Computing Shortest Paths with Uncertainty

T. Feder *, R. Motwani **, L. O’Callaghan *** C. Olston !, and R. Panigrahy

Stanford University

Abstract. We consider the problem of estimating the length of a short-
est path in a DAG whose edge lengths are known only approximately
but can be determined exactly at a cost. Initially, each edge e is known
only to lie within an interval [lc, hc]; the estimation algorithm can pay
ce to find the exact length of e. In particular, we study the problem of
finding the cheapest set of edges such that, if exactly these edges are
queried, the length of the shortest path will be known, within an ad-
ditive k > 0 that is given as an input parameter. We study both the
general problem and several special cases, and obtain both easiness and
hardness approximation results.

1 Introduction

Consider a weighted DAG G with a single source s of in-degree zero and a single
sink ¢ of out-degree zero, whose exact edge lengths are not known with certainty.
Assume that for every edge e of G the length of e is only known to lie in an
interval [l., h.]. The length of a path in G can be computed with uncertainty and
represented as an interval containing the exact length. An interval containing the
length of the shortest path between two nodes in GG can similarly be computed.

Suppose that for every edge e, the exact length of e can be found at query cost
ce. An optimization problem that arises naturally is: Giwen a DAG G, a source
s, a sink t, a set P of s-t paths, edge-length intervals [le,, he,], -, [le,., he,.]
edge query costs c., ...ce, , and precision parameter k, find a minimum-cost set
of edges E' = {e;,, ..., €} such that if exactly the edges in E' are queried, an
winterval of width at most k can be identified, that is guaranteed to contain the
length of the shortest p € P. P may be given explicitly, it may be specified

* Email: tomas@theory.stanford.edu

** Department of Computer Science, Stanford University, Stanford, CA 94305. Re-
search supported by NSF Grant 11S-0118173, an Okawa Foundation Research Grant,
and Veritas. Email: rajeev@cs.stanford.edu.

*** Department of Computer Science, Stanford University, Stanford, CA 94305. Re-
search supported by an NSF Graduate Fellowship, an ARCS Fellowship, and NSF
Grants 11S-0118173, 115-9811904, and EIA-0137761. Email: loc@cs.stanford.edu

! Department of Computer Science, Stanford University, Stanford, CA 94305. Re-
search supported by an NSF Graduate Research Fellowship, and by NSF Grants
[1S-9817799, 115-9811947, and 11S-0118173. Email: olston@cs.stanford.edu

! Cisco Systems. Email: rinap@cisco.com

implicitly, or it may not be specified at all, in which case P can be assumed to
be the set of all s-¢ paths in G. It turns out that an actual s-¢ path, of length
within k of the shortest s-t path, will be obtained as well. Note that there are two
natural versions of this problem. In the online version, the sequence of queries is
chosen adaptively — each query is answered before the next one is chosen. In the
offline version, the entire set of queries must be specified completely before the
answers are provided, and it must be guaranteed that the length of the shortest
path can be pinned down as desired, regardless of the results of the queries. In
this paper we consider the offline formulation of the problem.

The problem of finding a cheap set of edge queries is neither in NP nor co-
NP unless NP = co-NP; however, 1t is in the class Y5. We therefore study the
hardness of the problem under various types of restrictions. The special case of
zero-error is solvable in polynomial time if the set of paths is given explicitly
or has a particular type of implicit description. If P is given explicitly, then
the number of paths we consider is clearly polynomial in the size of the input,
and the zero-error problem has a polynomial-time solution; we also show that
if P admits a recursive description as defined later, which includes the case of
series-parallel graphs, it can be analyzed in polynomial time. If the set of paths is
unrestricted, however, for all § > 0 the zero-error problem is hard to approximate
within n' =%, even if the error and cost requirements are relaxed substantially. In
order to obtain polynomial algorithms or reasonable approximation bounds, we
must therefore consider suitable restrictions on the structure of instances of the
problem. In many cases, under such restrictions we obtain matching upper and
lower bounds.

