Spot-Checkers

Funda Ergiih Sampath Kanndn S Ravi Kumat
Ronitt Rubinfeld Mahesh Viswanathdn

November 11, 1999

Abstract

On Labor Day weekend, the highway patrol sets up spot-chaickendom points on the freeways
with the intention of deterring a large fraction of motasi§tom driving incorrectly. We explore a very
similar idea in the context of program checking to ascestaih minimal overhead that a program output
is reasonablycorrect. Our model adpot-checkingequires that the spot-checker must run asymptotically
much faster than the combined length of the input and outdVd.then show that the spot-checking
model can be applied to problems in a wide range of areasidirad problems regarding graphs, sets,
and algebra. In particular, we present spot-checkers fitingo convex hull, element distinctness, set
containment, set equality, total orders, and correctnégsonp and field operations. All of our spot-
checkers are very simple to state and rely on testing thainghe and/or output have certain simple
properties that depend on very few bits. Our results alse gieperty tests as defined by [RS96, Rub94,
GGR93].

1 Introduction

Ensuring the correctness of computer programs is an impoy& difficult task. For testing methods that
work by querying the programs, there is a tradeoff betweertithe spent for testing and the kind of guar-
antee obtained from the process. Program result checkif@3Band self-testing/correcting programs
[BLR93, Lip91] make runtime checks to certify that the pramgris giving the right answer. Though ef-
ficient, these methods often add small multiplicative fectim the runtime of the programs. Efforts to
minimize the overhead due to program checking have beenvgoatsuccessful [BW94a, Rub94, BGR96]
for linear functions.

Can the overhead be minimized further by settling for a weafket nontrivial, guarantee on the cor-
rectness of the program’s output? For example, it could bg wseful to know that the program’s output is
reasonably correct (say, close in Hamming distance to theaooutput). Alternatively, for programs that
verify whether an input has a particular property, it may beful to know whether the input is at least close
to some input which has the property.

In this paper, we introduce the model sifot-checkingwhich performs only a small amount (sublin-
ear) of additional work in order to check the program’s arrsvie this context, three seemingly different

*This work was supported by ONR N00014-97-1-0505, MURI. Taeosid author is also supported by NSF Grant CCR96-
19910. The third author is also supported by DARPA/AF F30882L-0047. The fourth author is also supported by the NSF
Career grant CCR-9624552 and Alfred P. Sloan Research Awaelfifth author is also supported by ARO DAAH04-95-1-0092.

tEmail: {f ergun@aul , kannan@entral, maheshv@radi ent}.cis. upenn. edu. Department of Computer
and Information Science, University of Pennsylvania, &felphia, PA 19104.

TEmail:r avi @l maden. i bm com IBM Almaden Research Center, San Jose, CA 95120.

$Email:r oni tt @s. cornel | . edu. Department of Computer Science, Cornell University,dtha\N'Y 14853.

prototypical scenarios arise. However, each is capturesubynodel. In the following, lef be a function
purportedly computed by prografthat is being spot-checked, amde an input tof .

e Functions with small outputlf the output size of the program is smaller than the inpué seay
|f(z)| = o(|z]) (as is the case for example for decision problems), the cpetker may read the
whole output and only a small part of the input.

e Functions with large outputlf the output size of the program is much bigger than the irgme, say
|z| = o(|f(z)]) (for example, on input a domaif?, outputting the table of a binary operation over
D x D), the spot-checker may read the whole input but only a snaatlqf the output.

¢ Functions for which the input and output are comparabliethe output size and the input size are
about the same order of magnitude, galy= ©(|f(z)|) (for example, sorting), the spot-checker may
only read part of the input and part of the output.

One naive way to define a weaker checker is to ask that whetiey@rogram outputs an incorrect answer,
the checker should detect the error with some probabilityis Tefinition is disconcerting because it does
not preclude the case when the output of the program is veopgyryet is passed by the checker most of
the time. In contrast, our spot-checkers satisfy a venyngtimondition: if the output of the program is far
from being correct, our spot-checkers outpAiL with high probability. More formally:

Definition 1 Let A(-,-) be a distance function. We say thatis an e-spot-checkeffor f with distance
function A if

1. Given any inputz and programP (purporting to computef), ande, C outputs with probability at
least 3/4 (over the internal coin tosses®fPASS if A((z, P(z)), (z, f(z))) = 0 andFAIL if for all

inputsy, A((z, P(2)), (y, f())) > €
2. The runtime of is o(|z| + |f(z)|)

The spot-checker can be repeaéedg 1/4) times to get confidence— §. Thus, the dependence émeed
never be more thaf?(1g1/6). The choice of the distance functidnis problem specific, and determines the
ability to spot-check. For example, for programs with snaaifput, one might choose a distance function
for which the distance is infinite whenevB(z) # f(y), whereas for programs with large output it may be
natural to choose a distance function for which the distas@efinite whenevet: # y. The condition on
the runtime of the spot-checker enforces the “little-ohdperty of [BK95], i.e., as long ag depends on all
bits of the input, the condition on the runtime of the spotater forces the spot-checker to run faster than
any correct algorithm fogf, which in turn forces the spot-checker to be different thay agorithm forf.

OUR RESULTS. We show that the spot-checking model can be applied to @noblin a wide range
of areas, including problems regarding graphs, computatigeometry, sets, and algebra. We present
spot-checkers for sorting, convex hull, element distiasf) set containment, set equality, total orders, and
group and field operations. All of our spot-checker algonishare very simple to state and rely on testing
that the input and/or output have certain simple propettias depend on very few bits; the non-triviality
lies in the choice of the distribution underlying the tesbn of our spot-checkers run much faster than
o(|z| + | f(z)|). All of our spot-checkers have the additional property thtte output is incorrect even on
one bit, the spot-checker will detect this with a small ptuilig. In order to construct these spot-checkers,
we develop several new tools, which we hope will prove uskeliutonstructing spot-checkers for a number
of other problems.

Our sorting spot-checker runs @(lgn) time to check the correctness of the output produced by a
sorting algorithm on an input consisting afnumbers: in particular, it checks that the edit distance of

2

the output from the correct sorted list is small (at mast). Very recently, the work of [EKR99] has
used the techniques developed here for spot-checkingngantiorder to construct efficient probabilistically
checkable proofs for a number of optimization problems.

The convex hull spot-checker, given a sequendesdints with the claim that they form the convex hull
of the input set of. points, checks IO (lg k) time whether this sequenced®se(in edit distance) to the
actual convex hull of the input set. We also show that theas{3(1) spot-checker to check a program that
determines whether a given relation is close to a total order

One of the techniques that we developed for testing groupatipas allows us to efficiently test that an
operation is associative. Recently in a surprising andagiegesult, [RaS96] show how to test that operation
o over domainD is associative ifO(|D|?) steps, rather than the straightforwadd| D|?). They also show
thatQ(| D|?) steps are necessary, even for cancellative operationsntrast, we show how to test thats
close(equal on most inputs) to some cancellative associativeatipa o’ over domainD in O(|D|) step3.

We also show how to modify the test to accommodate operatimaisare not known to be cancellative,
in which case the running time increasesQ@ D|*/2). Though our test yields a weaker conclusion, we
also give a self-corrector for the operatiof) i.e., a method of computing’ correctly forall inputs in
constant time. Another motivation for studying this problés its application to program checking, self-
testing, and self-correcting [BK95, BLR93, Lip91]. Usirechniques from [Rub94], our method yields a
reasonably efficient self-tester and self-corrector (@neall domains) for all functions that are solutions to
the associative functional equation

F[F[z,y],2] = Flz, Fly, 2]]

[Acz66].

We next investigate operations that are both associatidecammutative. We show that one can test
whether an operation is close to an associative, commetativd cancellative group operatiohin O(|D|)
time. This is slightly more efficient than our associativiéster. In contrast, we show that quadratic time
is necessary and sufficient to test that a given operatioarisatlative, associative, and commutative. As
for the associative case, we then give a sub-quadraticitdgofor the case when is not known to be
cancellative. Again, we show how to computein constant time, given access 4o We show that our
simple test can be used to quickly check the validity of talafeabelian groups and fields. Our results can
be summarized in the table below.

| Input promise| Output guarantee | Running Time| Reference]|
None Associative, exact O(|D|?) | [RaS96]
Cancellative | Associative, close O(|D]) | this paper
None Associative, cancellative, close O(|D|?/?) | this paper
Cancellative | Associative, commutative, close O(|D]) | this paper
None Associative, cancellative, commutative, clase O(|D|*/?) | this paper
None Associative, commutative, exact Q(|D?) | this paper

The solutions of the functional equation
F[F[z,y],2] = F[z, F[z,y]]

are the set of associative and commutative operationsgcZBur results can be used in testing programs
purporting to compute functions which are solutions to saiébnctional equation.

