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Abstract

We investigate the question of when a prover can aid a vetdiegliably compute a functiofaster
than if the verifier were to compute the function on its ownr @eus is on the case when it is enough
for the verifier to know that the answer tfoseto correct. The model of proof systems we use is
based on variants of existing models of proof systems, sadP @and PCP. We develop protocols for
several optimization problems, in which the running timetted verifier is significantly less than the
size of the input. For example, we give polylogarithmic tipretocols for showing the existence of
a large cut, a large matching, and a small bin packing. Inreshtthe protocols used to show that
IP = PSPACEMIP = NEXP, and NP= PCRlgn, 1) [Sha90, BFL91, ALM+98, BFLS90] require
a verifier that runs if2(n) time. In the process, we develop a set of tools for use in cocting these
proof systems.

1 Introduction

Consider the following scenario: A client sends a compateti request to a “consulting” company on the
internet, by specifying an input and a computational pnolie be solved. The company then computes the
answer and sends it back to the client. This scenario is efeést whenever a prover can help a client reliably
find the answer to a function faster than the client could agethe function on its own, or whenever the
client does not possess the code required to solve the catignal problem. An obvious issue that arises,
especially in the case that the company does not have a wathlisbied reputation, is: why should the client
believe the answer to be correct? Surprising results onf gymiems show that there is a format in which
the company (prover) can write a proof of correctness of ¢éselt such that the proof can be verified by a
client (verifier) which looks at only a constant number ohif the proof and runs in time nearly linear in
the size of the theorem and logarithmic in the size of a pra@ten in standard form (cf. [ALM+98, PS]).

In this paper we study the setting in which the computatioegparformed on large data sets. In this
setting, it is desired to find proof systems for extrenfelst clients—ones that run in time sublinear in the
size of the theorem. While this may at first seem to be an iniplestmsk, we show that when it is enough
for the client to know that the answerdkseto correct, then in many cases it is possible to write thefproo
in a format where the verifier requires sublinear, in somesa&ven constant or polylogarithmic, time to
verify the proof. To illustrate our notion of close, congi@eproof that a graph has a cut of size at least
k—the client may be willing to accept the proof if it is convettthat the size of the cut is at led$t— €)k.

RELATED WORK. It is known that IP= PSPACE, MIP= NEXP, NP = PCRlgn, 1) [LFKN90,
Sha90, BFL91, ALM+98]. From the work of [BFLS90] and [Spi9#ijs possible to construct proof systems
for any proof in a reasonable formal system with@fr + 1g £)-time verifier, wheren is the length of the
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theorem and is the length of the proéf Thus we have a good understanding of the set of problems for
which it is feasible to find proof systems in which the verifeefficient and the communication between
the prover and verifier is limited. Note that the protocolsha aforementioned results all require that the
verifier look at the whole input in order to choose the loaasion the proof to query, and thd® not give
sublinear time protocols

The model we consider, described in Section 2, is based omdidels of IP [GMR89], PCP [FRS94],
and CS proofs [Mic94], with modifications borrowed from thedels of program checking [BK95], ap-
proximate program checking [GLR+91], property testingSGGR98], and spot-checking [EKK+98].

OUR RESULTS  We begin by considering problems that return approxinmatiaf optimal solutions for
combinatorial optimization problems. We give efficient@irsystems for proving good lower bounds on the
solution quality to constraint satisfaction problemsJuging Max Cut and Max SAT, to a polylogarithmic
time verifier. We next show how to prove the existence of a g@dimal solution of a sparse fractional
packing problem to a polylogarithmic time verifier. The tejues behind our fractional packing protocol
can be used for several other problems. For example, it isilpledo prove the existence of a large flow, a
large matching, or a small bin packing in such a way that thigi@eneed only spend time nearly linear in
the number of vertices (which is sublinear for graphs theinat sparse) in the first case and polylogarithmic
time in the latter cases. The size of the proof is nearly lifrethe size of the solution to the corresponding
search problem and can be computed efficiently by the prokremll of the above protocols it is also
possible to prove the existence of suboptimal solutions, if the prover knows of a solution of value

it can prove the existence of a solution of value at |éast ¢)v. We then investigate methods of proving
additive approximations of bounds on the sizes of unionsiatetsections of several sets such that the
verifier requires only logarithmic time. One applicatiorsoth protocols is to estimating the size of unions
or intersections of several database queries. Finally, amsider spot-checking and property testing and
note that one can obtain more efficient results for testingamess to having the properties of bipartiteness
and element distinctness by allowing the aid of a prover.

We develop a new set of tools for use in constructing thesefgygstems. For example, we give a con-
stant time protocol for estimating lower bounds on sums ofputs. We develop a constraint enforcement
protocol which allows the verifier to ensure that linear ugpmund constraints are satisfied without looking
at all of the variables involved.

SOME POSSIBLE APPLICATIONS  Let us mention two examples of properties of massive datatee
which our proof systems apply.

1. (Quality of service in networks) A company wants to coe@ client that the company’s network is
capable of handling a large sample load provided by thetcliEime above techniques could be used
to convince the client that at leakt- ¢ fraction of the load can be routed, such that the running time
of the client isO(d log n/¢) whered is the diameter of the network (typically much smaller thize t
number of nodes in the network).

2. (Website hits) In order to prove the popularity of theibsige to advertisers, a company may present
a list of machines that have accessed their website. Thadigtbe made longer by either adding fake
entries (machines that did not access the website or do st} ex by duplicating the existing legal
entries. Assuming that the advertisers have a way of datgfetke entries, standard sampling methods
can be used to ensure that at mgs fraction of the entries are fake @(1/¢) time. Methods given
in Section 3.2 allow the advertisers to ensure that at my@straction of the entries are duplicates in
O(1/e) time.

Yf the input is in a specially coded form, then the dependeneecan be dropped. However, encoding the input reques)
time.