We consider the case in which k¥ may be greater than zero, and examine
different types of restrictions on the path structure of the graph. The first such
restriction is the unique-upper-length requirement — that all paths in the graph
have the same upper bound on length. This restriction alone is not enough to
make the problem tractable. With certain assumptions on &, the length intervals,
and the edge structure, however, the problem can be solved in polynomial time
or with small approximation factors. We consider restrictions on «, restrictions
on the edge structure of the graph, and restrictions on the number and types of
nontrivial edges (i.e., edges whose lengths are not known exactly) on the paths
under consideration.

1.1 Motivation and Related Work

Our problem is motivated by the work of Olston and Widom [11] on query
processing over replicated databases, where local cached copies of databases are
used to support quick processing of queries at client sites. There is a master copy
of the data where all the updates to the database are maintained. The frequency
of updates makes it infeasible to maintain exact consistency between the cached
copies and the master copy, and the data values in the cache are likely to become
stale and drift from the master values. However, the cached copies store for each
data value an interval that is guaranteed to contain the master value. Systems

considerations sometimes make it desirable to perform all queries to the master
copy en masse; in this case, the offline formulation is much more relevant.

In some cases, the data appears as a graph with edges whose lengths are
updated over time, and queries request a short path between two nodes. It is
desirable to find a path whose length is within & of that of the shortest, where
the value of & is specified along with the query. This problem has applications
in areas such as network monitoring and computerized route selection for cars.
Here, edge lengths may change rapidly, and excessive queries will result in high
communication costs.

Another class of queries, aggregation with uncertainty, has been studied in
the context of the interval caching framework. Olston and Widom [11] consider
aggregation functions such as sum, min, and maz for the offline formulation.
The shortest-path problem we consider in this paper is a strict and common
generalization of all three of these aggregation functions. Feder et al. [4] consider
both the online and the offline formulations of the selection problem, with median
as a special case. Finally, Khanna and Tan [8] extend some of the results for the
selection and sum problems, focusing on other precision parameter formulations.
In the model of Papadimitriou et al. [12,3] (similar to the above-described online
model), a robot tries to learn the map of a Euclidean region, keeping its travel
distance competitive with the cheapest proof to the map. Karasan et al. [7] and
Montemanni and Gambardella [10] assume a digraph with source and sink and,
for each edge, an interval containing the length; they study how to find a path
with lowest worst-case length (resp. worst-case competitive ratio) *.

2 The Zero-Error Case

We consider first the case with no error, i.e., k = 0. Consider two paths p and ¢
from s to ¢ in P. Let L be the sum of [, over edges e in p but not in ¢q. Let H be
the sum of h, over edges e in ¢ but not in p. Say that p dominates ¢ if L > H,
orif L = H and p and ¢q do not have the same nontrivial edges (edges e with

l. # he).

Proposition 1 A choice of edges e to query guarantees zero error if and only
of it queries all the nontrivial edges in each path p € P that does not dominate
any path q € P. (The zero-error problem is thus in co-NP.)

Proof Sketch: Suppose a nontrivial edge e is in a path p that does not dominate
any path ¢. Then for every path ¢ that does not have the same nontrivial edges
as p we have L < H +J for some § > 0; we can choose § smaller than the length
of the interval for e. Therefore, if we query all edges f other than e, and obtain
the answer Iy for f in p, and the answer h; for f not in p, then the resulting
interval will contain at least [Lo, Lo + 8], where Lg is the resulting length of the
path p when we choose [, for e as well.

! Here, the competitive ratio of an s-t path, given some assignment of lengths to edges,
is its total length, divided by that of the shortest path.

If p dominates some ¢, then we can ignore p because for all possible answers
to the queries, the length of p is at least the length of ¢, and the domination
relation 1s acyclic. a

Theorem 1 If the collection P is given explicitly, then the zero-error problem
can be solved in polynomial time.

For the proof, observe that by Proposition 1, it suffices to test for each path p
in P whether p dominates some ¢ in P, and query all edges in p if it does not.
We consider next the following implicit description of P for G. Either (1) G
consists of a single edge e = (s,t), and P has the single path given by e; or, (2)
We are given an implicit description of P’ for G’ with source s and sink ¢, where
G’ contains an edge e = (s’,#'), and we are also given an explicit description
of P" for G"" with source s’ and sink #'. The graph G is obtained by taking G’
and replacing e with G”; the paths P are obtained by taking the paths P’ and
replacing the occurrences of e in these paths with each of the paths in P”.