RELATIONSHIP TO PROPERTY TESTING. It is often useful to distinguish whether a given object has
certain property or is very far from having that propertyr Egample, one might want to test if a function

The notatior@(n) suppresses polylogarithmic factorsrof

3

is linear in such a way that linear functions pass the testewfinctions that are not close to any linear
function fail. A second example is one might want to deteemifhether a graph is bipartite or not close to
any bipartite graph (where closeness is defined in termseafitimber of locations in the adjacency matrix
that differ). Models of property testing were defined by [BE&nd [GGR98] (see also [Rub94]) in order to
formalize this notion.

For the purposes of this exposition, we give a simplified dkgdim of property testing that captures the
common features of the definitions given by [RS96, Rub94, G&RGiven a domairf{ and a distribution
D over H, a functiong is e-closeto a functionk overD if Pryeplg(z) # h(z)] < e. A is aproperty tester
for a class of functiong (F is the set of functions which have the property) if for anyegiv and function
g to which A has oracle access, with high probability (over the coindsss.A) A outputsPASS if g € F
andFAIL if there is noh € F such thatf andh aree-close. Note that this model applies to graph properties
by consideringy andh to be descriptions of the adjacency matrix of the graph,they are functions from
pairs of vertices(u,v) to {0,1} such thatg(u,v) = 1 exactly when there is an edge betweaemandv
[GGR98]. In any case, the notion of closeness can be caphyred‘Hamming-like” distance function as
in the definition of property testers. In the case &t a uniform distribution, the distance function would
correspond to the fraction of the domain on whicandh differ.

Property testing has had several applications. Many pnogesult checkers [BK95] have used forms
of property testing to ensure that the program’s outpusasi certain properties characterizing the func-
tion that the program is supposed to compute (cf., [BLRI3SHEE KS96, AHK95, ABC93]). Linear
and low-degree polynomial property testers have been wsednstruct probabilistically checkable proof
systems (PCPS) (cf., [BLR93, BFL91, FGL+96, BFLS90, RS9698, ALM+98]). As we mentioned ear-
lier, techniques developed in this paper for testing whethsequence has (the property of containing) a
long increasing subsequence were used to construct eff@RS for a number of optimization problems
[EKR99]. Property testers for Max-CUT have been used totcodisconstant time approximation schemes
for Max-CUT in dense graphs [GGR98].

Our focus on the checking of program results motivates a itiefirof spot-checkers that is natural for
testing input/output relations for a wide range of probleAl§previous property testers used a “Hamming-
like” distance function. Our general definition of a distarienction allows us to construct spot-checkers for
set and list problems such as sorting and element distisstnenere the Hamming distance is not useful.

All property testers in [GGR98] can be turned into spot-élees for the functionf such thatf(z) = 1
exactly whenz has the property. Define a distance functidrwhich forcesP(z) = f(z) = 1 (by taking
the valuecc if otherwise) and such thak(({z, 1), (y, 1)) is equal to the fraction of entries whereandy
differ. Then the property tester gives a spot-checker wigtadce functiomA: both pass exactly whenis
close to ay which has the property.

Conversely spot-checkers can also be viewed as propetgyrdaesith more general distance functions:
Given a distance functiof\, say that(z, z') is e-closeto (y, f(y)) if A({z,z'), (y, f(y))) < e. Alterna-
tively, define the propertyy = {(z, f(z)) | inputsz} characterizing the correct input-output pairs of the
function f. Then spot-checkers with distance functifiralso test if the input-output pafr, P(x)) is close
to a member ofF.

One must, however, be careful in choosing the distance itmctFor instance, consider a program
which decides whether an input graph is bipartite or not.r{egeaph is close to a graph that is not bipartite
(just add a triangle), so property testing for nonbipamgiss is trivial. Thus, unless the distance function
satisfies a property such ag(z,y), (z,v')) is greater tharm wheny # 4/, the spot-checker will have an

2The definition of property testing given by [GGR98] is moragel. For example, it allows one to separately consider two
different models of the tester’s accessftoT he first case is when the tester may make querigsao any input. The second case
is when the tester cannot make querieg taut is given a random sequence(ef g(x)) pairs wherex is chosen according tP. In
our setting, the former is the natural model.

uninteresting behavior.

2 Set and List Problems

2.1 Sorting

Given an input to and output from a sorting program, we show toodetermine whether the output of the
program is close in edit-distance to the correct sortinchefihput, where the edit-distangéu, v) is the
number of insertions and deletions required to changegsirinto v. The distance function that we use in
defining our spot-checker is as follows: for ally lists of elementsA({z, P(x)), (y, f(y))) is infinite if
eitherz # y or |P(z)| # |f(y)|; otherwise it iso(P(z), f(y))/|P(z)|. Since sorting has the property that
for all z, |z| = |f(x)|, we assume that the prografhsatisfiesvz, |z| = |P(x)|. Itis straightforward to
extend our techniques to obtain similar results when thi®ighe case.

We assume that the elements are drawn from an ordered sdtiarmmtdering relation can evaluated in
constant time. We also assume that all the elements in ¢aréiglistinct. (This assumption is not necessary
for testing for the existence of a long increasing subsecgign

In Section 2.1.3, we show that the running time of our sorsipgt-checker is tight.

2.1.1 The Test

Our spot-checker first checks if there is a long increasingsequence inP(z) (Theorem 2). It then
checks that the set8(z) andz have a large overlap (Lemma 8). F(z) andz have an overlap of size
at least(1 — ¢)n, wheren = |z|, and P(z) has an increasing subsequence of length at ([@aste)n, then
A((z, P(x)), (y, f(y))) < 2e. Hence, this spot-checker i2&aspot-checker.

The spot-checker is given an input artdyof lengthn whose elements are accessible in constant time.
The algorithm presented in the figure checkd tfias a long increasing subsequence by picking random pairs
of indices: < j and checking that[i] < A[j]. An obvious way of picking andj is to pick: uniformly
and then pickj to be: + 1. Another way is to pick andj uniformly, making sure that < j. However, one
can find sequences that pass these tests, even though theyyabmtain long increasing subsequences. The
choice of distribution on the paits; is crucial to the correctness of the checker.

Procedure Sort - Check(A4,e)
repeat O(1/e) tines
choose i €g [1,n]
for k< 0...[lgi] do
repeat O(1) times
choose j €g [1,2*]
if (Afi—j]> A[i]) thenreturn FAIL
for k<< 0...[lg(n—1)] do
repeat O(1) tines
choose j €x [1,2F]
if (A[i] > Ali +j]) thenreturn FAIL
return PASS

Theorem 2 ProcedureSor t - Check (A4, €) runs inO((1/¢) 1gn) time, and satisfies:

e If Ais sorted,Sort - Check(4,e) = PASS.

¢ If A does not have an increasing subsequence of length at(least)n, then with probability at least
3/4, Sor t - Check(A,e) = FAIL.

To prove this theorem we need some basic definitions and lsmma

Definition 3 The graphinducedby an array A, of integers having: elements, is the directed grajgh,,
whereV (G 4) = {v1,...,v,} and E(G) = {(vi,v;) | i < j and A[i] < A[j]}.

We now make some trivial observations about such graphs.

Observation 4 The graphG 4 induced by an arrayd = {v1,vs,...,v,} is transitive, i.e., if(u,v) €
E(G4) and(v,w) € E(G4) then{u,w) € E(G4).

We shall use the following notation to define neighborhodds wertex in some interval.

NOTATION. Fort,t',: € Z, let I‘a t,)(z') denote the set of verticeg such that < j < ¢’ that have an

incoming edge fromy;. Similarly, IetF(‘t,t,)(i) denote the set of verticeg such that < j < ¢’ that have an
outgoing edge t;.

It is useful to define the notion of leeavyvertex in such a graph to be one whose in-degree and out-
degree, in everg” interval around it, is a significant fraction of the maximuwspible in-degree and out-
degree, in that interval.

Definition 5 A vertexw; in the graphG 4 is said to beheavyif for all k£, 0 < k < lg3, | LA (i) | > n2*
and for allk, 0 < k < lg(n — 1), | Fg,z’+2k)(i) | > 72k, wheren = 3/4.

Theorem 6 A graphG 4 induced by an array, that has(1 — ¢)n heavy vertices, has a path of length at
least(1 — ¢)n.

The theorem follows as a trivial consequence of the follgwin
Lemma 7 If v; andw; (i < j) are heavy vertices in the gragii4, then(v;,v;) € E(G 4).