2 The model

Interactive proof systems (IPS) [GMR89] and probabiliticcheckable proof systems (PCPS) [FRS94]
(equivalent in power to multiple prover proof systems [BGEB8Y, see also [FGL+96, AS98, BFLS90] and
to function restricted P [FRS94]) can be used to convince a polynomial time verdfahe correctness of
a decision problem computation. Definitions of IP which paetrize the runtime of the verifier appear in
[Con91, FL93]. CS proofs [Mic94] extend the model to appljutnction computations as well as problems
above NEXP, and to allow restrictions on the runtime of thaspr.

Program result checking [BK95] and self-testing/cormgtechniques [BLR93, Lip91] were introduced
so that a client could ensure the correctness of a solutiarctmputation. Program result checkers can be
viewed as a special type of proof system for function comparta, in which the prover is restricted to
answering other instances of the same computational problieis easy to see that all result checkers as
well as result checkers in the library setting [BLR93] dgtibe requirements of the model used here.

Proving that results are approximately correct is alsdedlto approximate checking [GLR+91], prop-
erty testing [RS96, GGR98], and spot-checking [EKK+98],enéhthe goal is to determine whether an
answer is close to correct for various interesting notionsleseness. All approximate checkers satisfy
the requirement of the model here. Conversely, all of ounltesan be restated as property testers or
spot-checkers which use the additional aid of a prover.

The model we use is based on the above models and in partiaplalies to function computations and
decision, optimization, approximation, and search pnoisteallows the prover to prove only the weaker
assertion that a solution is approximately correct; patdres the runtime of the verifier; and analyzes
the runtime of the verifier implemented as a RAM machine irneottd understand the exact asymptotic
complexity of the verifier. We will not assume any bounds and¢bmputation time of the prover.

Both the prover and verifier are interactive RAM machineg tieve read access to an input and an
output tape, read/write access to communication taped aezess to a public or private source of random
bits, and read/write access to private computation tapesad&ume that the verifier can access any word in
any tape in constant time.

We give definitions for both the approximate IP and PCP maatdlse same time. In the description of
our protocols, we use the alternate characterization of BEfanction-restricted IP [FRS94], in which the
prover is restricted to a function determined before the sfahe interaction [FRS94].

Definition 1 (Approximate IP/PCP Let A(-, -) be a distance function. A functighis said to have an
t(e, n)-approximate interactive proof (probabilistically chabke proof) systerwith distance function\ if
there is a randomized verifi@ such that for all inputg andz of sizen, the following holds. Ley be the
contents of the output tape, then:

1. If A(y, f(z)) = 0, there is afunction-restrictediproverP, such tha®’ outputs pass with probability
at least 3/4(over the internal coin tosses b¥;

2. IfA(y, f(z)) > ¢, for all (function-restrictediproversP’, ¥ outputs fail with probability at least 3/4
(over the internal coin tosses ¥; and

3. VrunsinO(t(e, n)) time.

REMARKS. (i) The interactive (probabilistically checkable) prgmtocol can be repeated(lg 1/5)
times to get confidence 1 — §. We omit all dependence @nfrom our protocols throughout this paper.

(if) The choice of the distance functiah is problem-specific, and determines the ability to constauc
proof system, as well as determining how interesting thefsgstem is. The usual definitions of interactive
proof systems for decision problems require that wien f(z), an honest prover can convince the verifier



of that fact, and wheg # f(z), no prover can convince the verifier of that. In our modek thiachieved

by choosingA(:, -) such thatA(y, y') > e whenevery # vy’ andA(y,y) = 0. Note that the output of

is not specified whefi < A(y, f(z)) < e. In Definitions 2 and 3, we define approximate lower and upper
bound protocols in the multiplicative and additive case givd the corresponding functions.

(iii) Note also thatA can be set t@ for many of the inputs and\ need not be computable by the
verifier, so that this definition allows interactive proofs promise problems. Independently of this work,
Szegedy [Sze99] has given a related formulation in termisrektvalued logic which also applies to promise
problems.

We now give specific definitions for approximate upper anddioprotocols. Most of the results in this
paper gives such protocols. All of these definitions areigpeases of Definition 1.

Definition 2 (Approximate lower/upper bound IP/PCPB A functionf is said to have an(e, n)-approximate
lower (resp.upper ) bound IP (PCRYjthere is a randomized verifie/ such that for all inputg andz of
sizen, the following holds. Leg be the contents of the output tape, then:

1. Ify = f(=), there is a(function-restrictedl prover P, such thatV outputs pass with probability at
least 3/4(over the internal coin tosses b;

2. Ify < (1 —¢€)f(z) (resp.y > (1 + ¢€) f(z)), for all (function-restrictediproversP’, ¥V outputs fail
with probability at least 3/4over the internal coin tosses bf); and

3. VrunsinO(t(e, n)) time.
REMARK. (iv) The approximate lower and upper bound definitionsespond to setting\(y, y') =
max{0,1 — y/y'} andA(y,y") = max{0,y/y’ — 1} respectively in Definition 1.

Definition 3 (Approximate additive lower/upper bound IP/PCB A functionf is said to have an(e, n)-
approximate additive lowerdsp. upper ) bound IPPCPIf there is a randomized verifie? such that for
all inputse andz of sizen, the following holds. Leg be the contents of the output tape, then:

1. Ify = f(=), there is a(function-restrictedl prover P, such thatV outputs pass with probability at
least 3/4(over the internal coin tosses b;

2. Ify < f(z) — e (resp.y > f(z) + ¢), for all (function-restrictedi proversP’, ¥ outputs fail with
probability at least 3/4over the internal coin tosses o); and

3. VrunsinO(t(e, n)) time.
REMARK. (v) The additive approximate lower and upper bound deéingicorrespond to settidy(y, y') =
max{0,y’ — y} andA(y, y') = max{0,y — y'} respectively in Definition 1.

