, a set of the
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items purchased by each customer is given, and an association rule might
be that customers who buy bread typically also buy butter.

e “Caching” policies based on most-frequently used: The goal is to retain in
the cache the most-frequently-used items and evict the least-frequently-used
whenever the cache is full. An example is the most-frequently-called coun-
tries list in caller profiles for real-time telephone fraud detection [Pre97],
and in fact an early version of the hot list algorithm described below has
been in use in such contexts for several years.

As these examples suggest, the input need not be simply a sequence of individ-
ual values, but can be tuples with various fields such that for the purposes of the
hot list, both the value associated with a tuple and the contribution by that tuple to
that value’s count are functions on its fields. However, for simplicity of exposition,
we will discuss hot lists in terms of a sequence of values, each contributing one to
its value’s count.

Hot lists are trivial to compute and maintain given sufficient space to hold
the full histogram of the data set. However, for many data sets, such histograms
require space linear in the size of the data set. Thus for synopsis data structures
for hot list queries, a more succinct representation is required, and in particular,
counts cannot be maintained for each value. Note that the difficulty in maintaining
hot lists in the dynamic scenario is in detecting when values that were infrequent
become frequent due to shifts in the distribution of arriving data. With only a
small footprint, such detection is difficult since there is insufficient space to keep
track of all the infrequent values, and it is expensive (or impossible, in the purely
online scenario) to access the base data once it is on the disks.

A related, and seemingly simpler problem to hot list queries is that of “popular
items” queries. A popular items query returns a set of (value, count) pairs for
all values whose frequency in the data set exceeds a prespecified threshold, such
as 1% of the data set. Whereas hot list queries prespecify the number of pairs
to be output but not a frequency lower bound, popular items queries prespecify a
frequency lower bound but not the number of pairs. An approximate answer for
a popular items query can be readily obtained by sampling, since the sample size
needed to obtain a desired answer quality can be predetermined from the frequency
threshold. For example, if p < 1 is the prespecified threshold percentage, then by
Chernoff bounds, any value whose frequency exceeds this threshold will occur at
least ¢/2 times in a sample of size ¢/p with probability 1 — e~¢/8. A recent paper
by Fang et al [FSGMT98] presented techniques for improving the accuracy and
confidence for popular items queries. They considered the generalization to tuples
and functions on its fields mentioned above for hot list queries, and denoted this
class of queries as iceberg queries. They presented algorithms combining sampling
with the use of multiple hash functions to perform coarse-grained counting, in order
to significantly improve the answer quality over the naive sampling approach given
above.

In the remainder of this section, we describe results in [GM98] presenting and
studying two synopsis data structures, concise samples and counting samples. As
mentioned in Section 3.4, there are no synopsis data structures for estimating the
count of the most frequently occurring value, F%, to within constant factors in the
purely online scenario, over all distributions. Hence, no synopsis data structure
exists for the more difficult problem of approximating the hot list in the purely
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online scenario, over all distributions. On the other hand, concise samples and
counting samples are shown in [GM98] both analytically and experimentally to
produce more accurate approximate hot lists than previous methods, and perform
quite well for the skewed distributions that are of interest in practice.

4.1. Concise samples. Consider a hot list query on a data set of size n. One
possible synopsis data structure is the set of values in a uniform random sample
of the data set, as was proposed above for popular items queries. The m most
frequently occurring values in the sample are returned in response to the query,
with their counts scaled by n/m. However, note that any value occurring frequently
in the sample is a wasteful use of the available space. We can represent k copies of
the same value v as the pair (v, k), and (assuming that values and counts use the
same amount of space), we have freed up space for k£ — 2 additional sample points.
This simple observation leads to the following synopsis data structure.

DEFINITION 4.1. In a concise representation of a multiset, values appearing
more than once in the multiset are represented as a value and a count. A con-
cise sample of size m is a uniform random sample of the data set whose concise
representation has footprint m.

We can quantify the advantage of concise samples over traditional samples
in terms of the number of additional sample points for the same footprint. Let
S ={(vi,c1),...,(vj,¢j),vj41, ..,V } be a concise sample of a data set of n values.
We define sample-size(S) to be £—j+3"1_, ¢;. Note that the footprint of S depends
on the number of bits used per value and per count. For example, variable-length
encoding could be used for the counts, so that only [logz] bits are needed to store
x as a count; this reduces the footprint but complicates the memory management.
Approximate counts [Mor78] could be used as well, so that only [loglogz] bits
are needed to store x to within a power of two. For simplicity of exposition, we will
consider only fixed-length encoding of logn bits per count and per value, including
any bits needed to distinguish values from counts, so that the footprint of S is
(¢ + j)logn. For a traditional sample with m sample points, the sample-size is m
and the footprint is mlogn.

Concise samples are never worse than traditional samples (given the encoding
assumptions above), and can be exponentially or more better depending on the
data distribution. For example, if there are at most m/(2logn) distinct values in
the data set, then a concise sample of size m would have sample-size n (i.e., in this
case, the concise sample is the full histogram). Thus, the sample-size of a concise
sample may be arbitrarily larger than its footprint:

LEMMA 4.2. [GM98] For any footprint m > 2logn, there exists data sets for
which the sample-size of a concise sample is n/m times larger than its footprint,
where n is the size of the data set.