Proof. SinceG 4 is transitive, in order to prove the above lemma, all we neexhbw is that between any
two heavy vertices, there is a vertexsuch that(v;, vy) € E(G4) and(vg,v;) € E(Ga).

Let m be such thae™ < (j — i), but2(™*+1) > (j —4). Letl = (j — i) — 2™. LetI be the closed
interval[j — 2™, 4+ 2] with |I| = (i +2™) — (j —2™) + 1 = 2™ — [+ 1. Sincew; is a heavy vertex, the
number of vertices i that have an edge from is at least)2™ — ((j — 2™) — i) = n2™ — [. Similarly, the
number of vertices id, that are adjacent to; is at least)2™ — (j — (i + 2™)) =n2™ —[.

Now, we use the pigeonhole principle to show that there isrgexen I that has an incoming edge
from ¢ and an outgoing edge th By transitivity that there must be an edge frarto j. This is true if
(n2™ — 1) + (n2™ — 1) > |I| = 2™ — [+ 1. Sincen = 3/4, this condition holds if < 2™~1.

Now consider the case whén> 2™1. In this case we can consider the intervals of €#e! to the
right of ; and to the left off and apply the same argument based on the pigeonhole penoipbmplete the
proof. |

Proof. [of Theorem 2] Clearly if the checker returR&lIL, then the array is not sorted.

We will now show that if the induced graghi4 does not have at leaét — ¢)n heavy vertices then the
checker return&AIL with probability 1 — §. Assume tha& 4 has greater thain light vertices. The checker
can fail to detect this if either of the following two casexors: (i) the checker only picks heavy vertices,

6

or (ii) the checker fails to detect that a picked vertex igigA simple application of Chernoff bound shows
that the probability of (i) is at most/2.

By the definition of a light vertex, say;, there is a such thaﬂl‘z; Z‘JFQ,C)(z')\ (or \I‘&iﬂk)(z‘)p is less
than (3/4)2%. The checker looks at every neighborhood; the probabitigt the checker fails to detect a
missing edge when it looks at tfkeneighborhood (alb; such that < j < i & 2¥) can be shown to be at

mostd /2 by an application of Chernoff’s bound. Thus the probabitifyii) is at mostd /2. O

In order to complete the spot-checker for sorting, we givesthiod of determining whether two listsand
B (of sizen) have a large intersection, wheseis presumed to be sorted.

Lemma 8 Given listsA, B of sizen, whereA is presumed to be sorted and distinct. There is a procedure
that runs inO(lg n) time such that i is sorted andA N B| = n, it outputsPASS with high probability,
and if|[A N B| < en for a suitable constar, it outputsFAIL with high probability.

REMARK. The algorithm may also falil if it detects thdtis not sorted or is not able to find an element of
Bin A.

Proof. [of Lemma 8] Supposél is sorted. Then, one can randomly pick B and check ifb € A using
binary search. If binary search fails to fihdeither becausé ¢ A or A is wrongly sorted), the test outputs
FAIL. Each test take®(lgn) time, and constant number of tests are sufficient to makeahelusion. 0O

2.1.2 An Alternate Test

We give an alternate test that is slightly simpler. We begia$suming that the elementsAnare distinct.

Procedure Sort-Check-11 (A¢)

repeat O(1/e) times
choosei €g [1,n]
performbinary search as if to determ ne whether z; is in A
if not found return FAIL

return PASS

We prove the following theorem:

Theorem 9 ProcedureSor t - Check- 11 (4,¢) runs inO((1/€) 1gn) time, and satisfies the same condi-
tions as Theorem 2

Proof. Say thati € [n] is goodif the binary search fox; is successful. Clearly, if at leastfraction of
1'S is not good, the test fails with high probability. Now, weosv that the set of gooils form an increasing
subsequence: Given< j, both good, at some point the binary searchafpmust diverge from the binary
search forr;. At this point, it must be becauss is less than the pivot element amglis greater than it, so
T; < Zj. a

Itis easy to modify the above spot-checker to the case wheeeléments are not distinct by treating element
x; aS<£L‘Z', ’L)

2.1.3 A Lower Bound for Spot-Checking Sorting

We have shown in the two preceding sections thdi n) time is sufficient for our checkers to spot-check
sorting on a list of sizex. We now show that for comparison-based spot-checkersis also a lower
bound. We do this by showing that any comparison-baseddptker for sorting running in(lgn) time
will either fail a completely sorted sequence or pass a seguéhat contains no increasing subsequence
of length©(n), thus violating the requirements in its definition. In otherds, for any comparison-based
spot-checker (A, €) with distance parameterwhich runs ino(lgn) time, there exists a sequendé of
lengthn such that either iA* is completely sorted and the checker fadl$ with high probability, or ii)
A((A*, P(A*)), (B, f(B))) > e for all sequence® of lengthn and P will pass the sequence with high
probability?.

We describe sets of input sequences that present a probtesndb spot-checkers. We will call these
sequence8-layer-saw-tooth inputs.

We definek-layer-saw-tooth inputskflst’s) inductively. For the base case we defing(lst) to be the
set of increasing sequencesZii' (sequences of length; of integers). Ther2-Ists are comprised of a
sequence of-Ists, such that every element of tiik 1-Ist is smaller than every element of the- 1st 1-Ist.
More generallyk-Ists takek integer argumentz1, zo, ..., z;) and are denoted by |dtz1, 2, . .., zk).
Ity (z1, z2, - .., xk) represents the set of sequenceZi®2-*+ which are comprised af;, blocks of se-
quences from Igt_;(x1,z2,...,2x—1). Moreover, ifk is odd, then the largest integer in tih block is
less than the smallest integer in tfiet- 1)-st block forl < i < zi. If k is even, then the smallest integer in
thei-th block is greater than the largest integer in the- 1)-st block forl < i < xy.

An example Is§(3, 3, 2) is:

e Isty(3,3)
789 456123 16171813 14151011 12
N
e Ist;(3)

In Figure 1 we present a 3-layer saw-tooth as a graph. Notetikdongest increasing subsequence in
Ists (4, 7, k) is of lengthik and can be constructed by choosing ong(i$tfrom each Ist(, 7).

We now show thab(lgn) comparisons are not enough to spot-check sorting using amparison-
based checker (including that presented in the previoumsgc

Lemma 10 A checker of the kind described above must eifdl. a completely sorted sequenceRASS
a sequence that contains no increasing sequence of léhgth

Proof. Suppose, for contradiction, that there is a checker thas forf(n) = O(lgn/a(n)) time
wherea(n) is an unbounded, increasing functionrofAssume the checker generat@§f (n)) index pairs
(a1,b1), ... (ak,bx), where they; < b; for 1 <1 < k and returnd?ASS if and only if, for all/, the value at
positiong; is less than the value at positiép(otherwise, one can construct a completely sorted sequence
which the checker fails).

We maintain an array consisting fn buckets. For eacfu;, a;) pair generated by the checker, we put
this pair in the bucket whose index|ig(b; — a;) . It follows that there is a sequencei(n) buckets (for
somec < 1) such that the probability (over all possible runs of theokleg) that one of the pairs falls in one
of these buckets is at mostLet theseca(n) buckets range from to ¢. In other wordsg = p + ca(n) and
there are very few pair:, b) such thab — a is betweer2? and29.

Our analysis uses the structure of 3-Ist inputs, specifichlit if the checker compares pairs in different
Isty blocks or the same Isblock, it will not detect an error. However, it will detect arror if it compares
pairs in different Ist blocks but the same Isblocks.

3for simplicity, assume that the paramatés hardwired intaP and £, in effect making thenP. and f..

8

3-layer sawtooth

value

1-layer sawtooth

sequence

Figure 1: 3-layer saw-tooth: ani$8, 3, 3) sequence.

Assume that the checker generafesh) pairs such that is chosen uniformly. Consider an input from
Ists (i, 4, k) with i = 2P+4 andj = 2¢()—4 for some constard, andk = n/(ij). If the checker generates
an(a, b) pair such thab —a > ij, thena andb are in different Ist blocks. Hence, the checker will not detect
that the input is not sorted. If the checker generategzab) pair such thab — a < i/2¢, and ifa is in the
first (1 — 1/2¢) fraction of the Ist-block, thena andb will be in the same Istblock. In this case, checker
will not detect an error. If: is in the lastl/2¢ fraction of the Ist-block, then the checker may or may not
detect that the input is not sorted depending on whétiem the same Istblock or not. However, the latter
happens with probability at mosf2¢. Finally, if the checker compares elements coming fronedt Ist
blocks but within the same Isblock, it will detect that the input is not sorted. Howevée thoice of, j, k
is such that this probability is at most Thus, even though this input has no increasing sequenengti
more tham/(24(«(")), the probability that the checker will retuRAIL is less than a constant.

