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Abstract

In several applications, thedata consistsof anm x n matrix A anditisof interest tofind an
approximation D of a specified rank k to A where, £ ismuch smaller than m and n. Traditional
methods like the Singular Value Decomposition (SVD) help usfind the“ best” such approxima-
tion. However, these methods take time polynomial in m, n which is often too prohibitive.

In this paper, we devel op an algorithmwhichisqualitativel yfaster provided we may sample
the entries of the matrix according to a natural probability distribution. Indeed, in the applica-
tions such sampling is possible.

Our main result isthat we can find the description of a matrix D* of rank at most % so that

[A-D*[|[p<  min |[A-DJ|r+e[|Allr
D, rank(D)<k

holdswith probabilityat least 1 — 4. (For any matrix M, ||M]||% denotes the sum of the squares
of all theentriesof M.) Thealgorithmtakestime polynomial ink, 1/¢, log(1/4) only, indepen-
dent of m, n.

1 Introduction

In many applications, the data consistsof an m x n matrix A and itisof interest to find an approx-
imation D of a specified rank k£ to A where, k& is much smaller than m and ». Traditional methods
likethe Singular Value Decomposition (SV D) help usfind the* best” such approximation. However,
these methods take time polynomial in m, n. In this paper, we essentially reduce the problem to a
singular value problemin s dimensions where s dependsonly upon k., 1/¢.
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Thetraditional “random projection” method (where one projectsthe probleminto arandomly chosen
subspace of small dimension) would also accomplish asimilar reduction in dimension; but carrying
out the random projection amounts to premultiplying the given m x n matrix A by as x m matrix
whichitself takestime dependent upon m, n (and in fact, it can be argued that thisis not competitive
with known Numerical Analysistechniqueslike the Lanczos method, in the case where the top few
singular values dominate.)

In this paper, we describe an algorithm which is qualitatively faster provided we may sample the
entries of the matrix according to a natural probability distribution which we describe presently.

For amatrix M, ||M||% denotes ), . M? ;, where M; ; denotesthe i, jth entry of M..

Our main result isexpressed as the following:

Theorem 1 Givenanm x n matrix A, and k, €, 4, thereisa randomized algorithmwhich findsthe
description of a matrix D* of rank at most £ so that

|IA-D*[r<  min [|A-D|r+e|[AllF
D,rank(b)<k
holdswith probability at least 1 — §. The algorithmtakes time polynomial in &, 1 /¢, log(1/§) only,
independent of m, n. The most complex computational task isto find thefirst £ singular values of a
randomly chosen s x s submatrixwhere s = O(k*==?). Thematrix D* can beexplicitly constructed
fromitsdescriptionin O(kmn) time.

This depends on the following existence theorem. Let

= 1 min A - D||%. 1
n ||A||% D,I'ank(D)ng ||F ( )

Let ¢ be as defined in Assumption 1 (below).

Theorem 2 Let A beanm x n matrix. Let k, s beany positiveintegers. Supposewe independently
chooseaset S, | S| = s of rows of A froma distribution satisfying (5) (below). Let V' be the vector
space spanned by the (at most) s rows of A chosen.

With probability at least 9/10, there exist vectorsy (1), y(2) ...y (*) in V such that

k
A - A yDyW) |3 < (n+ 2] |Al]3. @)

i=1

This theorem asserts the existence of “good” vectorsy (1), y(2). . ..y (*) in the row space of S.

It followsfrom Linear Algebrathat we may takey (), y(?) .. ...y (%) to bethe k largest generalized
eigenvectors of SAATST with respect to SS”'. Note that both of these matrices are s x s, where
we shouldtake s = O(k/e). They can both be exactly computed (by direct multiplication) in time
O(smn); soitfollowsthat intime O (smn+ poly (s)), we can find the vectors of the Theorem. This
time bound may be good enough for several applications.

The paper is organized asfollows. After recalling the SVD and related definitions, we prove Theo-
rem 2. As already remarked thisimmediately leads to an O (mnk /e + poly(k/<)) time algorithm.



We develop atheoretically better (“constant time”) algorithm in Section 5, which relies heavily on
sampling and in the last two sections we analyse its quality and efficiency.