Proposition 2 In the implicit description of P for G, suppose that each explicit
description of P" for G" used contains all the paths in G". Then P contains all
the paths in G. In particular, if G is a series-parallel graph, then each such G"
consists of just two edges (either in series or in parallel), giving a polynomial
description for all paths in G.

For the proof, note that all paths in G correspond to paths in G’ which may go
through the special edge e, and if they do, to a choice of path in G”. The result
follows by induction. A series-parallel graph can be reduced to a single edge by
repeatedly replacing G consisting of two edges in series or two edges in parallel
with a single edge.

Theorem 2 If the collection of paths P for G is implicitly presented as described
earlier, then the zero-error problem can be solved in polynomial time.

Proof Sketch: Suppose p in P dominates some ¢ in P. We may choose ¢ so
that p and ¢ have the same edges from s to some s’, are disjoint from s’ to some
t', and have the same edges from t' to t.

Simplify the graph GG by repeatedly replacing the components G with single
edges, until we obtain a component G containing both s’ and ¢', for all choices
of s’ and #'. In this component G”, consider all pairs of paths p” and ¢” from
P"; some such pair corresponds to p and gq.

We can then determine the values I and H for p” and ¢”. To determine H,
choose h; for all edges f in ¢” not in p”’. If such an edge f corresponds to a
subcomponent, find the shortest path in that subcomponent corresponding to
taking hg for each edge g in the subcomponent. To determine L, choose {; for all
edges f in p”’ not in ¢”. If such an edge f corresponds to a subcomponent, find the
shortest path in that subcomponent corresponding to taking I, for each edge g in
the subcomponent; here, however, we only consider paths in the subcomponent
that do not dominate other paths, which we can assume have been precomputed

by the same algorithm. We also only consider paths going through the edge €
being tested for membership in a path p that does not dominate any gq. a

Theorem 3 If P consists of all the paths in the given G, and each [lc, h.] is
either [0,0] or [0, 1], the zero-error problem is co-NP-complete; in the unit-cost
case it is hard to approzimate within n'~°, for any constant § > 0. In fact, it is
hard to distinguish the case where there is a zero-error solution of cost w from
the case where there is no solution of error at most kK = n® and cost at most
wn® for all constants &;,65 > 0 satisfying 81 + 62 < 1.

Proof Sketch: We show that testing whether an edge e belongs to some path
p that does not dominate any path ¢ i1s NP-complete. The reduction is from
3-colorability.

We will construct a DAG as follows. We have a DAG S with source s and
sink s', where all edges have interval [0, 1], and a DAG T with source ¢’ and sink
t, where all edges have interval [0, 1]. The edge e goes from s’ to t'. There is
also a set F of edges with interval [0, 0] from vertices in S to vertices in T. The
required path p consists then of a path ps in S from s to s’ and a path pr in
T from t’ to t. Such a path does not dominate any other path if and only if no
edge in F joins a vertex in pg and a vertex in pr.

Let G be the instance of 3-colorability, with vertices vy,...,v, and edges
€1,...,6m. The DAG S, in addition to s and s, has vertices (v;, 1), (v;,2) and
(v;,3) for each v; in G. The edges in S go from each (v;, j) to each (viy1, '), plus
edges from s to each (v, j) and from (v,,j) to s’. The path ps thus chooses a
(v;,7) for each v;, i.e., assigns color j to v;.

The DAG T, in addition to ¢’ and ¢, has vertices (e;, 1,1), (e1,2,1), (e1,3, 1),
(e1,1,2), (e1,2,2), (e1,3,2) for each ¢; in G. The DAG T has a path from ¢’ to
t going through all (e, j, 1); the (e, 7, 2) are connected similarly to the (e, 7, 1).
Thus the path pr chooses a k in (e, j, k) for each e, j.

If G has an edge e¢; = (v;,vr), Then E has the edges ((vi,), (e1,4,1)) and
((vir, §), (€1, 4,2). Thus pr will be able to choose a k in (e, j, k) for ¢, j if and
only if v; and v; are not both assigned color j. Thus the choice of paths pg, pr
corresponds to a 3-coloring of G.