If a is not chosen uniformly, one can consider not only thgdstescribed, but also concatenations of
an increasing sequence of length uniformly chosen ffdm} to an Isg structure. There will still be no
increasing sequence of length more thgii2(¢(™)), anda will land in the first1 — 1/2¢ fraction of the
Ist; -block with probability at least — 1/2¢. O

2.2 Convex Hull

We assume that prograi, given a set ofi points on the Euclidean plane, returns a sequépger:, . ..,)
of k + 1 pointers £ < n) to the points in the input. The claim @t is that there exists a convex polygon
whose vertices arérg, z1,. .., k), if read in counterclockwise order (convexity), and all bé t: input
points lie on or within this polygon (hullness).

Checking convex hulls has been investigated before in tiéexb of the Leda software package by
Mehlhornet. al. [MNS*98]. Their checkers work for convex polyhedra of any dimensjreater than
two. Since they are checkers in the traditional sense, timyagafinding any discrepancy from the correct
answer and therefore have higher running times (which madsghbend on the dimension and therefore not
necessarily comparable to ours, but they are at least lindhe sizen of the input set). In addition, they
conclude that while convexity is efficiently checkable, dking whether all the points lie in the convex

9

polygon (the hullness property) is hard. This is due to theeasity of checking every point against many
facets.

Let f be the function that gives the correct convex hull of a setadfifs. The spot-checker for convex
hull uses the following distance function: L&t Y be sets of points on the plane. Defh& X, P(X)), (Y, f(Y)))
to beco if Y # P(X) (i.e., f(Y) is the convex hull of the set of points returned thyg program) and
max{dcon, dhun} Otherwise, wherel.,, is the minimum fraction of points iX whose removal makes
P(X) the convex curvef(Y'), anddyyy is the fraction of points inX that are outsidg (Y). We prove the
following theorem

Theorem 11 Givenn points in the plane, there is aftspot-checker that runs i (lgn) time for spot-
checking convex hull.

We will develop the spot-checker in two phases; one will &hbat the output is close to convex, and the
next will make sure that it is close to a hull.

2.2.1 Spot-Checking Convexity

We show how to check i®(lg k) time whether a sequence lof 1 nodes can be turned into a convex poly-
gon by deleting at most& of the nodes. Le€H be a sequence of edges where eglge (z;, ;11 mod k+1)-
We may also construct new edges, eeg= (zx, x;) between pairs of output nodes.

All edge$ make an angle in the intervill, 2mr) with the z-axis. Without loss of generality, the axes are
so that/eg = 0.

We now define a relation on the edges of a polygon which is ljloséated to its convexity. It will be
used to replace the usuat* of sorting.

Definition 12 For 0 < 4,5, < k, e; Re; iff (i) ¢ < j and (i) eitherz;;1 = z; and0 < Ze; — Ze; < wor
0< /lej— L(zi1,2;) < mand0 < /(ziy1,z5) — Le; < . In addition,ex Reg if Zey > 7.

The realtion R is not transitive. However, observe thaejfR e; andz;1 # z; thene; R (z;41,2;) and
(Tit1,24) Rej.

A quick observation shows that the sequence of edges of &k@olygon forms an increasing sequence
with respect toR . We now proceed to show that a sequence of edges on the placteigincreasing with
respect toR corresponds to a convex polygon.

Lemma 13 Let S = (fo,-.-, f;) be a sequence of edges such that the head of gdgeconnected to the
tail of fo and f; R fi+1 moa 1+1 for all 0 <4 <. Construct polygor” by connecting, for all edgef in S,
the head off; to the tail of f;1 if they are not already connected. Thé¢i),C is not self-intersecting(ii) C
is convex.

Proof. (i) ConsiderC' as a sequence of edges starting wittand ending witre,,. Due to the definition

of R, for any edge: ande’ that immediately follows: in C, e R €/, therefore the angles of the edge<(in
are increasing. Assume now th@thas multiple (say two) loops. Add nodego C' where it intersects itself.
This results in the division of the edges that intersect into separate edges each (Figure 2). Of the two
loops joined atz, remove the one that does not contaj to obtainC’. C’ is a closed curve where the
angles of the edges are in increasing order. Now look at edigesld’ incident onz (assumel precedes

d in C"). We could have three situations: (&' < /d, (b) /d' — /d > =, or ()0 < /d' — /d < .

“Since they are directed, it might be helpful to think of thesivactors.
There is an implicit assumption here thatloes not lie oreo, but the argument works for any labeling of edges and shjftin
the coordinate axes accordingly.

10

(a) is not possible since the angles are in increasing oAlEume (b) is true. Since the anglesGhform

an increasing sequence, there is an intefyal /d') of > = radians such that no edge ©f has an angle
within this interval. This implies the existence of a diieatsuch that any progress made in this direction by
an edge is never compensated for, contradicting the clessdsfC’. If (c) holds, with a similar argument
to (b), the closedness of the second loop (that we deletet)lated.

(ii) C is a simple polygon where the angles of the edges are in siagarder. As a result of this,
the increase of angle from one edge to the next is always undeee (i) for how the closedness Gfis
violated if itis7 or more.) This means that all the interior angles of the pmtyare less than, thus it must
be convex.

O

o/°‘ox\‘ /.éo‘d/.\‘
. ¢ STe
\\'. /./ K @

{ \ \\\'\. .
. :

. \\H/,

Figure 2: Looping closed curves.

THE CONVEXITY TEST.
We give a procedure to spot-checkGH is convex. We assume th@H is accessed as a list of edges
(which are pairs of paoints) that represent the (purpordectiywvex polygon.

Procedur e Convex- Check(CH,c,?)

run Sort-Check (CH,c/2,§), replacing < with R
if e, or eg i s not heavy return FAIL

if Zep <m return FAIL

return PASS

Clearly, if CH is convex, it will pass this test. We now show thaCifl passes this test then it is possible to
join a large fraction of its nodes (respecting the order thay occur inCH) to obtain a closed curve that
respectsRk for every pair of adjacent edges.

Theorem 14 If CH passes the above test then it can be made convex by removiras&k nodes.

Proof. Note that to be able to use the argument in the sorting spatkeln proof, we need to have a
transitive relation. We first show that the relatid is transitive when angles are restricted.

Lemma 15 Given edges;, e;, ex, such that/e, — Ze; < , if e; Re; ande; R ey, thene; Rey.

Letemiq be the last heavy edge @H (with respect toR) with angle less than, and lete,;; be the first
heavy edge that comes aftg};q. Then, if the test passes, there exist two disjoint increpsubsequences

11

Figure 3: Transitivity under restricted conditions.

of CH with respect toR, of total length at leastl — ¢)k, the first one beginning with; and ending with
emid and the second one beginning with;y and ending withe,. Closing the gaps in these sequences yields
two piecewise linear curves which we will cathain-1andchain-2respectively. These chains form a closed
curve if joined at their endpoints. The joining might inveladding an edge fromy,;q to e.,;q (Figure 4).

If, at the joining pointseniq R e,y andeg R ey, then the closed curve must be convex (since the chains
satisfy R within themselves). We know thaj, R eg, since this is explicitly checked by the checker. We

Smid> 1} i
S I
e
ichain-Z\?g%/ i

Figure 4: The two chains.

now show that the other joining point does not pose a probiémere

Lemma 16 If the convexity spot-checker returRASS, thenemiq R e,,;4’-
Thus, the two chains join together to form a convex polygornso/ote that for every node that is
removed from the node sequence, at most two edges are léfoouC' H .

Putting those results together, the theorem follows. O

We now give the proofs of the two lemmas.

Proof. (Lemma 15) We show only the case wherg # z; andz; 1 # zj,; the other cases are
similar and simpler. Let = (z;41,%;) ande’ = (zj41, ;). We havele; < Ze < Lej < Le! < Lei. Then,
Le' — e < m; thus, there exists a poiptwhere extensions af ande’ intersect (Figure 3)z;.1,p andzxy
form a triangle, as a result of whicte < /(z;11,zx) < /€', and thereforeg; R e. O

Proof. (Lemma 16) Assume that,iq Reniq- emid aNde,;y cannot be adjacent, since thegiq
would not be heavy. Then as in the sorting spot-checker ptioefe must exist a (non-heavy) edgec CH,
mid < r < mid’, such that and,,;;q Re, Re,,;q - This implies that'e,;y — Zemiq > 7, for otherwise, by
the limited transitivity of R, emiq R e;q Would hold.