For exponential distributions, the advantage is exponential:

LEMMA 4.3. [GM9_8] Consider the family of exponential distributions: for i =
1,2,---, Pr(v =14) = a *(a—1), for a > 1. For anym > 2, the expected sample-size
of a concise sample with footprint mlogn is at least a™/2.

PROOF. Let x = m/2. Note that we can fit at least & values and their counts
within the given footprint. The expected sample-size can be lower bounded by the
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expected number of randomly selected tuples before the first tuple whose attribute
value v is greater than x. The probability of selecting a value greater than x is
Yoiepi1 @ Y@ —1) = a™®, so the expected number of tuples selected before such
an event occurs is a®. O

The expected gain in using a concise sample over a traditional sample for
arbitrary data sets is a function of the frequency moments Fy, for k > 2, of the
data set. Recall from Section 3 that Fj =}, m , where j is taken over the values
represented in the set and m; is the number of set elements of value j.

THEOREM 4.4. [GM98] For any data set, when using a concise sample S with
sample-size m, the expected gain is

- F

E[m — number of distinct values in S| = Z(—l)k (TZ) &

nk ’
k=2

PROOF. Let p; = m;/n be the probability that an item selected at random
from the set is of value j. Let X; be an indicator random variable so that X; = 1
if the ith item selected to be in the traditional sample has a value not represented
as yet in the sample, and X; = 0 otherwise. Then, Pr(X; = 1) = >~ p;(1 —p;) L,
where j is taken over the values represented in the set (since X; = 1 if some value
Jj is selected so that it has not been selected in any of the first ¢ — 1 steps). Clearly,
X = E;’;l X; is the number of distinct values in the traditional sample. We can
now evaluate E[number of distinct values] as

B[X] = ZE[X}—ZZpJI—pJ Zijl—pJ -

=1 j
= Xn T = -0
- S5 )-EEer s
= Sy ()5

k=1
O

Note that the footprint for a concise sample is at most 2logn times the number of
distinct values, whereas the footprint for a traditional sample of sample-size m is
mlogn.

Maintaining concise samples. We describe next the algorithm given in [GM98]
for maintaining a concise sample within a given footprint bound as new data is
inserted into the data set. Since the number of sample points provided by a concise
sample depends on the data distribution, the problem of maintaining a concise
sample as new data arrives is more difficult than with traditional samples. For
traditional samples, the reservoir sampling algorithm of Vitter [Vit85] can be used
to maintain a sample in the presence of insertions of new data (see Section 5.1
for details). However, this algorithm relies heavily on a priori knowledge of the
target sample-size (which, for traditional samples, equals the footprint divided by
logn). With concise samples, the sample-size depends on the data distribution to
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date, and any changes in the data distribution must be reflected in the sampling
frequency.

Our maintenance algorithm is as follows. Let 7 be an entry threshold (ini-
tially 1) for new data to be selected for the sample. Let S be the current concise
sample and consider an insertion of a data item with value v. With probability
1/7, add v to S, preserving the concise representation. If the footprint for S now
exceeds the prespecified footprint bound, raise the threshold to some 7' and then
subject each sample point in S to this higher threshold. Specifically, each of the
sample-size(S) sample points is evicted with probability 7/7'. It is expected that
sample-size(S) - (1 — 7/7") sample points will be evicted. Note that the footprint
is only decreased when a (value, count) pair reverts to a singleton or when a value
is removed altogether. If the footprint has not decreased, repeat with a higher
threshold.

There is complete flexibility in this algorithm in selecting the sequence of in-
creasing thresholds, and [GM98] discussed a variety of approaches and their trade-
offs, as well as ways to improve the constant factors.

THEOREM 4.5. [GM98] The above algorithm maintains a concise sample with-
in a prespecified size bound in constant amortized expected update time per insert,
and no I/0 operations.

PrOOF. The algorithm maintains a uniform random sample since, whenever
the threshold is raised, it preserves the invariant that each item in the data set has
been treated (probabilistically) as if the threshold were always the new threshold.
The look-ups can be done in constant expected time using a dynamic dictionary
data structure such as a hash table. Raising a threshold costs O(m') processing
time, where m' is the sample-size of the concise sample before the threshold was
raised. For the case where the threshold is raised by a constant factor each time,
we expect there to be a constant number of coin tosses resulting in sample points
being retained for each sample point evicted. Thus we can amortize the retained
against the evicted, and we can amortize the evicted against their insertion into
the sample (each sample point is evicted only once). O

4.2. Counting samples. Counting samples are a variation on concise samples
in which the counts are used to keep track of all occurrences of a value inserted
into the data set after the value was selected for the sample. Their definition is
motivated by a sampling&counting process of this type from a static data set:

DEFINITION 4.6. A counting sample for a data set A with threshold 7 is any
subset of A stored in a concise representation (as defined in Definition 4.1) that is
obtained by a process that is probabilistically equivalent to the following process:
For each value v occurring ¢ > 0 times in A, we flip a coin with probability 1/7 of
heads until the first heads, up to at most ¢ coin tosses in all; if the ith coin toss is
heads, then v occurs ¢ — i 4+ 1 times in the subset, else v is not in the subset.