This gives NP-completeness. The hardness of approximation follows from the
fact that the special edge e can be given an arbitrarily large cost, much larger
than the sum of all the other costs. In the unit cost case, we can use a large
number of parallel edges for e to achieve the same effect as a large cost, and
insert extra edges of length [0, 0] if parallel edges are not allowed. Thus, with
unit costs, we have mg edges other than e, and m§ ~ n edges corresponding to
e, giving an approximation hardness of m&~" = n'=?.

The stronger hardness of approximation follows by replacing each edge with
length [0, 1] with a path of r edges of length [0, 1]. Then we have mqr edges other
than e, and mér ~ n edges corresponding to e. Setting r = n%, m&™! = nd2,
and mg = n'=% 7% gives the result. O

3 The Unique-Upper-Length Case

We now allow error & > 0. For each edge e with interval [I., h.] we assume both
le and h, are integer. This implies that only integer & is interesting. The unique-
upper-length case is the case where there 1s an integer H such that for each path
pfromstot, 3 . he=H.

Proposition 3 In the unique-upper-length case, a choice of queried edges quar-
antees error & if and only if it guarantees error k for each path from s to t in
P. (The unique-upper-length problem is thus in NP.)

We assume next that P consists of all paths from s to t. Let K < H denote
the total error when no interval is queried.

Theorem 4 The unique-upper-length case can be solved in polynomial time for
k=01, K—1K.

Proof Sketch: Error k = K requires no queries, while k = 0 requires querying
all nontrivial intervals (by Proposition 3).

Suppose Kk = K — 1. We must query at least one edge in each path p such
that the sum of the lengths of the intervals [l¢, he] over edges e in p equals K.
Choose the [, values for all edges e, and compute for each vertex v the length /,
of the shortest path from s to v. Then K = H —{;. The sum of the lengths of the
intervals [l¢, he] over edges e = (v, ') in p equals K if and only if I, +1. = {,+ for
all such e. Therefore, if we remove all edges e with [, + . > [/, then we must
query at least one edge for each path p from s to ¢ in the resulting graph. This
is the same as computing a minimum cost cut between s and ¢, which can be
obtained by a maximum flow computation.

Suppose next k = 1. Then all edges e with interval [, h.] such that ho—l, > 1
must be queried, and all but at most one of the edges e with interval [l., h.] with
he —Il. = 1 on a path p must be queried. Define an associated graph G’ whose
vertices are the edges e with h, — ., = 1, with an edge from e to ¢’ in G’ if
e precedes e’ in some path p. The graph G’ is transitively closed, and paths p
correspond to cliques in G’; we must therefore query all but at most one e in
each such clique, i.e., the queried edges must form a vertex cover in G'.

Suppose e has incoming edges from A and outgoing edges to B in G’. Since
G’ is transitively closed, it also has all edges from A to B, and thus a vertex
cover must choose all of A or all of B. Replace e with two vertices eq, ez, so
that e; has the incoming edges from A and ey has the outgoing edges to B.
Then a vertex cover will only choose at most one of ey, es, since it chooses all
of A or all of B. Furthermore, a vertex cover choosing e corresponds to a vertex
cover choosing one of e1, es, and vice versa. If we apply this transformation for
each e, then each vertex e; has only incoming edges and each vertex es has only
outgoing edges. Therefore the graph is a bipartite graph, with vertices e; in one
side and vertices e5 in the other side. A minimum cost vertex cover in a bipartite
graph can be obtained by a maximum flow computation. a

Theorem 5 The unique-upper-length case s NP-complete, and hard to approzi-
mate within 14§ for somed > 0, if 2 < k < K—2 < H—2. This includes the case
K =H =4 and k = 2, even if: (1) all [l., h.] intervals are [0,0],[0,1], or [0, 2],
with at most four nontrivial intervals per path (which has a 2-approzimation al-
gorithm); or, (2) all [l., h.] intervals are [0,1],]0,2] or [1,1], with at most three
nontrivial intervals per path (which has a 1.5-approzimation algorithm).

Proof Sketch: Suppose K = H =4 and k£ = 2. We do a reduction from vertex
cover for a graph G. In fact, we consider vertex cover for a graph G’ obtained
from G by replacing each edge (v, v’) in G with a path (v, z,y,v') of length 3 in
G’. The optimal vertex covers are related by opt(G’) = opt(G) + |E(G)|.