INTERACTIVE SPOFCHECKING MODEL. We give a more general definition of IPBCPS which applies
to distance functions that correspond to property testimspot-checking. We define ameractive-spot-
checkerwhich is essentially a spot-checker [EKK+98] that is akalthe assistance of a prover.

Definition 4 Let A(,-) be a distance function. We say thais ant(e, n)-interactive-spot-checkel§Q)
for f with distance functior\ if, given any inputz, claimy for the value off (z), ande,

1. IfA((z,y), (z, f(z))) = 0, then there is a function-restricted prov@r such that’ outputs pass with
probability at least 3/4over the internal coin tosses v);

2. If for all inputsz’, A((z, y), (z', f(2'))) > ¢, then for all function-restricted prover8’, V outputs
fail with probability at least 3/4over the internal coin tosses ); and
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3. YV runsinO(t(e, n)) time.

The condition on the runtime of the spot-checker enforceslitile-oh” property of [BK95], i.e., as long as

f depends on all bits of the input, the condition on the runtiriihe spot-checker forces the spot-checker
to run faster than any correct algorithm frwhich in turn forces the spot-checker to be different thay a
algorithm for f.

USING PCPSOVER A COMMUNICATION CHANNEL.  When interacting over a communication channel
(like the internet), the verifier may want some assurancefhia function-restricted, without resorting to
having the prover transmit the whole proof in advance of #@ication process. One possibility is to use
a trusted third party® transmits the proof to the third party, and the verifier iatds with the third party
assuming that it has no reason to change pieces of the prditefnatively, if one assumes a bound on the
running time ofP, then it is possible to force the prover to commit to the primo$uch a way that only
provers that are computationally more powerful than thevedld bound are able to change the proof in a
convincing way. One can use commitment methods [Mer90]imgétting [Kil92, Mic94, Kil94].

RELATED MODELS.  Several other works have looked at |FF8CPS with resource limited verifiers, es-

pecially verifiers using logarithmic space. In [Con91, FL8%92, FS88], the question of classifying the

languages that have interactive proofs with various moafetpace-bounded verifiers is studied. The work
of [DS92, Kil] consider the issue of when zero-knowledgeriattive proof systems exist for systems with
space bounded verifiers. The work of [CLSY90] considers tioblem of designing untamperable bench-
marks for other computers to follow. Their model considés $cenario of a resource-limited computer,
which would like to ensure that a (very fast) computer hasemtly computed benchmarks without taking

any shortcuts. The main difference from this work is thatum model the verifier does not care how the
prover computed the answer, only that the answer is correct.

NOTATION. We usez €g S to denote that is chosen uniformly at random fro$. We useb to denote
the number of bits in a word and we assume all integer varsdiilen a word.

For notational convenience, we often mix notions of intévacand probabilistically checkable proofs
by using both within the same protocol, referring to a prasemding information as well as permanently
writing down information before the start of the protocolhfah corresponds to committing to a set of
responses to queries that will be made later in the protoddigse systems can clearly be simulated by a
function-restricted prover, since can decide on all of its responses before the start of thegobt All
protocols in this paper are described within the PCP model.

3 Some basic building blocks

3.1 Multiset equality (Permutation enforcement)

Given an input listX = (z1,...,z,), many of our protocols require that the prover rewrite tiseih a
different orderY = (yi,...,yn) (for example, the sorted order). We would like the verifiebable to
ensure thatX NY| > (1 — ¢)n. In particular, the verifier should be able to access elesieomY while
ensuring that each accessed element corresponds to a lmggtien inX. The difficulty comes from the
possibility that neither list is necessarily distinct. Omeuld like to prevent the possibility that an from
X was duplicated more than once¥n or that two equivalent elements = z; in X are replaced by only
one element ify’. Without the aid of a provel requires® (/=) time to ensure thatX N Y| > (1 — €)n
[EKK+98]. Here we show that it can be done@{1/¢) time.

The permutation enforceconsists of two array®;, 7> of lengthn, where the contents of locatiarin
T, contains a pointer to the location f in Y. Similarly, the contents of locatianin T, contains a pointer
to the location ofy; in X.



Lets begoodif T1[T>[:]] = 7 andz; = yg,[;). Thenitis easy to see that:
Lemmab5 | X NY| > |{7 | ¢is good}|.

Thus, to verify thatX NY| > (1 — €)n, the verifier should choos®(1/¢) randon’s and output fail if it
ever finds ari that is not good. IfX = Y, the correctly written permutation enforcer will alwaysisay to
pass, and ifX NY| < (1 — €)n, no matter wha® writes in place of the permutation enforcerwill fail
with probability at leas8 /4.

Let f/(X,Y) = 1if X = Y and0 otherwise. Given two multisetX, Y, let p(X,Y’) be the min-
imum number of elements that need to be inserted to or defeded X in order to obtainY’. Then
A({(X,Y), Z), (X, Y"), /(X' Y"))) is infinite if eitherX # X' orZ # f(X',Y'), and otherwise is
p(Y,Y")/|Y|. One can see that this definitionffis small only for multisets{ andY that are at least close
to equal.

Theorem 6 Given two multisets of size and constant, there is an(1/¢)-ISC for multiset equality with
distance functiom\.

3.2 Element distinctness

Given an input listX = (z1, ..., z,), it is often useful for the verifier to ensure that thés are distinct.
Here we give a(1/¢) time protocol by which the verifier can ensure that the nunalbelistinct elements
in X is at least(1 — €)n. Without the aid of the prover/ requiresQ(y/n) time to determine the same
[EKK+98]. The protocol we use can be viewed as a simplificatibthe protocols given by [GMW, For89].
The protocol of [For89] allows a prover to convince a verifidran upper bound on the size of a set.
Interestingly, we use the same technique here to give a lbaend on the size of a set.