A counting sample differs from the approach used in Section 3.2 in not allowing
multiple counts for the same value and in its use of a threshold (that will adapt to
a data distribution) versus a prespecified sample size. Although counting samples
are not uniform random samples of the data set, a concise sample can be obtained
from a counting sample by considering each pair (v,c) in the counting sample in
turn, and flipping a coin with probability 1/7 of heads ¢—1 times and reducing the
count by the number of tails.
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Maintaining counting samples. The following algorithm is given in [GM98]
for maintaining a counting sample within a given footprint bound for the dynamic
scenario. Let 7 be an entry threshold (initially 1) for new data to be selected for
the sample. Let S be the current counting sample and consider an insertion of a
data item with value v. If v is represented by a (value, count) pair in S, increment
its count. If v is a singleton in S, create a pair with count set to 2. Otherwise,
add v to S with probability 1/7. If the footprint for S now exceeds the prespecified
footprint bound, raise the threshold to some 7' and then subject each value in S
to this higher threshold. Specifically, for each value in the counting sample, flip a
biased coin, decrementing its observed count on each flip of tails until either the
count reaches zero or a heads is flipped. The first coin toss has probability of
heads 7/7', and each subsequent coin toss has probability of heads 1/7'. Values
with count zero are removed from the counting sample; other values remain in the
counting sample with their (typically reduced) counts.

An advantage of counting samples over concise samples is that one can maintain
counting samples in the presence of deletions to the data set. Maintaining concise
samples in the presence of such deletions is difficult: If we fail to delete a sample
point in response to the delete operation, then we risk having the sample fail to be
a subset of the data set. On the other hand, if we always delete a sample point,
then the sample may no longer be a random sample of the data set.? With counting
samples, we do not have this difficulty. For a delete of a value v, it suffices to reverse
the increment procedure by decrementing a count, converting a pair to a singleton,
or removing a singleton, as appropriate.

As with concise samples, there is complete flexibility in this algorithm in se-
lecting the sequence of increasing thresholds, and [GM98] discussed a variety of
approaches and their tradeoffs, as well as ways to improve the constant factors.

THEOREM 4.7. [GM98] For any sequence of insertions and deletions in the
dynamic scenario, the above algorithm maintains a counting sample within a pre-
specified footprint in constant amortized expected update time and no I/O opera-
tions.

ProOF. We must show that the requirement in the definition of a counting
sample is preserved when an insert occurs, a delete occurs, or the threshold is
raised. Let A be the data set and S be the counting sample.

An insert of a value v increases by one its count in A. If v is in S, then one of its
coin flips to date was heads, and we increment the count in S. Otherwise, none of
its coin flips to date were heads, and the algorithm flips a coin with the appropriate
probability. All other values are untouched, so the requirement is preserved.

A delete of a value v decreases by one its count in A. If v is in S, then the
algorithm decrements the count (which may drop the count to 0). Otherwise, ¢
coin flips occurred to date and were tails, so the first ¢ — 1 were also tails, and the
value remains omitted from S. All other values are untouched, so the requirement
is preserved.

Consider raising the threshold from 7 to 7/, and let v be a value occurring ¢ > 0
times in A. If v is not in S, there were the equivalent of ¢ coin flips with heads
probability 1/7 that came up tails. Thus the same ¢ probabilistic events would fail
to come up heads with the new, stricter coin (with heads probability only 1/7'). If

2For some applications of random samples, an effective alternative approach is to collect and
make use of two uniform samples: one for the inserted data and one for the deleted data.
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v is in S with count ¢, then there were the equivalent of ¢ — ¢ coin flips with heads
probability 1/7 that came up tails, and these same probabilistic events would come
up tails with the stricter coin. This was followed by the equivalent of a coin flip
with heads probability 1/7 that came up heads, and the algorithm flips a coin with
heads probability 7/7', so that the result is equivalent to a coin flip with probability
(1/7) - (v/7") = (1/7"). If this coin comes up tails, then subsequent coin flips for
this value have heads probability 1/7'. In this way, the requirement is preserved
for all values.

The update time bounds are argued as in the proof of Theorem 4.5. O

Note that although both concise samples and counting samples have O(1) amor-
tized update times, counting samples are slower to update than concise samples,
since, unlike concise sample, they perform a look-up (into the counting sample) at
each update to the data set. On the other hand, with counting samples, the guar-
antees on the counts are stronger, since exact counting is used on values already in
the sample.

4.3. Application to hot list queries. Consider a hot list query requesting
k pairs. Given a concise sample S of footprint mlogn, m > 2k, an approximate
hot list can be reported by computing the k’th largest count ¢, (using a linear time
selection algorithm), and then reporting all pairs with counts at least max(cg,d),
scaling the counts by n/m', where § > 1 is a confidence threshold and m' = sample-
size(S). Note that when § = 1, k pairs will be reported, but with larger §, fewer
than k may be reported. The response time for reporting is O(m) processing time
and no I/O operations. Alternatively, we can trade-off update time versus query
time by keeping the concise sample sorted by counts. This allows for reporting in
O(k) time.

Given a counting sample S of footprint mlogn with threshold 7, an approx-
imate hot list can be reported by computing the k’th largest count ¢, and then
reporting all pairs with counts at least max(cg, ™ — ¢), where ¢é is a compensation
added to each reported count that serves to compensate for inserts of a value into
the data set prior to the successful coin toss that placed it in the counting sample.