Now constructd = (Zmid+1, Tmiq’)- SiNCEemid R emiq €ither/d — /epig > m, O Leyy — /d >
. Without loss of generality, assume the former. Withthe two chains join to form a closed cur¢é
(recall that they are already joined @t andey). Since R holds for every pair of consecutive edges(in
except between,;q ande,;y, the angles are increasing and no edg€ dincluding those fronCH and

mid’

12

those added later) has an angle in the intefYal,iq, min(Zd, Zey;y)), which is at leastr radians. This
contradicts the closedness of the curve. Thus, it must hethaR e |

mid’ -

2.2.2 Spot-Checking Hullness

To check whether the convex body obtained in the previousosecovers all but ar fraction of the nodes,
we do the following. We sampl&(1/¢) nodes and check i®(Ign) time whether each lies within the
convex polygon obtained in the previous section. A simplgiegtion of Chernoff bounds shows that this
test works.

To check whether a given sample node lies within the convely,bee use the fact that for any node
inside a convex hull, and for any nogeon the hull, there exist two poingg andy” such thaty andy” have
adjacent locations in the sequence of points which makeeaipal, andv lies inside the triangléyy’y").

To find whether a sample poiatis inside the hull, the checker picks an arbitrary pgioin the polygon
and checks whether the edges incident on it are heavy wipleceso R . It then tries to locate the candidate
adjacent nodeg’ andy” on the convex polygon by binary search, such that,y) < /(v,y) < Z(y",y).

Note however that we have onGH to use in our sear€hwhile our actual search domain should be the
convex polygon obtained fror@H in the previous section. The angles@i are not necessarily entirely
sorted, therefore binary search might return a false pediti a false negative. False negatives do not cause
a problem since they are caused by out of sequence elemetiis list, which constitute a valid reason
for rejection. The only way that a false positive can be otgtdiis if the search returns an edgé, v")
in CH which is not in the convex polygon obtained fradiH (Figure 5). This problem can be eliminated
by requiring that the checker ensure thglt v”) is a heavy edge i®(Ig k) time. Then the checker checks

Figure 5: Potential problem caused by vertex out of sequenCei.

constant time whether is inside the triangléyy'y"); if it is, it returnsFAIL, otherwise it return®ASS.
The spot-checker spend¥lg k) time for each sample node. Since only a constant number gfleam
are used, total amount of work done(Xlg k).

2.3 Element Distinctness

Given membership access to a multigeof sizen, we would like to determine ifd is distinct. However,
suppose it is enough to ensure thgis mostly distinct, i.e., has at least — €)n elements for a givea. We
show that this can be done @(,/en) time. We assume that we can sample uniformly frdrm constant
time and testing equality of elements takes constant tirhe.t&st we propose is the following:

To be precise, we use the sequence of nodes that we used touco@$ in the beginning, but the two sequences contain
exactly the same information.

13

Procedure El ement - Di stinctness-Check (4,¢)
chooser andom /en el ements X from A

if X has any repeated el enents return FAIL
return PASS

Note that by hashing it is possible to determine whefidras any repeated elementi,/en) time.

Our distance function captures the number of elements ahfhe set that need to be changed in order
to make the output correct. Given multisetsB, let p(A, B) be the minimum number of elements that need
to be inserted to or deleted frorhin order to obtainB. If the program says “not distinct”, then sinégis
trivially close to a nondistinct set, the distance can beaperopriately. Letf(X) = 1 if all the elements
of X are distinct and) otherwise. LetP be a program that claims to compufe One way to define the
distance function isA((X, P(X)), (Y, f(Y))) is infinite if P(X) # f(Y), andp(X,Y)/|X| otherwise.
We prove the following theorem:

Theorem 17 For a constante > 0, procedureEl enent - Di sti nct ness- Check (4,¢€) is ane-spot-
checker that runs i) (y/en) time, where the size of the multiséis n.

Proof. Letm be the number of elements to be sampled. Consider a sekwdigtinct elements and the
proposed test (assunael n). If z; denotes the probability of picking thieth element, noting thazjf:1 7
is minimized whenr; = - -- = zx = n/k, the worst-case is to assume that each element ongérimes.

If m elements are sampled uniformly with replacement, then tblegbility that all are distinct is upper
bounded by the standard birthday analysis:

ti:_[: (1_%) g:if[olexp (%) — exp (%1:212> = exp (%};_1))

We want this to be less than some constant. Simple manipogatiield conditionn > Q(vk). Thus, if
we needk = en, we needn > Q(y/en). We can sort this sample in order to tell whether all elemants
distinct, which adds an extig m factor. O

2.4 Set Equality

Given setsA, B of sizen, we would like to determine whethet = B. However, suppose it is enough to
distinguish the case whett = B from the case whefd N Bj is relatively small (such asd N B| < €| A|
for somee > 0.

Let p(A, B) be the minimum number of elements that need to be inserteddeleted fromA in order
to obtainB. Let f(A,B) = 1if A = B and0 otherwise and leP be the program that claims to compute
f. Then for setsXy, Xs,Y7,Ys, we defineA(((X1, X2), P(X1, X2)), (Y1, Y2), f(Y1,Y2))) to be infinite
if either X; # Y3 or P(X1, X9) # f(Y1,Y2), and to bep(X2, Y2)/| X2| otherwise.

The following is a spot-checker for set equality. We assumedccess to any elementdror B requires
constant time.

14

Procedure Set-Equality-Check (4,B,e)

set k = /3/(e(1 —€)?)

choosea subset X of A by picking each el enent of A
i ndependently with probability k/\/n

choosea subset Y of B by picking each element of B
i ndependently with probability k/\/n

if |XNY|<k?/e return FAIL

return PASS

The following lemma shows the validity of this spot-checker

Lemma 18 Given two sets of sizeand constant < 1/2, Set - Equal i t y- Check is ane-spot-checker
for set equality that runs i®(y/n/e) time.

Proof. Let A, B be the given sets of size For a constant to be determined, the checker simply chooses
subsets of expected sizg/n at random from each list and spot-checks that the intesecti the samples
has cardinality “close” td? where “close” will be defined in the sequel. Notice that byHiag the two
samples this checker can be made to ru@{R/n) time with high probability.

To analyze the checker, consider first the case whére B| = n (i.e., B is a permutation of4). For
each elemeng; let the random variablé&; be the indicator of the event that occurs in both samples.
Pr[X; = 1] = (k/v/n)? = k?/n. Thus,E[X;] = k?/n. Letting X be the sum of théX;, E[X] = k2. Since
the X; are independent random variables, we can use Chernoff bdorestablistPr(k? — X > pk?] <
exp(—ku?/2).

Now if |A N B| < en, we are summing ove X;'s instead ofr. Thus the expected value & is k2e.
Once again Chernoff bounds imply tHat[X — k%e > uk?e] < exp(—k2eu?/3).

We now need to choogeand the threshold at which the checker outfRSS. For any desired constant
¢ < 1 set the threshold to be?\/e. Corresponding to this threshold, get= (1 — 1/€) in both inequalities
above. Finallyk should be chosen so as to make the probability of wrong Gleestson a small constant.
This is achieved by choosingsuch thatk?eu?/3 is bigger tharig4/3 in order to achieve an an error of at
most1/4.]

3 Total Orders

In this section we show how to test whether a given relatiai 6n the set{a; | 1 < i < n} is close to
a total order. We represent the relation as a directed gfaptwith vertex setin] = {1,...,n}, where
a; < a; iff (4,7) is an edge inf <, and for every pair of nodesandj, either (i, j) or (7,) is an edge in
H . We assume that givenandj we can query whether< j or j < ¢ in unit time. Note that< is a total
order iff H. is acyclic.

Given an inputz (a relation assumed to be represented as a directed graplf)z) return TOTAL
ORDER if z represents a total order (s a directed acyclic graph) andOT TOTAL ORDER if z
is not, and letP be a program purporting to compufe The distance function is defined as follows:
A({z, P(x)), (y, f(y))) is infinite whenevelP(z) # f(y) and is equal to the fraction of edges that need to
be reversed to changeinto y otherwise. Thus, the total ordgmwith minimum A from z is the total order
closest taz in terms of the number of edges that the two respective grsipdue.

15

Though the problem of testing that a given graph is close tagmlic graph seems similar to testing
that a list has a long increasing subsequence, we show ttaat e accomplished in constant time!