Repeat O(1/e¢) times:
VY chooses i€g[l...n]
Y sends z;, to P
P returns jto V
V fails if i#j

If X is distinct, theriP can answer so that always passes. If the number of distinct elementX’iis less
than(1 — €)n, then for all prover’, V fails with probability at leas3 /4. More formally, letf(X) = 1if X

is distinct and) otherwise. Define\((X,Y'), (X', f(X'))) to be infinite ifY # f(X'), andp(X, X")/| X|

otherwise p is as defined previously). Note that it is important for therectness of the protocol th& is
restricted to a function determined before the start of hieraction.

Theorem 7 Given a multiset of size and constant, there is an(1/¢)-ISC for element distinctness with
distance functiom\.

Proof: If the multisetX is distinct,P can always uniquely determirge= <. If the number of distinct

elements inX is less thanl — €)n, the probability tha®’ chooses ar corresponding to a nondistinct
element is at least, and if z; is not distinct, the probability that = < is at mostl/2. Thus, there is a

constant such that aftee/e trials, V will fail with probability at least3 /4. O

A SPACE EFFICIENT PROOF If the function-restricted in the previous protocol is implemented by
havingP write down the answers to all queries®fin advance of the conversatioR,writes a table of size
proportional to a bound on the maximum valuezof It is possible to save space, by using an algorithm in
whichV runs inO((1/e) - 1g n) time: P writes a list of ordered pairs containing each input elenagtits
location in the input lis{z;, ) in order sorted by the value af. V then performs a binary search to find
(z;, 7) based on the keyworeg} and checks that = <.
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3.3 Lower bounds on the size of a set

Given a setS represented by a list enumerating its elements, it is noatrio deduce the size &§ from
the size of the list, since it is not known whether the elemémthe list are distinct. Given a method by
which V can determine whethertabit elementz is in S (for example, ifS is in fact represented by a list,
Y could be convinced in constant time tlat S if P sends) a pointer to the location af in S), V could
estimated S|/2° to within a multiplicative error ot by sampling:V chooses a randosbit elementz and
if z € S, thenP proves it toy. This require$2(2%/(¢|S|)) samples [DKLR95, CEG95]. The method given
here is significantly more efficient with the running timesck#ed in terms of, an upper bound on an IP
(or a PCP) protocol by whic® can convince’ thatz € S. Our protocol is simple, fast, and has one-sided
error. We note that there are protocols for lower boundingige due to [GS86] and [FGM+89] which can
be performed directly in an IP setting (the former protocas 2-sided error and the latter is slightly less
efficient than the one given here). In our applications festhprotocols, any one of the three can be used
interchangeably.

The following protocol allowsP to convincey that the size of is at leas{1 — ¢)|S| for anye > 0. In
particular, letp beP’s claimed size ofS, then if|.S| > p the protocol always passes anddf < (1 — €)p
the protocol fails with probability at lea8y4.

We use the protocols of the previous sections such that esipriobability of error at most/8. An
auxiliary array A will be used to refer to both an array used to represent thargkthe multiset which is
defined by its contents.

P sends pto V
P wites the elenents of S
to an array A of size p
Perform el ement distinctness protocol
on A with paraneter ¢/2
Repeat O(1/e¢) times:
V sends i€g([l,...,p] tOo P
P sends V a proof that A[i]e S

Clearly if |S| > p, thereV will pass. Converselyy ensures that the fraction of distinct elementstiiis at
least(1 — ¢/2) and that at most/2 fraction of the elements are nott Thus,|AN S| > (1 — €)p.

Theorem 8 There is any/¢)-approximate lower bounB CPfor the size of a set.

3.4 Lower bounds on sums

Given positive integers;, . .., z,, we show howP can convince/ of a good approximation to a lower
bound on)_ , z;. Without aid of a provery requires?(n) time to estimate the lower bound, since it is
possible that all but one of thg's are0. We give two methods by which the prover can convince thdieeri
that the sum is at leadt— ¢ times the claimed value. The first requires only thaise constant time but
requires a very large proof size (proportional to the magtgtof the sum). The latter requires thaspend
O(lg B) time, whereB is an upper bound on thg's (since we assume; fits in a word,B < 2°) but only
requires a proof whose size@§n) words.

USING LOWER BOUND PROTOCOLS Considerthesef = {(¢,7) |1 <i¢<n, 1 <j <z} (fz; =0
then there will be ng such that(z, j) € S) whose cardinality i$y ;- , z;. Note that given(s, j), V can
determine membership ifi in constant time: first verify that < + < n and then that < j < z;. The
lower bound protocols of the previous section may be usedtimate a lower bound of$| such thatV’s



running time isO(1/¢). If the weights are too large to fit in a word, then it is enouglwork with only the
O(1/¢) most significant bits of the weights.

Theorem 9 There is an(1/¢)-approximate lower bounBCPfor the sum of: integers.

GROUPING ELEMENTS BY SIZE  In the second protocol] uses random sampling to estimate the sum.
Since the number of samples required to get good estimapesids on the variance of the sampPehelps

V by putting thez;’s in groups for which the variance is smaf. groups thez;’s such that the-th group
contains alke; whose weights are betwedy 2! andB/2*+! and writes down the contents of each groupin a
separate array (along with the size). Since we assume miegghts, there are at malgt B such groupspP
could try to make the sum look larger than it is by inserting ferge elements when it rewrites thgs into

the arrays. In order to protect against thismust ensure, using the permutation enforcer, that in fagtt ea
element sampled comes from the original setg$. Suppose’ chooses elemeny; in one of the groups.
Say thaty; is goodif y;'s weight is consistent with its group and the permutaticloeser is consistent, i.e.,
T1[To[5]] = j andz; = yr,5). LetG = {j | y;is good}. Then} . cy; < >, z:. V uses sampling to
lower bound)_ . ; y;. To do this, suppose theth group has:; elements. TheW picksO(1/¢) elements
from the:-th group, checks that they are good, and $gt® be their average multiplied by;,. This gives
ane-approximation for a lower bound on the sum of the elementisén-th group (cf. [DKLR95]). Finally,

V outputsy | S;, the total sum, which lower bounds z; to within a multiplicative factor of — . The total
running time isO((1/¢) Ig B).