An analysis in [GM98] argued for é = 7 (5_2) — 1= 418 -7 — 1. Given the

e—1
conversion of counting samples into concise samples discussed in Section 4.2, this
can be seen to be similar to taking § = 2 — % ~ 1.582.

Analytical bounds and experimental results are presented in [GM98] quanti-
fying the accuracy of the approximate hot lists reported using concise samples or
counting samples. An example plot from that paper is given in Figure 3, where
the data is drawn from a Zipf distribution with parameter 1.5 and the footprint is
measured in memory words.

5. Histograms and quantiles

Histograms approximate a data set by grouping values into “buckets” (subsets)
and approximating the distribution of values in the data set based on summary
statistics maintained in each bucket (see, e.g., [PIHS96]). Histograms are com-
monly used in practice in various databases (e.g., in DB2, Informix, Ingres, Oracle,
Microsoft SQL Server, Sybase, and Teradata). They are used for selectivity estima-
tion purposes within a query optimizer and in query execution, and there is work
in progress on using them for approximate query answering.
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Fi1cURrE 3. Comparison of algorithms for a hot list query, depicting
the frequency of the most frequent values as reported using a full
histogram, using a concise sample, using a counting sample, and
using a traditional sample

Two histogram classes used extensively in database systems are equi-depth
histograms and compressed histograms. In an equi-depth or equi-height histogram,
contiguous ranges of values are grouped into buckets such that the number of data
items falling into each bucket is the same. The endpoints of the value ranges are
denoted the bucket boundaries or gquantiles. In a compressed histogram [PTHS96],
the highest frequency values are stored separately in single-valued buckets; the rest
are partitioned as in an equi-depth histogram. Compressed histograms typically
provide more accurate estimates than equi-depth histograms.

A common problem with histograms is their dynamic maintenance. As a data
set is updated, its distribution of values might change and the histogram (which is
supposed to reflect the distribution) should change as well, since otherwise estimates
based on the histogram will be increasingly inaccurate. In this section, we describe
our work in [GMP97b] on algorithms for maintaining approximate equi-depth and
compressed histograms as synopsis data structures in the dynamic scenario. We also
discuss recent related work by Manku et al [MRL98] on computing approximate
quantiles.

Another concern for histograms is their construction costs in the static scenario.
Sampling can be used to improve the construction times (see, e.g., [PTHS96]), and
we discuss recent work by Chaudhuri et al [CMN98] on using sampling to construct
approximate equi-depth histograms in the static scenario.

An important feature of our algorithms for maintaining approximate histograms
is the use of a “backing sample”. Backing samples are interesting for two reasons:
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they can be used to convert sampling-based algorithms for the static scenario into
algorithms for the dynamic scenario, and their use is an example of a hierarchical
approach to synopsis data structures.

5.1. Backing samples. A backing sample for a data set, A, is a uniform ran-
dom sample of A that is kept up-to-date in the presence of updates to A [GMP97b].
In most sampling-based estimation techniques, whenever a sample of size m is
needed, either the entire relation is scanned to extract the sample, or several ran-
dom disk blocks are read. In the latter case, the values in a disk block may be
highly correlated, and hence to obtain a truly random sample, m disk blocks may
need to be read, with only a single value used from each block. In contrast, a
backing sample is a synopsis data structure that may reside in main memory, and
hence be accessed with no I/O operations. Moreover, if, as is typically the case in
databases, each data item is a record (“tuple”) comprised of fields (“attributes”),
then only the fields desired for the sampling need be retained in the synopsis. In
the case of using samples for histograms, for example, only the field(s) needed for
the histogram need be retained. If the backing sample is stored on the disks, it can
be packed densely into disk blocks, allowing it to be more quickly swapped in and
out of memory. Finally, an indexing structure for the sample can be maintained,
which would enable fast access of the sample values within a certain range.

Clearly, a backing sample of m sample points can be used to convert a sampling-
based algorithm requiring 7 I/O operations for its sampling into an algorithm that
potentially requires no I/O operations.

Maintaining backing samples. A uniform random sample of a target size m can
be maintained under insertions to the data set using Vitter’s reservoir sampling
technique [Vit85]: The algorithm proceeds by inserting the first m items into a
“reservoir.” Then a random number of new items are skipped, and the next item
replaces a randomly selected item in the reservoir. Another random number of
items are then skipped, and so forth. The distribution function of the length of
each random skip depends explicitly on the number of items so far, and is chosen
such that at any point each item in the data set is equally likely to be in the
reservoir. Specifically, when the size of the data set is n, the probability for an
item to be selected for the backing sample of size m is m/n. Random skipping is
employed in order to reduce constant factors in the update times compared with
the approach of flipping a coin for each new item. Reservoir sampling maintains a
traditional random sample as a backing sample; an alternative is to use a concise
sample or a counting sample as a backing sample, and maintain them as discussed
in Section 4.