Assumptions on sampling

We now state in detail the assumptions we make on the ability to sample. We discuss in the next
section some prominent applications where these assumptions are naturally satisfied. Also, in the
important “dense’ case, uniformly sampling the entries satisfies the assumptions. (See Remark 1).
In any case, after a one-pass preprocessing of the matrix, the assumptions can be satisfied. (See
Remark 2).

For amatrix M, M) denotes the th row, M) denotesthe jth column.

Assumption 1 Wecan chooserow i of thematrix A with probability P; satisfying P > ¢|A®)|2/||A||%
for some constant ¢ < 1 independent of m, n. The P; are known to us.

Assumption 2 For any giveni € {1,2,...m},wecanpickayj,j = 1,2,...n with probabilities
Q;); saisfying Q;; > cP; ;/ P; where P; j = A? . /||A||%. TheQ;|; are known to us.

Remark 1: Notethat if thematrix A isdense,i.e., A?; < ¢/|[|Al|3/(mn) for some constant ¢/, then
we may take P;; = 1/(mn). Then of course we can take P; = 1/m and we may take Q;; = 1/n
fordli,jandc=1/c.

Remark 2: For any matrix at all, we claim that after making one pass through the entire matrix, we
can set up data structures so that after that we can sample the entriesfast - O(1) time per sample, so
asto satisfy Assumptions (1) and (2).

During the one pass, we do several things. Suppose M issuch that for all 7, 5
AL <M

1
2 .12
A,L-j_O OR |A”| > U

We create O(log M) bins; in the one-pass, we put into the /th bin all the entries (4, j) such that
2171 < |A;? < 42" We also keep track of the number of entries in each bin. After this,
we pretend all entriesin abin are of equal absolutevalue and thenit is easy to set up asampler - the
details of the data structures are elementary and left to the reader. In the pass, we also set up similar
data structures for each row, so that the other assumptions can be staisfied.

Remark 3: If thematrix A hasaknown sparsity structure, i.e., if thereisasimpleset S C {(7, j) :
i=1,2,...m;j=1,2,...n}and A;; = 0foral (i,5) ¢ S,andinadditionif A}, < ¢'||A[[Z/]S]
for al 7, j, then we may teke P;; = 1/|S| for (¢,j) € S and O otherwise. If the set S issimple
enough, we can clearly find P, P; in unit time and we may take Q) ;; = 55/ P

2 Someapplications

In thissectionwe discussour algorithminthe context of applicationsthat rely on computing the (first
k terms of the) SVD. We show that in several situationswe can satisfy the sampling assumptions of



our algorithm and thus obtain the SV D approximation more efficiently. Applicationsthat we do not
discussinclude face recognition and picture compression.

2.1 Low-Rank Approximationsand the Regularity Lemma

The fundamental Regularity Lemma of Szemerédi’sin Graph Theory gives a partition of the vertex
set of any graph sothat “most” pairsof partsare“nearly regular”. (Wedo not givedetailshere.) This
lemma has a host of applications (see [10]) in Graph Theory. The Lemma was non-constructivein
that it only asserted the existence of the partition (but did not give an agorithm to find it.) Alon,
Duke, Lefmann, Rodl aand Yuster were finally able to give an algorithm to find such a partitionin
polynomial time[1]. In earlier papers [6, 7], we related low-rank approximations of the adjacency
matrix of the graph to regular partitionsand from that were able to derive both Szemerédi’s Lemma
and a“more user friendly version” and in fact showed that the partition could be constructed in con-
stant time for any graph. Whilethis connection is not directly relevant to this paper, we point this
out here as one more case where low-rank approximations come in handy.

2.2 Latent Semantic Indexing

Thisisageneral techniquefor analysingacollection of “documents” which are assumed to berel ated
(for example, they are al documents dealing with a particular subject, or a portion of the web; see
[2, 3, 4, 5] for details and empirical results). We give avery cursory description of this broad area
here and discussits relation to our main problem.

Suppose there are m documents and » “terms” which occur in the documents. (Terms may be all
the words that occur in the documents or key words that occur in them.) The model hypothesizes
that (because there are relationships among the documents), there are a small number & of main
(unknown) “topics” which the documents are about. Thefirst aim of the techniqueisto find a set of
k topics which best describe the documents. (Thisisthe only part which concerns us here.)