Theorem 10 There is an(1/¢) lg B)-approximate lower bounBCPfor the sum of. integers, where the
proof size iL0(n).

4 PCPS for optimization and graph problems
4.1 Constraint satisfaction problems

A WARMUP: LOWER BOUNDS ON THE CUT SIZE  We give a protocol by whicly can be quickly
convinced bypP that a given grapl? = (V, E) has a large cut. In this warmup case, the PCP is especially
straightforward. The main idea is to use the lower boundqualtdescribed in the previous section to allow
P to convinceV that the cut is at least a certain size.

We first describe the protocol for proving a lower bound ondiiesize in an unweighted graph. Given
a cut[S, T'], for each vertew, let A, = 1if v € SandA4, =0ifv e T.

P wites down A, for each vertex v

Y and P performthe | ower bound on set
size protocol for the set
C=En{(u,v) | Ay # Ay}

Note thaty can determine membership @ in constant time. The weighted case may be treated by per-
forming a lower bound protocol O}, ¢ w(u, v), wherew(x, v) is the weight of edgeu, v).

Obtaining a sublinear protocol in which can convince)y of a multiplicative approximation which
upper bounds the size of a given cut is not possibileequires2(n?) time to distinguish between a cut size
of 0 and 1, assuming the input graph is given in terms of ita@fjcy matrix.

MAXIMUM CONSTRAINT SATISFACTION PROBLEMS.  Constraint satisfaction problems (CSP) [Sch78,
KST97] refer to a class of problems that can be representéollas/s: Define a set o€onstraint func-
tions fi,...f, : {0,1}* — {0, 1} such thaty; is satisfied byz € {0,1}* if f;(z) = 1. A constraint
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applicationof f; to boolean variables,, ..., z,, is an ordered paitf;, (a1, ..., ax)), which is satisfied if
fi(zay,-..,2q,) = 1. We assume constraints can be evaluate@ (k) time. On input a collection of
constraint applications on boolean variahtgs. . ., z,,, theMax CSPproblem is to find a boolean setting
of thez;’s such that the number of satisfied constraints is maximilzethe case that the input also includes
weights on the constraint applications, iWeighted Max CSPBroblem involves finding a setting of thg's
which maximizes the sum of the weights of the satisfied cairgs. The Max SAT problem and the Max
Cut problem can both be cast as constraint satisfactiorigmsh

If P knows a solution of value to the weighted Max CSP problem, théncan convince a verifiey
that the solution to the weighted Max CSP problem is at Iglast)v as follows:P initially writes down the
0/1 settings of thez;’s. Then, using one of the protocols for showing approxinhateer bounds on sums
from the previous sectiorf}, convincesy that the sum of the weights of the satisfied constraints isat|
(1 — €)v. During the protocol, whenevé? sendsV pointers to constraints that are purportedly satisfied,
checks that the settings of thgs initially written by P satisfy those constraints.

Theorem 11 Letn be the number of variables and lebe the maximum size of constraints for a Weighted
Max CSP problenfll. Then there is &k/¢)-approximate lower bounB CP Sfor IT.

MIN ONESCSPs.  TheMin Ones CSProblem involves finding a setting of thig’'s which minimizes the
number ofz;’s set to 1 and satisfies all of the constraints. It is easyedisat:

Theorem 12 There is a(k/¢)-approximate lower bound protocol in whidh can convincey that there
exists a setting of the,;’s which sets at mosB of thez;’s to 1 and satisfies at leagt— ¢ fraction of the
constraints.

We present the example of vertex cover of a graph with maxirdegreed. This problem is NP-complete
foranyd > 3. Given graphG = (V, E) of degree at most with |V | = n, | E| = m, and a bound, is there
a setC C V which is a vertex cover and’| < B. If there is such a vertex cover, then there is a protocol
by which? can convince) that there is a vertex cover of size at métl + de): P writes down an array
of size at mosB containing the vertex cover. V choose$)(1/¢) edges and sends them7o P returns
pointers to vertices if’ which cover each of the edges. avidails if some edge is not covered.

If C covers less thafl — ¢)m edges) is likely to fail. Otherwise, at mostm additional vertices will
be required to cover the remaining ones. The claim followsesin/d < B < m.

A similar approach can be used for dominating set with a degound and set cover with bounded
subset size, which are also NP-complete when the degreedinality of the subset is at least 3.

4.2 Constraint enforcement protocols

We have seen that designing protocols for proving lower deweems to be much easier than proving up-
per bounds. We, however, show that a prover can convincefevénat a good solution to an optimization
problem satisfies certain types of upper bound constraliféstirst apply our technique to approximations
for t-sparse fractional packing problenasd then show how the technique can be used for other approxi-
mation problems.

FRACTIONAL PACKING PROBLEMS Fractional packing problems are a class of linear progrizxgm
problems defined by [PST95]. We consideparseversion of the problem where we are given. . ., a,, >

0 andbyy, ..., b,y > 0, such that for each at mostt of theb,;’s are nonzero (we refer toas thesparsity

of the problem). LebPT be the solution to the following maximization problemax{>"" ; a;z;} subject

to z; > 0 and them constraints?s € [m], ), b;;z; < c;. Since theb;;’s are sparse, we assume that for
each variable;, there is a listS; of 7 such thab;; > 0. (We assume this for convenience in presenting our
protocols. As long as there is an easy way to find all nonzgrtor any given:, other ways to represent
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the sparse data can be used.) We assume thatsalb;;’s, c;'s, andz;’s can be represented in a word in
memory.

Now, P has a solution of valuerT in hand and wishes to convindéof the existence of a solution
with value> (1 — €)oPT which satisfies all of the constraints. To this end, we gigemstraint enforcement
protocol All our results apply to the case whéhhas a solution of value (not necessarily optimal) and
would like to prove toV that the solution is of value at legdt — €)v.