As discussed in Section 4.2, there are difficulties in maintaining uniform random
samples under deletions to the data set, with two possible solutions being counting
samples and deletion samples. In [GMP97b], we assumed that each data item has
a unique id (namely, its row id in the database table in which it resides), so that
a deletion removes a unique item from the data set. We retained the row id with
the sample point (which precludes the use of concise samples or counting samples).
With row ids, deletions can be handled by removing the item from the sample, if it
is in the sample. However, such deletions decrease the size of the sample from the
target size m, and moreover, it is not apparent how to use subsequent insertions to
obtain a provably random sample of size m once the sample has dropped below m.
Instead, we maintained a sample whose size is initially a prespecified upper bound
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U, and allowed for it to decrease as a result of deletions of sample items down to
a prespecified lower bound L. If the sample size dropped below L, the data set is
read from the disks in order to re-populate the random sample, either by rereading
all the data or by reading U — L + 1 random disk blocks. Since the sampling is
independent of the deletions, the deletion of a fraction of the sample is expected to
occur only after the deletion of the same fraction of the data set.

We presented in [GMP97b] several techniques for reducing constant factors
in the update times. For example, since the algorithm maintains a random sample
independent of the order of the updates to the data set, we postponed the processing
of deletes until the next insert selected for the backing sample. This reduced the
maintenance to the insert-only case, for which random skipping can be employed
(having deletions intermixed with insertions foils random skipping).

Note that since a backing sample is a fixed sample of a prespecified size, it may
be desirable to augment the sample and/or refresh the sample, as appropriate for
a particular application.

Backing samples in o synopsis hierarchy. In [GMP97b], we used a backing
sample in support of dynamically maintaining histograms. In the scenario we con-
sidered, the histogram resided in main memory whereas the backing sample, being
somewhat larger than the histogram, resided on the disks. The goal was to main-
tain the histogram under the dynamic scenario, while minimizing the accesses and
updates to the backing sample, in order to minimize the number of I/O operations.
The backing sample was a traditional random sample maintained using reservoir
sampling. When the size of the data set is n, the probability for an item to be
selected for the backing sample of size m is m/n, and hence in maintaining the
backing sample an I/O operation is expected only once every Q(n/m) insertions.
Therefore, over the process of maintaining the backing sample, while the data set
grows from m to n, an I/O operation is expected (on the average) only once every
Q(n/(mlog(n/m))) insertions. Thus, since this overhead is small for large n and
small m, the goal became to design an algorithm for maintaining histograms that
minimized the number of accesses to a given backing sample.

5.2. Equi-depth histograms. An equi-depth histogram partitions the range
of possible values into 3 buckets such that the number of data items whose value
falls into a given bucket is the same for all buckets. An approzimate equi-depth
histogram approximates the exact histogram by relaxing the requirement on the
number of data items falling in a bucket and/or the accuracy of the counts associ-
ated with the buckets. Let N be the number of items in the data set, let B.count
be the count associated with a bucket B, and let fp be the number of items falling
in a bucket B.> In [GMP97b], we defined two error metrics for evaluating approx-
imate equi-depth histograms. Our first metric, peq, was defined to be the standard
deviation of the bucket sizes from the mean bucket size, normalized with respect
to the mean bucket size:

B 1 N\
,U/ed—N B;(fBl—ﬁ) .

3For simplicity in this paper, we ignore issues of how to attribute items to buckets for
items whose data value is equal to one or more bucket boundaries; such issues are addressed
in [GMP97b].
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Our second error metric, ficount; was defined to be the standard deviation of the
bucket counts from the actual number of items in each bucket, normalized with
respect to the mean bucket count:

B 1< )
Hcount = N B ; (fB, — Bj-count)” .

In [GMPI7b], we presented the first low overhead algorithms for maintaining
highly-accurate approximate equi-depth histograms. Each algorithm relied on using
a backing sample, S, of a fixed size dependent on (.

Our simplest algorithm, denoted Equi-depth_Simple, worked as follows. At
the start of each phase, compute an approximate equi-depth histogram from S by
sorting S and then taking every (|S|/8)’th item as a bucket boundary. Set the
bucket counts to be N'/3, where N’ is the number of items in the data set at
the beginning of the phase. Let T' = [(2 + v)N'/G], where v > —1 is a tunable
performance parameter. Larger values for « allow for greater imbalance among
the buckets in order to have fewer phases. As each new item is inserted into the
data set, increment the count of the appropriate bucket. When a count exceeds the
threshold T, start a new phase.

THEOREM 5.1. [GMP9Tb] Let 8 > 3. Let m = (cIn® )3, for some ¢ > 4.
Consider Equi-depth_Simple applied to a sequence of N > m?® inserts of items into
an initially empty data set. Let S be a random sample of size m of tuples drawn uni-
formly from the relation, either with or without replacement. Let a = (c In? B)~1/8,
Then Equi-depth_Simple computes an approximate equi-depth histogram such that
with probability at least 1 — B~ V1) — (N/(24+ 7)) /3, piea < a4+ (1 +7) and
Heount < Q.

PRrooFr. Let H be an approximate equi-depth histogram computed by the Equi-
depth_Simple algorithm after IV items have been inserted into the data set. Let
® be the current phase of the algorithm, and let N’ < N be the number of items
in the data set at the beginning of phase ®. Let ., and u.y be the errors
Heount and fieq, respectively, resulting after extracting an approximate histogram
from S at the beginning of phase ®. Finally, let p' = 1 — g~ (Ve-1) — (N7)~1/3,
and let p =1 — g~(Ve=1) — (N/(2 + 4))~/3. Since during phase ®, we have that
N < N'(2+7), it follows that p < p'. We show in [GMP97b] that p!, = ptloune < @
with probability at least p’, and hence at least p.