For any permutatiom of [n] and andl < i,j < n, let D,(H) denote the number of edges(:), 7(j))
of H such thatr(i) > m(j). In other words,D counts the number of edges thatlmackwardwith respect
to the order induced by. We quantify how faiH . is from being acyclic (or, equivalently, how faris from
being a total order) by the functioP*(H<) = min, D,;(H<). We also letr* denote an ordering which
achievesD*. Without loss of generality we assume that the vertices amhered in the order defined by
7*. We say that an eddg, j) is badif 7 > j. Otherwise we will say that the edgegeod Note that due to
the numbering of the vertices, the goodness or badness alggnie defined with respect o'

The following fact abouf/ , shows thatf cannot have too many bad edges with respeetto

Observation 19 For each: and for eacht > i, at least half the edges betwegand vertices in the interval
[+ 1, k] must be good edges. Similarly, for eaichnd for eachk < 14, at least half the edges between the
interval [k, — 1] andi must be good edges.

The above observation follows from the optimalityzof. Otherwise moving to the position right beforé
would yield an order with fewer bad edges. This is becauskarirtterval between andk the number of
bad edges which would become good would exceed the nhumberodf gdges which would become bad.
Outside the interval, the good and bad edges would stay the.s@his fact also implies that at most half
the edges ir{ can be bad with respect to the optimal order.

The following corollary links bad edges to cycles of length 3

Corollary 20 If for i < j, the edge betweenand j is a bad edge (i.e., fronj to), then there is a
k € [i + 1,5 — 1] such that the edges betweeand k& and betweerk and j are good edges. Hence the
triangle (i, 7, k) witnesseghe fact thatH . contains a cycle (of length 3).

Strictly more than half of the edges betweend the vertices in the intervgl+1, 5 — 1] as well as between
jand[i + 1,7 — 1] are good, because at least half of the edges betwgenp. j) and the intervadl + 1, 5]
(resp.[i, 7 — 1]) are good, andy, 7) is bad. Thus, there exists a poitvhere both(z, k) and(k, j) are good
edges. The corollary follows as a result of this, and yiell$)#n) spot-checker: The mapping from bad
edges to witness triangles described above is injectiveis,Tihe checker pick®(n) sets of three vertices
at random and outpuRASS if and only if none of the triangles forms a cycle. We now shawo obtain
a constant time spot-checker.

Let B; denote the set of vertices [h+ 1,n] that have bad edges fo Let G; = [i + 1,n]\B;. By
Observation 19,G;| > |B;].

We are now ready to state our main theorem for spot-checkitad arders. First we describe the spot-
checker:

Procedure Total - Order-Check (HZ):

choose O(1) random vertices X from Hg

if the graph induced by H, on X is not acyclic
return FAIL

return PASS

Theorem 21 Tot al - Or der - Check is ane-spot-checker for the total order problem and runs in consta
time.

16

Proof. Let H, be such thatP(H<) = TOTAL ORDER. If H. is acyclic, the spot-checker outputs
PASS. Conversely, suppose the fraction of bad edges is at tea$here is a constanf = ¢/(2 — ¢),
and a setS, with |S| > (¢/2)n, such that for ali € S, |B;| > ¢n. This is because if the number of
such that B;| > ¢'n is less than(c/2)n then the maximum number of bad edges in the graph is less than
M = {(c¢/2)n — 1}(n) + {n — (¢/2)n + 1}(d'n — 1). Now forc = ¢/(2 — ¢), M < cn which is a
contradiction ad{_ has at leastn bad edges.

Call (i,z,y) a witness-triple where; € S,z € B;,y € G; and(y,x) € H.. Since we have
(z,4), (4,y) € H<, locating a witness-triple is tantamount to causing the-specker to outpufFAIL.

Fori € S, we have|B;| > ¢'n. We now consider the interaction betweBpandG; for ani € S.
The outline of the argument is: first, if most edges betw@erand B; in H. go from G; to B;, then the
spot-checker detects witness-triples with constant fitiba If this does not occur, then, most edgesist
go from B; to G;. We then argue that this scenario violates the optimalisyiaption of the order. Hence,
the former case should indeed occur and thus witnessdrgke detected with constant probability.

Suppose at leadt, fraction of edges betweefi; and B; are pointed fromG; to B;. (We will fix kg
later.) The spot checker looks at a constant-sized sample okrtices. SincgS| > (¢/2)n, the probability
that the spot-checker hit$ is at leastc/2. Since|G;| > |B;| > ¢'n, for eachi € S, the sample will also
contain anr € B; and ay € G; with probability at least’?. Now, sincek, fraction of edges go fron/; to
B;, andz andy are uniformly distributed iB; andG; respectively, with probabilitygec’?/2, (i, z,y) is a
witness-triple. (To boost the probability that the cheaokél pick a witness-triple by a factor af, one has
to increase the number of vertices proportiondktd.)

Assume now that less thaty fraction of edges betwee@; and B; are pointing fromG; to B;. Let
ks = |G;|/|B;|. Thus,1 < k4 < 2(1/c — 1). Fix ko to bel/(48k4), and pickk; such thatl2/(1 — k2) <
k1 < (1 — kg)/(2k2k4) FlnaIIy letky be such thaky < CI2]€2/I€1.

Call z € B, typical if at most|B;|/k; edges from; are directed ta. Observe that at least — k)
fraction of the vertices ofB; are typical, for otherwise, the number of edges fréinto B; is at least
(ko|B;|) - (|1Bs| /K1) > (?ka/k1)n? > kon?, which is a contradiction since it violates the assumptiooua
the fraction of the edges betweél and B; that point fromG; to B;.

In the list of vertices that succeedn the optimal ordering, consider the vertgxsuch that there are
3|Bi|/ k1 vertices fromG; betweeni andj. Let1 — k3 be the fraction of typical vertices betwegandj.
The two cases are:

[k3 > 3/4:] In this case, we claim that by moving all the verticeBin(without disrupting the ordering
among them) ahead of all the verticesGi, we can cut down the number of bad edges, thus contradicting
the optimality of the ordering. We now analyze the number ad lkedges eliminated and added by this
operation. This operation must add new bad edges from tleviolg possibilities: (i) all the edges between
G, andkz|B;| non-typical vertices could become bad; by counting, we l@vwaostk,|B;||G;| of them,
and (i) for the (1 — k2)|B;| typical vertices, the edges that were originally pointezhfrG; could turn
bad; by counting, we have at madt— k2)|B;||B;|/k1 of them. This operation may eliminate bad edges
as per the following: for at least;(1 — k5)|B;| typical vertices, at least|B;|/k; of the edges that were
originally bad (i.e., pointing from these typical vertidesck to vertices iii7; that preceded them) turn good;
by counting, the number of bad edges eliminated is at I@h8%;|/k1) - k3(1 — k2)|B;|. By our choice of
ki, k1 < (1 — k2)/(2keks), and by our assumption thiag > 3/4 the new ordering has fewer bad edges.

[k3 < 3/4:] In this case, we show that one can relodgtest after;j to reduce the number of bad edges,
contradicting the optimality of the ordering. The numbemeiv bad edges added by this relocation is at
most3|B;|/k: while the number of bad edges eliminated g1 — k3)(1 — k2)| B;| > (1 —k2)|B;|/4. Since
k1 > 12/(1 — ko), andks < 3/4, the net change in the number of bad edges is negative. O

17

4 Algebraic Structures

In this section, we describe methods for testing whethevengbperation is close to a group (Section 4.1)
or field (Section 4.2) operation. We begin by assuming thabiteration is cancellative and in Section 4.3,
we describe how to extend both testers to the noncancelletise.

PRELIMINARIES. Suppose we are given a progrdhpurporting to compute a group or field operatipn

as follows. On input a finite s&¥, programP and functionf output the tables for binary operationgnd

o respectively orG. Letz o y (resp.z ¢ y) denote th€z, y) entry from the table produced @y (resp. by
f)onG. We assume that an entry in the table representiogn be accessed in constant time. We assume
that equality tests on two elementsGhcan be done in constant time and also that a random elemebecan
chosen in constant time.

We say thab is cancellative if for alla, b, ¢, (a cc =boc) = a=band(aocb=aoc) = b =c.
We use the following distance functioi((G, o), (H, <)) is infinite if G # H and isPr, pcglacb # a o b]
otherwise.

We denote an elemeiat which is chosen with distributio® from G or has distributionD in G by
a €p G. The notatiorPr,[-] is synonymous witlPr,e ,¢[-]-

The L, -distancebetween two discrete distributiod3, D’ on G is defined to b&" . |D(z) — D'(z)|
whereD(z) (resp.D’(x)) denotes the probability of generatimgaccording taD (resp.D’). A distribution
is e-uniformif its L;-distance to the uniform distribution s e.

Let T, be the|G| x |G| cancellative Cayley table (i.e., the operation table)esponding te. In this
case, each row and column’df is a permutation of elements {#. Using these, we can make the following
simple observation.

Observation 22 If o is cancellative, then forany € G,ifa € G = aob er G.