4.2.1 Constraint enforcement: unweighted version

In order to describe the constraint enforcement protocel begin with the simpler case ahweighted
fractional packing problemsn which all thea,’s andb;;’s arel or 0, and each; is further constrained
to be eitherl or 0. Note thatb,;z; € {0,1}. V must ensure that there are a large numbet,&f that
are set tal, such that they do not violate any of the constrairswrites down the followingconstraint
enforcement structurerhich consists of three parts: (i) An arrdyof lengthn such that the-th entry is
the value ofz;. (ii) For each constraing, a list of thez;’s that are allocated “space” in constrajni.e.,
b;;z; = 1). More specificallyP writesconstraint array<’1, . . ., C,,, whereC} is of lengthc;. For every
z; such that;; > 0 and such that; is set tol in the optimal solution, there is a locatidnsuch that
C;[£] = i. If space is allocated i@'; for eachz; such thab,;z; = 1, then the capacity constraints are not
violated. (iii) For each, pointers to the locations in the constraint arrays in whigcls allocated space, so
that for eache; settol, V can ensure that it is allocated space in each constrdamtwhichb;; > 0. More
specifically, a modification of permutation enforcementssdiP writes an arrayl’ of size at mostk, such
thatT'[¢] = ({(j1, £1), - - -, (Jt, L)) Where(js, £,) € T[i] wheneverz; is present in constrainf, and/, is that
location inC;, such thatC;, [{,] = s.

Figure 1 shows the unweighted constraint enforcement pobtesed for the following problem: Maxi-
mizezy + zo + 23+ 24 SUbjeCttwo 1 %1,2T2,23,24 € {0, 1},01 21+ 20 < 1,0y iz + 23+ 24 <2,
andCs : z; + z3 < 1. The solution setting; = z4 = 1 andz, = z3 = 0 has value.

x [1] T 1] G
| o| T2] p c
X | 0| TI3]
X | 1| T[4]

1] G

Figure 1: The unweighted case.

We say that element; is goodif: (i) z; = 1 (i.e., I(¢) = 1), (i) for all 7 € S, (S; is given as input),
there is a paifj, £) € T'[7] such thatC;[{] = ¢. LetG = {7 | z, is good be the set of good elements.
Testing that is good can be done if1(¢) time.

We do not want the verifier to check the entire structure oneae entire constraint; our gain comes
from the fact that: (i) the constraint enforcement struetemsure¥; € [m], > ;.4 bs;jz; < ¢; and (i) the
value of the solution is at least the number of good elem&egingz; « z; for all « € G andz; «+ 0 for
all otherz, we have:

Lemma 13 (£, ..., %2) is a feasible solution of value at leds¥|.
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Thus the protocol is simply foy and? to run the protocol in Section 3.3 for showing that the sizéhef
setG = {i| 7is good} is at leas{1 — €)OPT, which in turn requires that is able to check that a giveris
good. The total runtime of is O(t/¢).

Theorem 14 There is &t/ €)-approximate lower bounB CP Sfor unweighted fractional packing problems.

4.2.2 Constraint enforcement: weighted version

We now consider the problem in the general form describedeab®/e modify the previous protocol in two
ways: (i) We modify the notion ofjoodso that it is still the case that a solutiép, ..., Z,, to the fractional
packing problem that sets to z; when< is good and) otherwise satisfies all constraints and has value
> e @iZ:- V can test whetheris good inpolylog(n) time. (i) We use the protocols from Section 3.4 so
thatV can guarantee that, a;&; > (1 — €)OPT.

Since the values of thg's and theitb;, multipliers are no longer constrained to be either 1, we need
to modify our method of keeping track of the “space” taken yghch nonzeré;,z; in each constraint. A
first idea would be to write down the name of thh variable inb;;z; consecutive locations in the constraint
arrayCy. However, testing that a variable was allocated enoughesipea constraint array would then take
O(birz;) time. Since the “resources” allocated to each variableiwattonstraint can be very different, we
essentially keep track of the range of space taken by eaidbl@in each constraint. For each constraint
we maintain an array of leng#h where the-th entry records the running total of space taken up by tke fir
¢ variables (we imagine the set to be a physical space ofcg)z¢he arrayC; is [r1, 72,73, .. ., ] Where
T = 2221 by ; - 1 represents the space taken up by the ficdtjects»; — r;_; represents the space taken
up by object (and should bé,;z;), r¢ is assumed to b&, andr,, should be< c;. Note that since thg;,’s
andz;’s are positive, if the-;'s are given correctly, they will form a monotone sequence.

Figure 2 shows the weighted constraint enforcement protseul for the following problem: Maximize
z1 4+ 229 + 323 + 24 SUbjeCttwo P 21,20,23,24 > 0,C1 iz + 20 < 2,0yt 29+ 23+ 24 < 4, and
Cs : z1 + 223 < 2. The solution setting; = 0,2z, = z3 = 1, 24 = 2 has value.

01|11

X0 S, <

S 0/1/2 4| ¢
X31 S3
X 2| s

N 0/0|2|2| ¢

Figure 2: The weighted case.

In order to ensure that each constraint is satisfied, we ndetiration of agoodelement which is strong
enough so that: (i) the sum of all good elements do not vidaieconstraints and (iiy can efficiently
determine whether an element is good (in particuladoes not have to look at many variables in the
constraint).P could try to cheaV by giving a list ofr;’s which is not monotone. However,if, _; < r;, <
ri,—1 < 74, - - - fOrm a monotone increasing subsequence, then it is easy tingeobjects, , ¢5, ... can be
simultaneously placed into the constraint without vialgtthe capacity constraint. Our new definition of
good borrows from the sorting spot-checker in [EKK+98]. Eoe purpose of the following definition, if
1 > m thenr; is assumed to be infinite, andiik 0, r; is assumed to be 0.