During phase ®, a value inserted into bucket B; increments both fp, and
Bj.count. Therefore, by the definition of peount, its value does not change dur-
ing phase ®, and hence at any time during the phase, ficount = Beount < & With
probability p. It remains to bound peq for H.

Let fp, and Bj.count’ be the values of fp;, and B;.count, respectively, at the
beginning of phase ®. Let A} = fp — N'/3, and let A; = fp, — N/B. We claim
that |A; — Al| < (147)N'/8. Note that |A; — Al| < max(fs, — £, N/8— N'/5).
The claim follows since fp, — f]’gi = B;.count — B;.count’ < T — B;.count’ =
(24+~)N'/8—N'/B, and N — N' < B(B;.count — B;.count').

By the claim,

AP < (AL + (L+7N'/B)” = A + 281 +7)N'/B + (L +7)N'/B)* .
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Note that 37 | AL = Y% (fp, — N'/8) = 0. Hence, substituting for A2 in the
definition of peq we obtain

5 '1 3 g
Hea = E(ZA22+Z((1+7)N’/ﬂ)2>

i=1

B
< peg + (LHNN/B) < peg + (1 +7) -
The theorem follows. O

A second algorithm from [GMP97b] reduced the number of recomputations
from S by trying to balance the buckets using a local, less expensive procedure.
The algorithm, denoted Equi-depth_SplitMerge, worked in phases. As in Equi-
depth_Simple, at each phase there is a threshold T' = [(2 + 7)N'/3]. As each new
item is inserted into the data set, increment the count of the appropriate bucket.
When a count exceeds the threshold 7', split the bucket in half. In order to maintain
the number of buckets 3 fixed, merge two adjacent buckets whose total count is less
than T, if such a pair of buckets can be found. When such a merge is not possible,
recompute the approximate equi-depth histogram from S.

To merge two buckets, sum the counts of the two buckets and dispose of the
boundary between them. To split a bucket B, select an approximate median in
B to serve as the bucket boundary between the two new buckets, by selecting the
median among the items in S that fall into B. The split and merge operation is
illustrated in Figure 4. Note that split and merge can occur only for v > 0.

INSERT THRESHOLD

<0OzZzmcommuTm

ATTRIBUTE VALUES MEDIAN
FIGURE 4. Split and merge operation during equi-depth histogram maintenance

The number of splits and the number of phases can be bounded as follows.

THEOREM 5.2. [GMPI7b] Consider Equi-depth_SplitMerge with 8 buckets and
performance parameter —1 < v < 2 applied to a sequence of N inserts. Then the
total number of phases is at most log, N, and the total number of splits is at most
Blog, N, where oo =1+ v/2 if v > 0, and otherwise a =1+ (1 +~)/8.

To handle deletions to the data set, let T, = |[N'/(8(2 + 7¢))] be a lower
threshold on the bucket counts, where v, > —1 is a tunable performance parameter.
When an item is deleted from the data set, decrement the count of the appropriate
bucket. If a bucket’s count drops to the threshold Ty, merge the bucket with one of
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its adjacent buckets and then split the bucket B’ with the largest count, as long as
its count is at least 2(Ty + 1). (Note that B’ may be the newly merged bucket.) If
no such B’ exists, recompute the approximate equi-depth histogram from S. The
merge and split operation is illustrated in Figure 5.

INSERT THRESHOLD

<0OzmcommT

DELETE
.THRESHOLD

ATTRIBUTE VALUES MEDIAN

FIGURE 5. Merge and split operation during equi-depth histogram maintenance

Related work. A recent paper by Manku et al [MRL98] presented new algo-
rithms for computing approximate quantiles of large data sets in a single pass over
the data and with limited main memory. Whereas in an equi-depth histogram,
the desired ranks for the quantiles are at regular intervals, their paper considered
arbitrary prespecified ranks. Compared to an earlier algorithm of Munro and Pa-
terson [MP80], their deterministic algorithm restricts attention to a single pass
and improves the constants in the memory requirements. Specifically, let an item
be an e-approximate ¢-quantile in a data set of N items if its rank in the sorted
data set is between [(¢p —€)N| and [(¢ + €)N]. Manku et al presented a determin-
istic algorithm that, given ¢1, ..., ¢r € [0,1], computes e-approximate ¢;-quantiles
for i = 1,...,k in a single pass using only O(% log®(eN)) memory. Note that this
algorithm performs % I/0O operations in the static scenario, for a class of queries
where the ranks of the desired quantiles are prespecified.

Manku et al also analyzed the approach of first taking a random sample and
then running their deterministic algorithm on the sample, in order to reduce the
memory requirements for massive data sets. They did not explicitly consider dy-
namic maintenance of quantiles, and indeed they have not attempted to minimize
the query time to output their approximate quantiles, since their output operation
occurs only once, after the pass over the data. However, by using a backing sample
residing in memory, their algorithm can be used in the dynamic scenario with no
I/0 operations at update time or query time.