A topicis modelled as an n—vector of non-negative reals summing to 1, where the interpretationis
that the jth component of atopic vector gives the frequency with which the jth term occursin (a
discussion of) the topic. With this model on hand, it is easy to argue (using Linear Algebraand a
line of reasoning similar to thefield of “Factor Analysis’ in Statistics) that the & best topics are the
top k£ singular vectors of the so-called “document-term” matrix, whichisan m x n matrix A with
A;; being the frequency of the jthterm in the ith document. Alternatively, one can define A ;; as0
or 1 depending upon whether the jth term occursin the ith document.

Herewe argue that in practice, we can implement the assumptionsof our algorithm. It iseasy to see
that if we are allowed one pass through each document, we can set up data structures for sampling
(in a pragmatic situation one could have the creator of a document supply a vector of squared term
frequencies). Otherwise, if no frequency istoo large (thisistypical sincewordsthat occur too often,
so-called “buzz words’, are removed from the analysis), all we need to precompute is the length
(Li = >_;Aj), of each document. Thisis typicaly available (as say “file size”). In this case,
assumption (1) is easily implemented — we pick a document with probability proportional to its
length. Thisis easily seen to satisfy Assumption 1, but without the squares (i.e. we samplethe ith
entry with probability E?LJ ). It can bethen argued that the assumption with the squaresis satisfied




(because the frequencies are all in some small range). Assumption 2 is similarly implemented —

given adocument, we pick aword uniformly at random from it, i.e., ¢ il = ‘j;‘? .

2.3 Web Search modd

Kleinberg [9] considered the ubiquitous problem of how to glean the most rel evant documents from
the (usualy large) set of documents returned by a standard Web Search program for a key word.
The intuition is to define a document to be an “authority” if alot of other documents (returned by
the search) point to (have a hypertext link to) it. He argues why it is not a good idea just to take
documents which are pointed to by alot of others. He defines a dual notion - adocument isa* hub”
if it pointsto alot of other documents. More genarally, suppose n documents are returned by the
search engine. Then, hedefinesann x n matrix A where A ;; is1 or 0 depending upon whether the
1th document pointsto the 5 th. [He does not explicitly deal with thislarge matrix.]

He sets out to find two n-vectors - x, y where z; isthe “hub weight” of document : (the weight is
higher if the document is a good hub) and y; is the “authority weight” of document 5. With the
normdization |z| = |y| = 1, he argues (and we do not reproduce the argument here) that it is
desirableto find max ;=1 2T Ay, (since in the maximizing z, y we expect the hub weights and
authority weightsto be mutually consistent.)

Thisis of course the problem of finding the singular vectors of A. Since A islarge, he judiciously
chooses a submatrix of A and computes only the singular vectors of it.

He also points out that especially in the case when the key word has multi ple meanings, not only the
top, but some of the other singular vectors (with large singular values) areinteresting. For example,
when the key word is* JAVA” thetop few singular vectors put high authority weights on documents
about the programming language JAVA whereas another set of singular vectors put high weightson
documents about the Island, others on documents about the coffee etc. So, it isof interest to find the
largest k& singular vectors for some small k; thisisindeed the problem we consider here.

We also find the singular vectors of a submatrix, but a randomly chosen one. It is worthwhile to
consider our assumptionsin this case. For Assumption 1, it is sufficient to sample the documents
(roughly) according to the number of hypertext links from them. For Assumption 2, it is sufficient
to be able to follow arandom link from a document.

3 Some Notation and Constants

For amatrix M, M (%) denotesthe ithrow, M ;) denotesthe jthcolumnand || M| |2, denotes ", . M? ..

If Z = (71, Za, ..., Z,) isavector valued random variable, E(~) denotes the expectation vector
componentwise, (E(Z1), E(Z3),...,E(Z,)). Var(Z) denotes ", Var(Z;) andthe Chebychev
inequality becomes

Pr(|Z — E(Z)]* > tVar(Z)) <

o~ | =

forany t > 0.

For apositiveinteger r, welet [r] = {1,2,...,r}.