Note that ifo is cancellative then for any, if a; €g G anda; o ay = a, thenay € G, thoughas is not
independent fromw;. For a cancellative, let LI(a, a) denote the unique’ such thata' o o = a and let
RI(a, a) denote the unique’ such thaix o o/ = a. We now define what it means for two operations to be
close to each other.

Definition 23 Leto and o’ be binary operations over domaifi. o is e-closeto o if Pry gegla o 8 =
ao f]>1—e.

We extend this notion to define an almost (abelian) group.

Definition 24 Leto be a closed binary operation @a. (G, o) is ane-(abelian) groupf there exists a binary
operationo’ that ise-close too such that(G, o') is an (abelian) group.

This notion can be extended to fields as well.

Definition 25 Leto, ¢ be closed binary operations di. (G, o,¢) is an (e, e2)-field if there exist binary
operationso’ (resp.¢’) that ise;-close too (resp. es-close too) such that(G, o, ') is a field.

REMARK ON CONFIDENCE. Our tests rely on random sampling to determine whether @bewt happens
with probability more than. It requiresO(% In %) trials to ascertain this with a confidenceof

18

4.1 Groups

We assume the spot-checker is given a tableHdj.e., o); the values off (i.e., ¢) on a small number of
selected inputs, specifically, the valuesgof a, Vg € Sg,a € G, whereSg is a set of generators @F
with respect ta> (we note below that this representation has @z(fGD); and parametet. We present a
method for spot-checking very efficiently whethes e-close to a specifie such thab is a group operation.
Though the output oP is of sizeO(|G|?), for any given distance our checker runs iD(|G|/e) time. In
this section, we assume thais known to be cancellative. Cancellativity is a necessarynot sufficient
condition for an operation to be a group. We make this assomjat order to simplify the tests and the
proofs. In Section 4.3 we sketch briefly how to handle the gds=no is not known to be cancellative.

4.1.1 The Test

In order to test that is close toe, we check the following: (ip is close to some cancellative associative
operationo’, (ii) o' has an identity element, (iii) each elementGnhas an inverse undef, and (iv) o’ is
close too. We will show a way of computing’ in constant time by making calls tofor testing properties
(i) through (iv).

If P passes tests (i) through (iii), then one can show the existefia group operation’ that differs
from o on at mostie fraction of G x G. In the final stage we test (iv), whetheis computing thespecific
group operatior.

Observation 26 G has a sefS¢; of generators of siz& |G|.

The most interesting and challenging part of checking wdrethgiven operation is close to a group is
to design a method of checking that the operation is closesodative. The firsb(|G|®) algorithm for
checking ifo is associative is given in [RaS96]. In particular, theirdamized algorithm runs i®(|G|?)
steps for cancellative operations. They also give a lowantavhich shows that any randomized algorithm
requiredQ(|G|?) steps to verify associativity, even in the cancellativeeca3espite this lower bound, we
show that one can check d¢f is “close” to an associative function table — i.e., if thesean associative
operation which agrees withon a large fraction o6 x G — in only O(|G/|) steps.

AssOCIATIVITY. For (i), we describe our check that the tabledas associative. To do this, the checker
repeats each of following checks several times (the nuntblee tetermined shortly) and fails the program
if any one fails. All of the elements come fro6

(1) Pick randony, «; check for alla thata o (o) = (ao) 0.
(2) Pick randomu, 3; check for allc thata o (Boc) = (o) oc.
(3) Pick randomu, y; check for allb thata o (boy) = (o b) 0.
If o passes this test, then with high probability it must havefdllewing properties:
(T1) Prg,[¥a, ao (Boy) = (a0 f)oq] = 1—¢,
(T2) ProplVe, ao(foc)=(aof)oc] >1—¢ and
(T3) Pray[Vh, a0 (boy) = (aob)oy]>1—c

Since our definition of a result-checker includes a confidgrarameter, and since we havé/G|) proba-
bilistic tests for each (1), (2), and (3), the overall conficied has to be apportioned. It is easy to see that it
is sufficient to repeat each ta3{((1/¢) - 1g(|G|/d)) = (1/e) - (1g |G| — 1g) times.

The following theorem states that the above propertieswdfieient to conclude that is close to being
a group operation. We postpone the proof to the next section.

19

Theorem 27 Lete < 1/15. If o is a cancellative operation o6 and satisfie{T1) through (T3) above,
then there is a cancellative associative operat#dn G satisfying

1. Vb€ G,Prafac’b=aob] > 1—4e
2. VYa € G,Prglao f=aof] >1—4e.

In fact, we will see how to construet such that it is computable (i@(Ig 1/§) time) with a probability of
1 — ¢ being correct.

Fora,b € G, let

ao' b= maj {(aofB)o~}.
Boy=b

The intuition behind taking a majority vote is thatdfwere associative, we would haye o §) o v =
ao (fov) = aob. Bydefiningo’ to be a majority over alB o v = b, we will show thato’ is a corrected
version ofo.

To computeo’ efficiently, we use the standaself-correctoralgorithm (cf. [BLR93, Lip91]). On inputs
b € G and security parametér pick 8 €g G, and then sey = RI(3,b). Similar to Observation 22, we
have thaty € G. Sets = (a o 3) o~. If there really is a majority answer faro’ b, then this will output the
majority answer with probability /2. We will show that the majority answer will be output with pability
1 — 3e (Lemma 30). The self-corrector repeats this computafigly 1/J) times, checks that is always
set to the same value, and if so, outpsisnd otherwise outputBAIL (sinceo is clearly not a group). By
Lemma 30,5 = a o' b with probability at least — 4.

ComputingRI(-, b) takes timeO(|G|). Another way to implement this is to have several rangbend
« such thaf3 oy = b at hand. In order to make available a sufficient number of paits (O(lg1/4), where
¢ is an upper bound on the probability of outputting a wrongwaary, the checker can generate several
a1, ae pairs, storing the pair in the bucket labeledo a,. By a coupon-collector argument, the samples
collected will, with high probability, provide a sufficidptlarge sample for each € G so thato’ can be
computed from them correctly with high probability. Notatithe overhead for each computatiorvbfieed
only beO(lg1/4). From now on, we can assumeéis available. However, if the self-corrector has to be
calledk times, then it should be given a security parametef/éf so that using the union bound it can be
assumed thaill the calls are correct with probability at ledst-§. In our testsk = O(|G|), so the running
time per call to the self-corrector @(Ig |G| + g 1/6). We use the)(-) notation to absorb the dependence
onlg |G|. Also, as mentioned earlier, we suppress the dependenge on

IDENTITY AND INVERSE. The following procedure shows how to test whettlenas an identity. For any
elementa, by cancellativity, there is &such thatz o’ b = a which can be found i©(|G|) time by trying all
possibleb’s. Then,b should be the identity, if G were to be a group. Thatis an identity can be verified
in O(|G|) time by checkingz o b = e = bo e for all b. Note that the cancellativity of implies thate is
unique: ife’ were also anidentityy o' e =a=ao' e = ¢ =e.

Now, sinceo’ is cancellative, for every € G, there is & € G such tha o’ b = e. In other words, each
a € G has an inverse and (iii) follows without any additional est

EQuAaLITY. Finally, we have to check if’ is the same as, the specific group operatioedquality testing

[BLR93, RS96]). To do this inG|1g |G| steps, checkb € G,g € S if g o' b = g ¢ b, where the latter
is given. To see that this uniquely identifies the group, veki@t on|b|, the length of the string whehis

expressed in terms efand elements fron;. Suppose fok > 1,a = g1 ¢ --- ¢ gx. Then, by induction
ao'b=(a"og)o'b=(a'0o"g)o'b=a"o"(go'b) =a' o' (gob) =a'o(gob) = (a’0g)ob=acb, where

a =g o--0gs_1,9 = g, the claim follows.

The required number of repetitions for identity, inversed aquality tests can be derived using a similar
argument to that involving the associativity test, as alteswhich the following theorem ensues.

20

Theorem 28 For e < 4/15 and for a cancellative, there is ane-spot-checker that runs i@(|G|/e) time
for spot-checking ifG, o) is a group.

4.1.2 Associativity

This section is dedicated to proving Theorem 27.