A recent paper by Chaudhuri et al [CMN98] studied the problem of how much
sampling is needed to guarantee an approximate equi-depth histogram of a certain
accuracy. The error metric they used to evaluate accuracy is the maximum over
all buckets B of |fp — %|, where N is the number of data items, § is the number
of buckets, and fp is the number of items falling into B. As argued in the paper,
this error metric seems more appropriate than the peq metric considered above,
for providing guarantees on the accuracy of approximate answers to range queries.
(See also [JKM 98] for another approach to providing improved quality guarantees
when using histograms to answer range queries.) Chaudhuri et al provided a tighter



26 PHILLIP B. GIBBONS AND YOSSI MATIAS

analysis than in [GMP97b] for analyzing the accuracy of equi-depth histograms
computed from a sample. The paper studied only the static scenario of constructing
an equi-depth histogram, including a discussion of techniques for extracting multiple
sample points from a sampled disk block. However, by using a backing sample,
such issues are no longer a concern, and their analysis can be used to improve the
guarantees of the algorithms in [GMP97b] for maintaining equi-depth histograms
in the dynamic scenario.

5.3. Compressed histograms. In an equi-depth histogram, values with high
frequencies can span a number of buckets; this is a waste of buckets since the se-
quence of spanned buckets for a value can be replaced by a single bucket with a
single count, resulting in the same information within a smaller footprint. A com-
pressed histogram has a set of such singleton buckets and an equi-depth histogram
over values not in singleton buckets [PTHS96]. Our target compressed histogram
with 3 buckets has 8’ equi-depth buckets and 3 — 3’ singleton buckets, where
1 < ' < 8, such that the following requirements hold: (i) each equi-depth bucket
has N'/3' tuples, where N’ is the total number of data items in equi-depth buckets,
(ii) no single value “spans” an equi-depth bucket, i.e., the set of bucket boundaries
are distinct, and conversely, (iii) the value in each singleton bucket has frequency
> N'/B'. An approzimate compressed histogram approximates the exact histogram
by relaxing one or more of the three requirements above and/or the accuracy of the
counts associated with the buckets.

In [GMP97b], we presented the first low overhead algorithm for maintaining
highly-accurate approximate compressed histograms. As in the equi-depth case,
the algorithm relied on using a backing sample S. An approximate compressed
histogram can be computed from S as follows. Let m, initially |S|, be the num-
ber of items tentatively in equi-depth buckets. Consider the 8 — 1 most frequent
values occurring in S, in order of maximum frequency. For each such value, if the
frequency f of the value is at least m divided by the number of equi-depth buckets,
create a singleton bucket for the value with count fN/|S|, and decrease m by f.
Otherwise, stop creating singleton buckets and produce an equi-depth histogram
on the remaining values, using the approach of the previous subsection, but set-
ting the bucket counts to (N/|S|) - (m/B"). Our algorithm reduced the number of
such recomputations from S by employing a local procedure for adjusting bucket
boundaries.

Similar to the equi-depth algorithm, the algorithm worked in phases, where
each phase has an upper threshold for triggering equi-depth bucket splits and a
lower threshold for triggering bucket merges. The steps for updating the bucket
boundaries are similar to those for an equi-depth histogram, but must address
several additional concerns:

1. New values added to the data set may be skewed, so that values that did
not warrant singleton buckets before may now belong in singleton buckets.

2. The threshold for singleton buckets grows with N', the number of items in
equi-depth buckets. Thus values rightfully in singleton buckets for smaller
N’ may no longer belong in singleton buckets as N’ increases.

3. Because of concerns 1 and 2 above, the number of equi-depth buckets, 3,
grows and shrinks, and hence we must adjust the equi-depth buckets accord-

ingly.
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4. Likewise, the number of items in equi-depth buckets grows and shrinks dra-
matically as sets of items are removed from and added to singleton buckets.
The ideal is to maintain N'/3' items per equi-depth bucket, but both N’
and (' are growing and shrinking.

Briefly and informally, the algorithm in [GMP97b] addressed each of these four
concerns as follows. To address concern 1, it used the fact that a large number
of updates to the same value v will suitably increase the count of the equi-depth
bucket containing v so as to cause a bucket split. Whenever a bucket is split, if doing
so creates adjacent bucket boundaries with the same value v, then a new singleton
bucket for v must be created. To address concern 2, the algorithm allowed singleton
buckets with relatively small counts to be merged back into the equi-depth buckets.
As for concerns 3 and 4, it used our procedures for splitting and merging buckets
to grow and shrink the number of buckets, while maintaining approximate equi-
depth buckets, until the histogram is recomputed from S. The imbalance between
the equi-depth buckets is controlled by the thresholds T and T (which depend
on the tunable performance parameters v and g, as in the equi-depth algorithm).
When an equi-depth bucket is converted into a singleton bucket or vice-versa, the
algorithm ensured that at the time, the bucket is within a constant factor of the
average number of items in an equi-depth bucket (sometimes additional splits and
merges are required). Thus the average is roughly maintained as such equi-depth
buckets are added or subtracted.