Definition 15 (Heavy element) An element; in a list of lengthm is said to beheavyif forall £, 0 < k& <
lgm, r; < r; for atleast 3/4 of thg € [i,7 + 2*] andr; > r; for at least3/4 of thej € [i — 2%, 4].
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The usefulness of the definition comes from the fact that KE9S] it is shown that the heavy elements in
a list form an increasing subsequence. Note that in a mordismall elements are heavy. Also note from
the definition of a heavy element that it is possible to testitbaviness of an arbitrary elemeniCilg n)
time.

We say an objeatis goodif for all j € S;: Letr; < C;[¢], andr;,_; + C;[i — 1], then: (i)r; — r;—1 =
b; jz;, (i) 0 < m_1 < r; < ¢j, and (iii) »; and the preceding element ; are both heavy with respect to
the listry, ..., r,. V can testifi is good inO(t1g n) time.

Note that if both the correspondimgandr;_; are heavy for each good element in a constrapnt; 0
andr; is less than the capacity of the constraint, then the sumeofitiod elements do not violate the
constraint.

Thus,V need only ensure that the set of good elements is big.

Theorem 16 There is a((t/¢) - 1g n)-approximate lower bounB CP Sfor fractional packing problems.

4.2.3 Other applications of constraint enforcement

The constraint enforcement structure can be applied toaawgtimization problems. We give a few exam-
ples to demonstrate the scope of the technique:

MAXIMUM FLOW. A graphG with capacity constraints on the edges and special ngdas given. If P
knows how to construct a flow of sizg it can quickly prove ta/ that a flow of size> (1 — ¢€) f exists by
the following method. To verify that a flow is lega¥, must verify that the solution observes conservation
of flow at each node and capacity constraints at each e@gerites a list?” of path-flows that combine to
make up the flow of siz¢. V picks random path-flows and ensures that they are “good” bgléhg that
the flow is correctly packed into each edge that it follows-d@ing so,V ensures the path-flow satisfies
conservation of flow at each node along the path fedmz. Since each path-flow is of length at mesithe
number of vertices), we have ansparse packing problem. The constraint enforcementtsteiensures
that no more than, ,, capacity is needed to accommodate all of the path flows samedtusly on each edge
(u,v). For relatively small flows, we use the fact that any flow oéggr magnitudg can be decomposed
into f unit size path-flows. The unweighted version of the constranforcement protocol can be used
to give a protocol by which the verifier can determine thaterse enough good unit path flows in time

O(n/e).
Corollary 17 There is an(n/¢))-approximate lower bound PCPS for the maximum flow problem.

The above protocol uses a proof of s@€| f|). For larger flows, it may be desirable to find a protocol that
uses a proof whose size is polynomiakineven at the cost of requiring a slightly less efficient verifivVe
use the result of [EK72] which shows that any flow can be deas®eg into at mosin (wherem is the
number of edges in the graph) path-flows. The weighted vexsfithe constraint enforcement protocol can
be used to give a protocol with runting® (n/¢) Ign).

Corollary 18 There is an((n/¢) lgn)-approximate lower bound PCPS for the maximum flow problem in
which the proof size igoly(n).

The constraint enforcement structure can also be used toastmver bound on the size of a multicommod-
ity flow, in which the runtime oV is O((qn/¢) - g n), whereg is the number of commodities.

BIN PACKING. A set ofn weighted objects, a bin sizB, and ane < 1 are given. If it is possible to
pack the objects intp bins,P can convinceé) thatp + en bins are sufficient? will use the constraint
enforcement structure to assui¢hat at leasf1 — ¢) fraction of the objects can be packed iptbins. The

bound follows by placing the other objects into their ownsbiW's running time isO((1/¢) lgn).
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Corollary 19 There is an(en)-additive approximate upper bound PCPS for the bin packiofpiem.

EXACT COVER BY 3-SETS MATCHING.  Given setX with | X| = 3¢ and a collectiorC' of 3-element
subsets ofX. DoesC contain an exact cover foX, i.e., a subcollectio C C' such that every element of
X occurs in exactly one member &f? If so, therP can prove toV that there exists a partial coveridg
that covers at leadt — ¢ fraction of the elements ok such that no element iX is covered by more than
one set. The proof utilizes the unweighted constraint eefoent structure: For each sgte C there is
a variablez; that is set to 1 ifs; € F and 0 otherwise. For each elementinthere is a constraint which
ensures that it is contained in at most one of the sefs:i;; is 1 if sets, contains element. For each
¢ € F such that = {a1, az, ag}, c should appear i, , C,,, C,,. If the verifier samples the ¢ F and
decides that most are good, then it can conclude that thareaectionF” C F such thatF’| > (1—¢)|F|
and such that ne € X is covered more than once . V's running time isO(1/¢).

Note that this construction works for aky(the runtime ofV has linear dependence#). In particular,
since a matching is a cover Rysets, the protocol can be used to show an approximate lawerbPCPS
on the size of a matching in a graph.

Corollary 20 There is ank/¢)-approximate lower bound PCPS for the exact covekisgts problem.

SHOP SCHEDULING.  In theopen shop schedulingroblem, a set op products ;,;m work teams, and a
deadlineD are given. Each product consistenftasks, each designated to be processed by a different work
team; at some point during production. Taglof productz; takest,; time units to complete. A product
can be with at most one team, and a team can be working on atamegiroduct at any given time. If it

is possible to complete ath products before deadlinB, P can convince & ((m/¢) lg p)-time V that at
least(1 — €)m products can be completed before the deadline: The praiseslthe constraint enforcement
structure to ensure that products are with at most one tedrthahteams are working on at most one product
at any given time. Variants of the above problem, such as flay sind job shop scheduling can be handled
in a similar manner.

SUBSET sum  Givenzy, ..., z, and abound, P can convince a®((1/¢) lgn)-timeV that there exists
a setS such thatB(1 —€) < >, g z; < B. Asimilar result holds for partition.

4.3 Matching problems

In this section, we consider problems based on matching. fdtegiiven an alternate protocol for matching
which does not use constraint enforcement structure amdatwesider the problem of minimum maximal
matching.