For amatrix M and vectorsx (%), i € I we define

AM;xDier)y = [MIF - [IM-MY xOx@7)3
el

Using thefact that || N||2 = Tr(NNT) for any matrix N, we see that A(M; x(), i € I) equals

QZTr (MxDx®"MT)
el
- )l ) Tr(MxOx " M7
'€l
= Zx "MTMx ()
el
— Z (X(i)TX(i’)T)x(i‘)TMTMX(i). (3)
il

4 Proof of Theorem 2

4.1 Singular Value Decomposition

Every real matrix can be expressed

A= Z Utu(t)v(t)T
t=1

wheres; > o3 > ... > o, > 0 and the ul*) form an orthonormal set of vectors and so do the v (?).
Alsou®’ A = Utv(t)T and Av() = g,ult for1 < ¢ < r.

Thisiscalled the singular value decompositionof A.

Soif in (3) thevectorsx(?), 7 € I are singular vectors of M then

AM;xDier) =Y x "MTMx ) (4)
el

From Linear Algebra, [8] we know that thematrix D, producingtheminimumof || A —D||» among
all matrices D of rank £ or lessis given by

D, = ZAV o7,

Thisimplies (see (1) for the definition of ) that

Al =) o

t=k+1



We now show that we can find agood approximationto D, by looking in a subspace generated by a
small number of rowsof A. Thiswill bedoneby independently choosing s rows of A (s sufficiently
large) from adistribution Py, P, ... , P,, where the probability P, that we choose row 7 satisfies

' C|A(z’)|2

P> —-— 5
2 AR ©)

for 1 < 7 < m and some absolute constant 0 < ¢ < 1.

4.2 Theproof itself

Let S be the random set of rows described in the statement of the theorem. We define for ¢t =
1,2,...,r thevector random variable

w_1v-u’

Then
E(W(t)) =ATul = 5,v®,
and since P; > ¢|AD|2/||A||%,
t )2 1 (2] A (9))2 1 2
E(jw(? — v ]?) < g;m PIAOP/P < —|All (6)

Now let y(*) = U%W(t) fort =1,2,...,randletV; =span(y(M), 33 ... y*) Cv.

Lety(),y@) ... y(") bean orthonormal basisof R™ withV; C span(y(),y(3), ... y*). Let

k k
F=Y Ayy® and b =3 Avllg®”
t=1 t=1

Then
JA-Flz =) I(A-F)yP =Y |Ay?p
=1 i=k+1
= > [(A-FyIP<A-F|} (7
i=k+1
Now

A -F|Z =Y [0 (A - F)P?
=1

i=k+1

k n
= Z loiv® — w2 Z ol
=1



Taking expectations and using (6) we get

T

. k
E([A-F|F- ) of) < —IAllF (8)

i=ht1
Since F isof rank < k we have

IA - FlIE > nllAllf= ) of.
i=k+1

Thus||A — F||% — 7||A||% isanon-negative random variable and (8) implies

Pr(llA —F|% - nllAl% > L2HIAlF) < 1

= sc 10
The result now follows from (7). O

We note next that a good low-rank approximation with respect to Frobenius norm, implies a good
low-rank approximation with respect to the norm |[M|| = max|x|=; [Mx].

Theorem 3 If
1A - AN yOyOT 2 < (5 +2)[|Al3

Then L
T
lA =AY yOy®T)2 < (25 + o) l|All7-
t=1

Proof LetB=A—-AY "  y(y®" Supposethat B hasauniteigenvector x witheigenvalue
A such that
N> (g FollAllE

Then we see that

n
1B - Baxx"|[F = [IBI[F: - A* < ) of -
i=k+1

Al ©

But therank of A - y®Wy®" 4 BxxT isat most k + 1, and we know that this cannot be better
than the best rank £ + 1 approximationto A, i.e,

||A - Azy "B > th

t=k+2
> 3 ot - Il

which contradicts (9). a



5 Sampling Algorithm

Theaimof thissectionistodevelop a*“ constanttime” algorithmto producethe approximation. What
we do below istofirst pick a set of p rowsof A. We form amatrix S from these rows after scaling
them. We then pick again p columns of S from a probability distribution satisfying a condition of
thetype stated in Assumtion (1) and scalethe columnsto get ap x p matrix W. We find the singular
vectors of this matrix and argue that from those, we may get a good low-rank approxmation to A.
We first present the algorithm.