The requirements for when a bucket can be split or when two buckets can
be merged are more involved than in the equi-depth algorithm: A bucket B is a
candidate split bucket if it is an equi-depth bucket whose count is at least 2(T; + 1)
or a singleton bucket whose count is bounded by 2(T; + 1) and T'/(2++). A pair of
buckets, B; and By, is a candidate merge pair if (1) either they are adjacent equi-
depth buckets or they are a singleton bucket and the equi-depth bucket in which its
singleton value belongs, and (2) the sum of their counts is less than T. When there
are more than one candidate split bucket (candidate merge pair), the algorithm
selected the one with the largest (smallest combined, respectively) bucket count.

In [GMP97b], we presented analytical and experimental studies of the algo-
rithms discussed above for maintaining equi-depth histograms and for maintaining
compressed histograms in the dynamic scenario.

6. Related work and further results

A concept related to synopsis data structures is that of condensed represen-
tations, presented by Mannila and Toivonen [MT96, Man97]: Given a class of
structures D, a data collection d € D, and a class of patterns P, a condensed rep-
resentation for d and P is a data structure that makes it possible to answer queries
of the form “How many times does p € P occur in d” approximately correctly and
more efficiently than by looking at d itself. Related structures include the data
cube [GCB197], pruned or cached data structures considered in machine learn-
ing [Cat92, ML97], and e-nets widely used in computational geometry [Mul94].
Mannila and Toivonen also proposed an approximation metric for their structures,
denoted an e-adequate representation.

Approximate data structures that provide fast approximate answers were pro-
posed and studied by Matias et al [MVN93, MVY94, MSY96]. For exam-
ple, a priority queue data structure supports the operations insert, findmin, and



28 PHILLIP B. GIBBONS AND YOSSI MATIAS

deletemin; their approximate priority queue supports these operations with smaller
overheads while reporting an approximate min in response to findmin and deletemin
operations. The data structures considered have linear space footprints, so are not
synopsis data structures. However, they can be adapted to provide a synopsis ap-
proximate priority queue, where the footprint is determined by the approximation
error.

There have been several papers discussing systems and techniques for provid-
ing approximate query answers without the benefit of precomputed/maintained
synopsis data structures. Hellerstein et al [HHW97] proposed a framework for
approximate answers of aggregation queries called online aggregation, in which
the base data is scanned in a certain order at query time and the approximate
answer for an aggregation query is updated as the scan proceeds. Bayardo and
Miranker [BM96] devised techniques for “fast-first” query processing, whose goal
is to quickly provide a few tuples of the query answer from the base data. The
Oracle Rdb system [AZ96] also provides support for fast-first query processing, by
running multiple query plans simultaneously. Vrbsky and Liu [VL93] (see also the
references therein) described a query processor that provides approximate answers
to queries in the form of subsets and supersets that converge to the exact answer.
The query processor uses various class hierarchies to iteratively fetch blocks of the
base data that are relevant to the answer, producing tuples certain to be in the
answer while narrowing the possible classes that contain the answer. Since these
approaches read from the base data at query time, they incur multiple I/O opera-
tions at query time.

A recent survey by Barbard et al. [BDF1T97] describes the state of the art
in data reduction techniques, for reducing massive data sets down to a “big pic-
ture” and for providing quick approximate answers to queries. The data reduc-
tion techniques surveyed by the paper are singular value decomposition, wavelets,
regression, log-linear models, histograms, clustering techniques, index trees, and
sampling. Each technique is described briefly (see the references therein for further
details on these techniques and related work) and then evaluated qualitatively on to
its effectiveness and suitability for various data types and distributions, on how well
it can be maintained under insertions and deletions to the data set, and on whether
it supports answers that progressively improve the approximation with time.

The list of data structures work that could be considered synopsis data struc-
tures is extensive. We have described a few of these works in the paper; here we
mention several others. Krishnan et al [KVI96] proposed and studied the use of
a compact suffix tree-based structure for estimating the selectivity of an alphanu-
meric predicate with wildcards. Manber [Man94] considered the use of concise
“signatures” to find similarities among files. Broder et al [ BCFM98] studied the
use of (approximate) min-wise independent families of permutations for signatures
in a related context, namely, detecting and filtering near-duplicate documents. Our
work on synopsis data structures also includes the use of multi-fractals and wavelets
for synopsis data structures [FMS96, MVW98| and join samples for queries on
the join of multiple sets [GPA198].

7. Conclusions

This paper considers synopsis data structures as an algorithmic framework
relevant to massive data sets. For such data sets, the available memory is often
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substantially smaller than the size of the data. Since synopsis data structures are
too small to maintain a full characterization of the base data sets, the responses
they provide to queries will typically be approximate ones. The challenges are to
determine (1) what synopsis of the data to keep in the limited space in order to
maximize the accuracy and confidence of its approximate responses, and (2) how
to efficiently compute the synopsis and maintain it in the presence of updates to
the data set.

The context of synopsis data structures presents many algorithmic challenges.
Problems that may have easy and efficient solutions using linear space data struc-
tures may be rather difficult to address when using limited-memory, synopsis data
structures. We discussed three such problems: frequency moments, hot list queries,
and histograms. Different classes of queries may require different synopsis data
structures. While several classes of queries have been recently considered, there
is a need to consider many more classes of queries in the context of synopsis data
structures, and to analyze their effectiveness in providing accurate or approximate
answers to queries. We hope that this paper will motivate others in the algorithms
community to study these problems. Due to the increasing prevalence of massive
data sets, improvements in this area will likely find immediate applications.
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