The DAG has a vertex v for each v in GG, and a corresponding edge (s, v)
with interval [0, 1]. For each edge (v,v’) in G, the DAG has two extra vertices
a,b, an edge (v,a) with interval [0, 2] corresponding to z, an edge (a,t) with
interval [0, 1] corresponding to y, an edge (v',) with interval [0, 1] of very large
cost that will not be queried, and an edge (b, a) with interval [0, 1] of zero cost
that will be queried for Case (1) or with interval [1, 1] for Case (2).

For the paths (s,v,a,t), we must either query (v,a) corresponding to z or
query both (s,v) and (a,t) corresponding to v and y respectively. This corre-
sponds to covering the two edges (v, z) and (z,y). For the paths (s, v’,b,a,t) we
must query either (s,v’) or (a,t) corresponding to v' and y respectively. This
corresponds to covering the edge (y, '), completing the reduction.

If only unit costs are allowed, then for Case (2) use a large number of parallel
paths (v/,b,a) from v’ to a to simulate a large cost. For Case (1), use parallel
edges to simulate cost, and add edges with interval [0, 0] if parallel edges are not
allowed.

This proves NP-completeness. For the hardness of approximation, take G of
maximum degree d for some constant d > 3, for which vertex cover is known
to be hard to approximate within 1 + § for some § > 0 [2]. We know that the
optimar, r’ for G, G' are related by ' = r+m, where m = |E(G)|. Furthermore

m _ r rd r m _ 7
r > . Therefore r = 741t 341 2 &7 T 44T = 751 SO an excess of ér for
the vertex cover obtained in GG corresponds to an excess of di—lr’ for the vertex

cover obtained in G’ giving hardness within 1 + d_‘?_—l for G’ and hence for the
corresponding DAG with source s and sink ¢.

To obtain the result for any x, K, H with 2 < x < K —2 < H — 2, insert
right after s a path with H — K edges with interval [1, 1], and K — 4 edges with
interval [0, 1] of which k — 2 have very large cost and will not be queried, and
K — k — 2 have zero cost and will be queried. Again large different costs can be
simulated with different numbers of parallel paths of two edges in the unit cost
case.

The approximation upper bounds follow from Corollary 1 in Section 4. O

Theorem 6 The unique-upper-length case has a (K — &)-approzimation algo-
rithm; and for all integers d has an (% +d)-approzimation algorithm, in particular
a (2\/k+1)-approzimation algorithm. We can get a 2-approzimation with respect
to the optimum cost for a given k if we allow replacing the error k by 2k as well.

In the case where all intervals [l, he] satisfy he —l. < 1, we get an Hig_,, <
1+ log(K — k) approzimation algorithm, where H, = ZKKU% < 1+ logu,
and for all integer d an (%5 + 1 4+ Hq_1)-approzimation algorithm, in particular
a (3 + log k)-approzimation algorithm.

Proof Sketch: We give the (K — k)-approximation algorithm. Let 4 = K — &,
and let w be the cost of the optimal solution ry. Suppose we have found a solution
r that reduces the error by A < p — 1. We shall find extra edges of total cost at
most w which when combined with the solution r reduce the error by at least
A+ 1. Applying this at most p time yields the result.

For each edge e in r, replace its interval [l., h.] with [he, h.]. The extra edges
must reduce the error in this new graph by at least 1, and an optimal solution
for this problem can be obtained from Theorem 4. This optimal solution has
cost at most w because the edges in 7y and not in r provide such a solution and
have cost at most w.

We give the (£ 4 d)-approximation algorithm. We consider the linear pro-
gramming relaxation of the problem. We introduce a variable 0 < z, < h, — [,
for each edge e. The idea is that . = 0 if e is queried and z, = h, — [, if €
is not queried. We want the longest path using the z. values to be at most .
This can be expressed by introducing a variable y, for each vertex, and adding
the conditions y; = 0, g+ < &, and y,» > Yy + z for each edge e = (v,v'). The
objective function to be minimized is), we(1— o). Let w be the value of the

le
Te

optimum. If we query all edges for which 1 — ;= >

we 1ncur cost at most

e
%w. For each path p from s to ¢ we have ZeEp z, < k. For each edge e in p
not queried, we have 1 — hf_‘ile < ﬁ, or he — I, < ”:d;re. Therefore the sum of
the lengths h, — [, of intervals over edges e in p not queried is at most kK +d — 1.
So we must reduce the error further by d — 1. After replacing the intervals for
edges e previously queried with [he, k], this will cost at most (d — 1)w by the
previous result. The total cost is thus at most ("'('i'd +d—-1Nw= (5 +dw, as
required.