Algorithm

107 k4

e > 0isgivenand p =
1. Independently choose iy, i, . .. , 7, according to distribution P = (P, Ps, ..., P,) on[m]
which satisfies '
|AO)?
> cC 7 -
|A[l%

Let S bethe p x n matrix withrows AC4) /. /pP,, fort =1,2,...,p.

2. Independently choose (columns) j1, jz, - . . , j, (of S) accordingtoadistribution P’ = (P}, Py, ..., P})
on [n] which satisfies
2
r € |S(])|
2 3T
F

(Later, we see that we can do such sampling.)

Let W bethe p x p matrix with columnsSU+) /., /pP! fort =1,2,...,p.

3. Compute the maximum of A(W7; u(® ¢ € [k]) over al sets of & unit vectorsin the column
space of W. (We may assume at this point that {u(f)}te[k] are thefirst £ singular vectors of

W)
4. Let
T={t: W] > 5||W|}},
where
_*
T
Fort e T let _
1
Jo o Su
(WTu0)]

5. Output v{®) for ¢ € T. (l.e,, output A 3, v(Uv ()" asthe approximationto A).

Note that

A% 2||S]|2

2
< =A%, 1
- - _CQII 7 (11)

lIS[7 <

E(/[S][7) = [|All7 and E(|[W|[7) = IS]|%- (12)



5.1 Implementation Issues
Implementation | ssues We explore some issues related to the implementation of the above algo-
rithm.

First of al, how do we carry out Step 2? We first pick arow of S, each row with probability 1/p;
supposethechosenrow istheithrow of A. Thenpick j € {1, 2, ...n} with probabilities ;. This

defines the probabilities /. We then have (with 7 = {i : A ) isarow of S}),
Py Sy st
J . 2
wer P iel pB iel pR”AHF
|2
%; pP |A||F
Let
g = Pr(|IS|lF < [|A]]7/2).
Then

q 1—-4¢q
1Al < SIAIE+—11All7

from which it follows that

2(1-¢)
<
7= 2—c
It followsthat with probablity
1—q>
7= 2—c
we have,
Pl > ElS(]‘)|2 (13)
T2 I8]lE

So et us assume from now on that

18]I > 3||AllF and dlsothat || W][%: > 3]IS||7-

5.2 BascLemma

Lemmal Let M beana x b matrixandlet ) = @, @2, ... ,Q, bea probability distribution on
{1,2,...,a} suchthat

M2
Z'Zoz| |2, 1=1,2,...,a
|IM %
for some0 < o < 1.
Let o = (41,142, ... ,1,) beasequence of p independent samplesfrom [«], each chosen according to
distribution@). Let N bethe p x b matrix with
M (ie)
N® = t=1,2,...,p.

V int



Then for all 8 > 0,

1
MM - NTN||r > 6||M
Pr(| e > 6IMIE) < g7
Proof
b
T T 2 _ T T 2
IM™M - N'N[[7 = Y |M{ M, - N[ )N,
r,s=1
T _
E(N(r)N(s)) - ZE ig,r Zts
MZT‘MZS
- Yy oMt
t=1 =1
_ T
= MM
T
E(IN{() N = M) M) ZE io.r N s)°)
- MM < M ¢ M2 M2
Sy Yot My
t=1 =1 t=1 =1
||1\/I||an:1v12 M3,
2 Mo
Thus
E(|M™™ - N'NJ|}) =
b
T T 2
Z E(ING Ny = MinyM,) )
a b
|IM|% 1 o [IMI[%
< - M; M, )" = ——.
<o e 2 MM =
Theresult followsfrom the Markov inequality. O

It follows from the above lemma and the definition of p — (10) — that with probability at least 9/10
both of the following events hold:

{||ATA — STS|[r < 0]|A||3}
and
{l|sST - WWT||p < 0||S||2} (14)
where
0
cp  500k2°



Assume from now on that they do.