MATCHING.  The following protocol is used to show a lower bound on tlze sif a matching® writes
a list L of edges in the matching? convincesy that|L N E| > (1 — ¢/2)k. Then,V verifies that< €/2
fraction of edges involve vertices that are matched twicedd@'this,V chooses a random edgé&] = (u, v)
from L, then chooses a random vertex frgm v} and sends it t&. P responds with the locationin L.
V accepts it = j. Thus

Corollary 21 There is a(1/¢)-approximate lower bounB CP Sprotocol for matching.

MINIMUM MAXIMAL MATCHING .  Given a graptG = (V, E), |V| = n, of degree at mosf doesG
contain a maximal matching of size at m@s? This problem is NP-complete ¢ > 3. If there is such

a matching, then there is a protocol by whifhcan convince a®(1/¢) time V that there is a maximal
matching of size at modt + ne/2: P writes down the edges of a matching into an array of 8izeTo
check that this matching is maxima¥, randomly samples nodes and makes sure that a sampled node, if
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unmatched, does not have any unmatched neighbors. If theerumh unmatched nodes with unmatched
neighbors is more thadm, V is likely to fail. The bound follows since there exists a pagrof unmatched
nodes such that one needs to add at most one edge for every pair

Corollary 22 There is an(en/2)-additive approximate upper bouCP Sprotocol for minimum maximal
matching.

5 IPS for set problems

We consider simple set problems of set intersection andrdenwand show protocols by which can
convinceV of bounds on the result of these set operations. One agplicat these protocols is to proving
bounds on the sizes of unions and intersections of datahasees.

TwO SET INTERSECTION  Consider the simpler version of the set intersection oblGiven setsA
and B of cardinalityn, and parameters, is |A N B| approximatelypn? Our interactive protocol will be
given as input the set$ and B of cardinalityn, and parametels p, and will determine whethdp — ¢)n <
|[ANB| < (p+ e)n.

Without the aid of the prover, the task requifes,/n) time (cf. [EKK+98]). The lower bound protocol
of [GS86] can be adapted to this setting to get multipli@gigproximations of a lower bound, but we know
of no such way to get a multiplicative approximation for thgpar bound using the methods of [For89],
since they require a fast method of generating a random elkeofiel N B. Our techniques can be viewed
as special cases of their techniques, where the identigtibmis used in place of a hash function. The
protocol forV is as follows:

P sends € to V
Repeat the following m tines:
| ower bound protocol
V picks C €gr{A,B}
V picks zeg C and sends z to P
P returns C' e {A,B} and a pointer to
zin '
If the pointer is valid and C ="',
V sets k=k+1

upper bound pr ot ocol

V picks zeg A and sends z to P

if possible P returns a pointer to
zin B

If the pointer is valid,
YV sets {={+1

V sets y=k/m and é6=1{/m
Pass if 1—y>p/2—¢ and é6<p+e

For the lower bound, first observe that if the intersectidarige,P cannot but err on a lot of input elements.
Givenz € AN B, the probability tha® agrees withV is1/2. If z ¢ AN B, sinceP is required to return
a valid pointer, at best it agrees withon all occasions. So, the probability tiatagrees with can be at

most
1]AN B| +n—|AﬂB| 1 |AN B

2 n n 2n
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V, therefore, estimates a lower bound on this probabilitylamte an upper bound ¢pA N B|/(2n) viay.
By Chernoff bounds, we can show that this estimate can be wonighin an additive factor of by V with
probability of error at mosP (exp(—m?)).

For the upper bound? can return a valid pointer only with probability of at mogdtn B|/n, which can
be upper bounded to within a factoroby V via sampling. By Chernoff bounds, the probability of err®r i
at mostO (exp(—m?)).

Theorem 23 Two set intersection has aradditive approximate upper and lower bound IPS.

In general, ifA and B are sets of different, but known sizes, using a variant obth@ve protocol, we can
obtain upper and lower bounds @A N B|/(|A| + |B|). Also, note that using inclusion-exclusion, these
protocols can be used to estimate the size of two set uniomts w

GENERAL SET INTERSECTION  This also gives interactive protocols for checking, given. . ., A if

| Nk, A;| is large: V picksi €g [k] and thenz €g A; and sendg to the prover.P returnsk pointers
to location ofz in each of4;’s. V ensures that these pointers are valid. The analysis isasitoilthat of
Theorem 23.

6 Interactive spot-checking

We have already mentioned two examples—element distisstaed set intersection—in which ISCs are
provably faster than spot-checkers. A third example is fpsaperty testingof the bipartiteness of graphs:
Given a grapl@, represented by an adjacency matrix, can at mo'sedges be removed to makebipartite?
A poly(1/e) time algorithm was given in [GGR98] which passes biparitend failsG which do not
satisfy the above requirement (behavior on other graphstispecified). If the graph is bounded degree and
represented in the adjacency list representation, thecadpogstion is trivially true. However, the question
of whether at mostn edges can be removed to makebipartite is considered by [GR97, GR98]. An
O(+/n) time algorithm was given in [GR98] which passes biparfitand failsG which do not satisfy the
requirement. It is known th&®(,/») time is required to solve this problem [GR97]. On the otherdhat
is easy to see that there is an ISC with runtipaéy (1/¢) for both representations by requirifyto write
down the color of each vertex.

Finally, consider the problem of spot-checking assodigtivGiven ann x n operation table fop, is
o an associative operation? We would like to pass i$ associative and fail if at leastfraction of the
entries need to be changed in order to tinto an associative operation. The best known spot-chdoker
associativity runs i) (n!-) time [EKK+98]. One of the main bottlenecks in that test igt tha need to look
at the operation table and ensure that all columns and a syes mostly distinct. For each column/row,
this require€2(,/n) time without the aid of the prover. Using the results of S\th, this can be done in
constant time and thus one can give an ISC for associativityse runtime i€ (n).
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