The remark on doubling both the cost of the optimum and the error allowed
follows from setting d = & in the linear programming rounding.

Suppose now all intervals [l.,r.] satisfy r. — . < 1. We give the Hg_-
approximation algorithm. Let gy = K — k, and let w be the cost of the optimal
solution ry. Suppose we have found a solution r that reduces the error by A <
p — 1. We shall find extra edges of total cost at most 7> for v = p — A which
when combined with the solution r reduce the error by at least A+ 1. Applying
this at most p times yields the result.

For each edge e in r, replace its interval [l¢, h.] with [he, h.]. The extra edges
must reduce the error in this new graph by at least 1, and an optimal solution for
this problem can be obtained from Theorem 4. We must show that this optimal
solution costs at most 7>. The edges in 7o and not in r reduce the error in this
graph by at least v: call these edges r1. Assign to each edge e the value [, and
compute for each vertex v the length [, of a shortest path from s to v. A solution
must query at least one nontrivial edge in each path p such that every nontrivial

edge e = (v,v’) in p has l,» — I, = ., that is, in every path p after we remove all
edges e that have [,» — [, < l.. Now every path p has at least v edges in r1, so
we can divide the edges in r1 into v sets such that each set is a cut: the ith set
contains all the edges that occur at the earliest as the ith edge from r; in some
path p. Thus, some such set constitutes a cut with cost at most . The optimal
solution from Theorem 4 then has cost at most 7 as well.

The (4 +1+4 Hy_1)-approximation algorithm follows as before. We incur cost
%w to reduce the error to at most k +d — 1 by linear programming, and we
then incur cost Hy_q1w to reduce the error to k by the algorithm just described.

O

Theorem 7 The unique-upper-length case on series-parallel graphs has a (149)-
approximation algorithm for all § > 0, and an ezxact polynomial time algorithm
if k 1s bounded by a polynomaial.

Proof Sketch: We compute an optimal solution on G for all ¥ < k. If G
consists of two graphs (G1, G5 in parallel, then we must have a solution for s’ on
each of G1, G5. If G consists of two graphs G1, G5 in series, then we must have a
solution for k1 on 1 and a solution for k5 on G5 with k1 + k3 = k’. We can try
all such decompositions of «’. The result follows by induction on the structure
of GG, when & is bounded by a polynomial.

For larger x, we introduce an approximation factor of 1+ %, and do a binary
search for possible values of k', stopping each branch of the binary search when
the solutions for two consecutive values of k' differ by a factor of at most 1+ %.
Thus, a polynomial number of solutions will be maintained. When the solutions
for Gy, G5 are combined to obtain solutions for , the number of solutions
obtained for G may be larger, but can be reduced again by incurring another
factor of 1 + %. Since graphs are combined at most n times, the total factor
incurred is at most (1 + %)n ~1+94. O

Note that the special case where the series-parallel graph is a single path is
the same as knapsack [11] and thus NP-complete.

The case where the collection of paths P is given explicitly and does not
contain all paths is harder.

Theorem 8 For a given collection of paths P for G, with intervals [l., h.] given
by [0,0], [0,1] or [1,1], the unique-upper-length case is as hard to approrimate
as (k + 1)-hypergraph vertezx cover even if k = K — 1. With arbitrary intervals
[le, he], the problem has an (k + 1)-approzimation algorithm.

Proof Sketch: Let R be an instance of (x4 1)-hypergraph vertex cover consist-
ing of n vertices, and hyperedges each having k + 1 vertices. Construct a DAG
consisting of a path of length n, where each edge is replaced by two parallel
edges with intervals [0, 1] and [1, 1]. (Use an additional edge with interval [0, 0] if
parallel edges are not allowed.) Each edge on the path of length n corresponds to
a vertex of the hypergraph. We choose a path for each hyperedge, selecting the
edges [0, 1] corresponding to the vertices in the hyperedge, otherwise selecting

the edges [1,1]. A solution must query at least one edge in each such path, and
thus corresponds to a vertex cover in the hypergraph.