Soif z, z’ are unit vectorsin the row space of A then
|zT ATAzZ — 2787Sz/| < 9)|A||%

and if z, z’ are unit vectors in the column space of S

1z7sTsz' — z2TWTWz'| < 6||S||% (15)
It follows after alittlecalculationthat if z(1), z(2), ... z() ¢ < k are unit vectorsin the row space
of A then
|A(A;20, i€ [0) — A(S;20, 0 € [0)] < K6]|A (16)
Similarly, z(1),z(?) ..., z(*) are unit vectorsin the column space of S then
1A(ST;20, i e [0) - AWT;20, i € [])] < k°6][S] ]} 17)

5.3 Analysisof theAlgorithm

It follows from Theorem 2 that with probability at least 9/10 there are unit vectors x(), ¢ € [k] in
the row space of S such that

A(A;xYt e [k]) > (1 -7 - ) |A[5

cp
> (1-n-go)llAllF
Applying (16) we see that

A(S;xW, 1 e [k]) > A(A;x1, 1 € [k]) - K°0]| AR
> (17— z2)||Al[E.
S and ST have the same singular values and so there exist unit vectorsy (), ¢ € [k] in the column

space of S such that
ATy e k) > (1-n - fo)l|AllF

Applying Theorem 2 with A replaced by S™ and S replaced by W7 we see that with probability at
least 9/10 there are unit vectors z(*), ¢ € [k] in the column space of W such that

A(ST;2M, e [k]) > A(ST;y M1 € [K]) - 15|87
> (1-n-go)llAll%.

Applying (17) we see that

AWzt e [K]) > A(ST;21, ¢ € [k]) - £6]IS|IE
> (1-n-zo)l|AllF



Therefore the vectors u(?) , ¢ € [k] computed by the algorithm satisfy
AW u® 1t e [K]) > (15— e)||AllF-
Now because u(®), t € [k] are singular vectors we see from (4) that
AWT w0t e T) > AWT;ul, t € [K]) - ky||W] |7
> (11~ go)llAll%.
It followsfrom (17) that
AT uD te) > AWT;u e T) — k29)|S||%
> (11— 3o)llAll%.

In Section 6 we prove that

AS;vW t e T) > AST;u t e T) — Le||Al|F (18)
and that
(1))2 « £
VIR <14 16 (19)
fort e 7.

It followsfrom (16) that
AA;vD teT) > A(S; vt e T) — 2k%0||A||%
> (1—n—-e)||All%

(assuming ¢ < 16) which completes the proof of Theorem 1. O

6 Proof of (18) and (19)

Observefirst that

|[ssTssT - WWIWWT || <
18ST(SST - WWT)|[r + [|(SST - WWT)WWT ||
< OlIs|iE(ISIIE+ IWIIE), (20
andthatfort #t' €T,
u"WwWTu®) = " WWIwWwTu) = o.

Now consider ¢ # ' € T'. Then

(V(t)TV(t’))(V(t)TSTSV(t’)) —
(u®"ssTu®))(u""sSTSSTu(*))

[WTul) 2 WTu(t)|2




Furthermore, ., .,
lu® ssTu®)| = |u®" (ss” - wwT)ul")| < 4]|S]|3.

Similarly, using (20),
[u®7ssTSsTul™| < 0]|S[[3.(]IS|[% + |[W][3).
Hence,

O*[ISIE(ISIIE + [IW1IE)

v N (v gTgy (Y] <
|( )( )l — 2||VV||4

1202

ZllAllE D)

For any vector u and any matrix S
|SSTu| S |STul

STul = |ul
Sofort €T
SJOTgTgy (0 _ u’8878sTu® _ |sTul o
(Wha®2 = [Wha()]?

Observethat (15) implies
STu®? — (Wl < 9]]8][3-

o,
|8STu®)? 20 ¢
/= - ' _ < <
wiaz S5 S 76 (22)
Equation (19) followsimmediately.
We then have
ZV "sTsv() > 1-) Zu(t)TSSTu(t)
teT teT
=(1-5)AETu teT),
o,

AS;vD teTy> (1 - 2)ASTu® teT 12k202A2
(S;viWteT) > (1-5)A8 ;u 1 e )_W” I

which completesthe proof of (18).
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