The (& + 1)-approximation algorithm is obtained again by the linear pro-
gramming relaxation. We introduce a variable 0 < z, < h. — [, for each edge e.
The idea 1s that z. = 0 if e is queried and x. = he — . if € is not queried. Write
EeEp z. < k for each path p in P. The objective function to be minimized is
dowe(l— -). Let w be the value of the optimum. If we query all edges for

: Te 1
which 1 — e

we incur cost at most (k4 1)w. For each edge e in p not

queried we have 1 — hlee < ﬁ, or hy — [, < ”:lxe. Therefore the sum of the

lengths h, — I, of intervals over edges e 1n p not queried is at most . O

4 The General Case

We now consider the case of arbitrary x > 0 and arbitrary intervals [l., h.].

Proposition 4 A choice of queried edges guarantees error k if and only if for
each path p in P there is a path q in P (possibly ¢ = p) such that H—L+z < k.
Here H 1s the sum of he over edges e in q and not in p, L s the sum of l. over
edges e in p and not in q, and x is the sum of the interval lengths he — [, over
edges e in both p and q that are not queried. (The general case is thus in X3.)

Proof Sketch: Suppose there is a path p such that H — L+ 2 > & for each path
q. Answer the queries to edges e in p by [, and answer the queries to all other
edges f by h.. Let Ly be the minimum possible length on p. Then for every path
q, the maximum possible length is at least Lo+ (H — L) 4+ > Lo + &.
Suppose for every path p there is a path ¢ such that H — L+ z < k. After the
queries, the minimum possible length of a shortest path is the minimum possible
length Ly for some p. The maximum possible length for the corresponding g is
at most Lo+ (H — L) + 2 < Lo + &. m|

Theorem 9 If each path in P contains at most r nontrivial edges, then the
problem is as easy and as hard to approrimate as r-hypergraph vertex cover, for
r = O(logn); in particular, it has an r-approzimation algorithm.

Proof Sketch: The hardness was shown in Theorem 8 with r = k + 1. For the
easiness, consider each path p. For a choice of edges X to be queried in p, we can
determine whether H — L4z > & for each path ¢ as in Proposition 4. If this 1s the
case, then at least some nontrivial edge in p not in X must be queried, giving a
set of at most r nontrivial edges to be covered, and thus defining a corresponding
hyperedge of size at most . The number of choices X to be considered for p is
at most 2", thus polynomial in n. a

Theorem 10 If the nontrwial edges of G have r colors, so that the nontrivial
edges in each path p from P have distinct colors, then the problem s as easy and
as hard to approrimate as r-partite hypergraph verter cover, for r = O(logn);

in particular, it has an L-approzimation algorithm [9, 5].

Proof Sketch: Let R be an instance of r-partite hypergraph vertex cover, with
r parts R;. Construct a DAG consisting of a path of length 7, where the ith edge
is replaced by |R;| parallel edges with intervals [0, 1] of color i. Each hyperedge
in R thus corresponds to a path in the DAG since it selects an element from R;
for each 7. Setting kK = r — 1 forces each hyperedge to be covered, proving the
hardness.

The easiness is as in Theorem 9. The hyperedges correspond to the nontrivial
edges in p not in X for some X, so they all have elements of different colors, i.e.,
elements in different parts R; of they r-partite hypergraph. a

Corollary 1 If P consists of all paths in G, and each such path has at most

r nontrivial edges, then the problem has an 3-approrimation algorithm, if v is
constant. In particular, the case r = 2 can be solved exactly. (The case r = 3 is

NP-hard to approrimate within 1+ § for some § > 0.)

Proof Sketch: Assign to each nontrivial edge e a color ¢ which is the maximum
¢t such that e occurs as the ith nontrivial edge in a path p. There are at most
r colors, and all the nontrivial edges in each path p have different colors. The
choice of at most r nontrivial edges for a path p can be assumed to determine
p, since we can choose the remaining trivial edges so as to minimize the length
of the path. Thus the number of paths to be considered is O(m").

The hardness for r = 3 was established in Theorem 5. a

A bi-tree is a series-parallel graph consisting of a tree S with root s, edges
oriented down from the root, a tree T" with root ¢, edges oriented up to the root,
where the leaves of S coincide with the leaves of T'.

Theorem 11 Bi-trees have a (140)-approzimation algorithm for all § > 0, and
an exact polynomual time algorithm if k s bounded by a polynomuial.

Proof Sketch: Consider the optimal solution. Consider a series-parallel sub-
graph G’ of the given bi-tree which is given by a subtree rooted at some s’ of
the tree rooted at s, and a subtree rooted at some t’ of the tree rooted at ¢. The
paths p going through G’ such that the corresponding ¢ satisfying Proposition
4 does not go through G’ are determined by a lower bound Ly on the sum of
l. over the edges e of p in G'. Thus, there are at most n different scenarios for
which paths p going through G’ must have their corresponding ¢ going through
G’ as well. If the set of such p is nonempty, then the sum zq of the h, — [for
edges from s to s’ or from #’ to ¢ not queried must satisfy zo < x, for a total of
kn scenarios for each such G’.

Each such G’ is obtained by combining two G, G% in parallel, or by taking
a G having some s},#] as source and sink, and adding either an edge (s, s})
or an edge (#},t'). The optimal solution for each scenario for G can be obtained
from the optimal solution for the scenarios for G} for this last case or for the
scenarios for both G, GY% in the previous case, because given g it is easy to
determine which paths ¢ in G take care of paths p in G and vice versa.

For large k, we proceed as in Theorem 7 and introduce at each step an
approximation factor of 1 + %, so that the total factor incurred is at most
(1+9)" ~1+4. O

Note that the special case where the bi-tree is a single path is the same as
knapsack [11] and thus NP-complete.

Theorem 12 If P consists of all paths in G, and G s made up of components G;
in series, where each G; has an a-approzimation algorithm, then G has an a1+
d)-approzimation algorithm for all § > 0, and an a-approzimation algorithm if
k 18 bounded by a polynomaial.

Proof Sketch: A solution must combine x; for each GG; that add up to at most
k. We proceed inductively for the possible values of partial sums 1 + - - - + &5,
and combine solutions accordingly.

For large x, we proceed again as in Theorem 7 and introduce at each step
an approximation factor of 1 + %, so that the total factor incurred is at most

1+ " ~144. O

References

1. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. “Fast estimation of diameter
and shortest paths (without matrix multiplication).” SIAM Journal on Computing
28(1999):1167-1181.

2. P. Berman and M. Karpinski. “On some tighter inapproximability results.” DI-
MACS Technical Report 99-23 (1999).

3. X. Deng, T. Kameda, and C. Papadimitriou. “How to learn an unknown environ-
ment.” To appear in the Journal of the ACM.

4. T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. “Computing the
median with uncertainty.” In Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing, 2000, pages 602—-607.

5. Z. Firedi. “Matchings and covers in hypergraphs.” Graphs and Combinatorics
4(1988):115-206.

6. O.H. Ibarra and C.E. Kim. “Fast approximation algorithms for the knapsack and
sum of subsets problems.” Journal of the ACM 22(1975):463-468.

7. O. Karasan, M. Pinar, and H. Yaman. “The robust shortest path problem with
interval data.” Manuscript, August 2001.

8. S. Khanna and W. Tan. “On computing function with uncertainty.” In Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 2001, pages 171-182.

9. L. Lovasz. “On minimax theorems of combinatorics.” Doctoral Thesis, Mathe-
matikai Lapok 26(1975):209-264. (Hungarian)

10. R. Montemanni and .. M. Gambardella. “An algorithm for the relative robust
shortest path problem with interval data.” Tech. Report IDSIA-05-02, 2002.

11. C. Olston and J. Widom. “Offering a precision-performance tradeoff for aggrega-
tion queries over replicated data.” In Proceedings of the 26th International Con-
ference on Very Large Data Bases, 2000, pages 144-155.

12. C.H. Papadimitriou and M. Yannakakis. “Shortest paths without a map.” In
Proceedings of the 16th International Colloquium on Automata, Languages, and
Programming, Lecture Notes in Computer Science 372(1989):610-620.