Proof. [of Theorem 27] The following series of lemmas establishttieorem. Lemma 30 shows thalt
is well-defined and Lemma 31 showsis cancellative. Then, Lemma 32 shows thaagrees withe on a
large fraction ofG x G. Lemma 33 proves an intermediate step that is used in Lemmal#éh finally
eliminates all probabilistic quantifiers. m|

The following lemma is an easy consequence of (T3):

Lemma 29 Givenb, if 53,71 €r G andf; = LI(B2,b),v2 = RI(y1,b), andd = LI(0z,y2), thenPr[(y; o
d)=p]>1—c

Proof. Note thatf;, 2, andd exist and are uniformly distributed by the cancellativitiy«o Then,
Brofa=b=v107 =1 0(doF2) = (71 00) o 2, with the last step true with probability— e by (T3).
Sinceo is cancellative, we havg; = ; o 4. |

First, we showo' is well-defined fore < 1/6. For a givenb € G, 81,71 €r G, let 52,72, be such that

(1 0By =1 079 andd o B2 = 9. Note thatyy, §, G2 are pairwise independent random variables. Using
Lemma 29 and (T1), we have for givenb € G, Pr[(a o 1) o 2 = (ao(y1068))0B2 = ((aoy1)0d)ofBe =
(aoy1)o(dof2) = (a o) o 9] > 1—3e. Sinceo’ is defined to be the majority ovepy = b of {(ac3)ov},

and since the collision probability lower bounds the proligiof the most likely element, we obtain the
following lemma.

Lemma 30 For all a,b € G, Prg,[a o’ b= (a o f31) o B2, Wheref; o B =b] > 1 — 3e.
The following lemma shows thaf is cancellative. This will be useful for the rest of the dission.
Lemma3lifao’b=ao ¢, thenb=c. Ifao ¢ =b0o ¢, thena =b.

Proof. Letf €gr G. Letag,as € G besuchthaty o =b,a30f=cand(aoca;)of =ao b=
a o' ¢ = (a o as) o B holds. Note that suchi, as, 3 exist by Lemma 30. Now, by the cancellativity af
we have first o a1 = a o ag and nexio; = ao, thus finallyd = c.

Letf; €g G. LetSy € GbesuchthaB o2 =cand(aofBi)ofy =ao c=bo" c= (bofBi) o
holds. Note that such;, 5, exist by Lemma 30. Now, by the cancellativity @fwe havea o 8; = bo 1
and hences = b. |

The following lemma proves part of Theorem 27 — thiaagrees withe.
Lemma 32 Vb,Profa o' b=aob] > 1—4e. Va,Prglac’ B=ao0 3] >1—4e.

Proof. Letf; €g G andf; be such thap; o B, = b. We haver, 51 €r G. Prg, [a o' b = (aofi)ofr =
ao (f1002) = aob] > 1— 4e, where the first equality follows from Lemma 30 and the secanhbty
follows using (T2).

Similarly, Prg, [ao' 8 = (a0 1) o 2 = ao (B 0 [2) = aof] > 1— 4e, where the first equality
follows from Lemma 30 and the second equality follows usifd)(|

The following is a useful step in proving the other part of @feen 27 — thab' is associative.

21

Lemma 33 Vb, c, Prﬂlﬁl [bo'c = (ﬁlo(ﬁQ o'yl))o'yg] > 1—4e, Whereﬂ2 = Rl(ﬂl,b) and’YQ = Rl(’)’l,C).

Proof. Using Lemma 30 and (T1), we haRrg, ,,[bo' ¢ = (bovyi) oy = ((Biof2) o) oy =
(Bro(B2eom)) 02 > 1 —4e. 0

Finally, the following lemma shows' is associative, completing the proof of Theorem 27.
Lemma 34 If e < 1/15, forall a,b,c € G,a o' (bo' ¢) = (ao’ b) o c.

Proof. Letf,y1 €r G andf,,v2 € G be such thap; o 2 = b,y; o9 = ¢. Then, it follows that
Bi,P20m1 €r G andfBz, 11 €g G. Using Lemma 33, (T1), and Lemma 30, we h&g, ., [a o' (bo' ¢) =

ao' ((B1o(Baom))ov2) = (ao(Bro(B2om)))ove = ((aofr)o(B2om1))ove = (((a0fi)ofe)ovi)oye =
((aoB1)oBa) o’ c= (ac'b)o ¢] >1—15¢ > 0. The lemma follows since the probabilistic assertion is
independent ofs. O

Our result can be used to show that a class of functional eosais useful for testing program correctness
over small domains. The class of functional equations thatresults apply to are those satisfying the the
associativity equatiod'[F[z,y],z] = F[z, F[y, z]], which characterize functions of the forfiz,y] =
f(f~Y(=z) + f~(y)) wheref is a continuous and strictly monotone function [Acz66].

4.2 Fields

We show that testing whether a cancellatives e-close to a cancellative, associative, and commutative
over a domain of sizéG| can be done in randomized(|G|) time (Section 4.2.1). As in Section 4.1, we
assume thas is cancellative. Later, in Section 4.3, we show how to ext#ase techniques to the non-
cancellative case. In Sections 4.2.2 4.2.3, we use thetsesfuthis section to test ifG, o) is ane-abelian
group and if(G, o,¢) is an(e, ¢)-field respectively. In Section 4.4 we show that there i4/G|?) lower
bound to check ib is exactly (O-close to) associative and commutative.

Since the reader is by now familiar with the general outlihew arguments, we will follow a different
order of presentation from the previous section.

4.2.1 Testing Associativity and Commutativity

Given a group, one may use the results of [LZ78] to test thatabelian in constant time. We give a method
in which one can test associativity and commutativity stamgously.
We use the following equation (which we call tA€-property to test:

(aob)oc=ao(cob).

We prove the following theorem which shows that if a cantelec satisfies some conditions that can be
tested inO(|G|) time, then it is close to a cancellative, associative, amdroatativeo’. Furthermore, as in
the previous section, the theorem will also imply the exiséeof a self-corrector fos'.

Theorem 35 Lete < 1/21. If o is cancellative and satisfies
(1) Pry[Vh, acb=boa] >1—ck,
(2) Prg,[Va, (aof)oy=ao(yof)]>1—e,
(3) Pra,[Vh, (@ ob)oy=ao(yob)]>1—¢ and
(4) PraglVe, (@of)oc=ao(cof)>1—¢

22

then there is ar’ such that
(1) o' is cancellative,
(2) Va,b,c, ad' (bo'c) = (ao'b) o ¢,
(3) Va,b, ao'b=15b0a,
(4) o' is 5e-close too, and
(5) o' is computable in constant time, given oracle access to

Proof outline: Let maj denote the majority function which returns the element taurs the most
number of times in a (multi)set. Define the following binapesationo’ as follows: fora, b € G, define

ao' b2 maj {(ao7)op}.
Boy=b

The intuition is ifo were to satisfy the AC-property, we would hal¢eo y) o 5 =ao (foy) =aob. In
fact, we will see that’ is crucial to circumvent the lower bound shown in Section 4.4

We first show that, in some sensé,is well-defined (Lemma 37). We use this to show tiais can-
cellative (Lemma 38) and' is 5e-close too (Lemma 39). Then, we show (Theorem 42) that & 1/21,
theno' satisfies the AC-property on all elementsfFinally, we show (Theorem 43) thatdf< 1/13 then
o’ is commutative. Putting these together, Corollary 44 cetesl the proof of this theorem. O

The following lemma is an easy consequence of the hypotheses
Lemma 36 Vb, PI‘ﬂz,,y2 [)61 0d = Y1, Whereﬂl = LI (,32, b),’)’l = LI (’)’2, b), andd = LI (’)’2, ,32] >1—2e.

Proof. Note thaty,, d, 3; are pairwise independent random variables. Newy, ., [31002 = B10(doye) =
Bro(y0d) = (01 00d) oy > 1—2e Sinced,y2 €r G, the second equality holds with probability at
leastl — e by Hypothesis (1); and the third equality holds with proligbat leastl — e by Hypothesis (2).
But, v1 o 9 = b = B1 o 8. Sinceo is cancellative, we therefore haye = (3, o § with probability at least

1 — 2e. O

First, we show’ is well-defined. For a giveh € G, let 31,71 €r G and fix 32, v2, ¢ such that3; o 3y =
b=y 0y andd oy, = [y. Sinceys,d,F; are pairwise independent random variables, we can obtain
the following probabilistic statement for givenb € G: Prg, , [(aof2) o B1 = (ao (0 oy2)) 0 fi =
((@aoyg)od)ofr = (aoy)o(Brod) = (acy2)oy] > 1—4e Sinced, vy, €r G, the second equality
holds with probability at least — e by Hypothesis (2); sincé, 5, €r G, the third equality holds with
probability at leasti — € by Hypothesis (2); and the fourth equality holds with prdligbat leastl — 2¢

by Lemma 36. Since’ is defined to be the majority ovéh, -y such thai3 o v = b of {(a o) o 3}, by the
collision argument used in the proof of Lemma 30, we obtaiftilowing lemma.

Lemma 37 Forall a,b € G, Prg,[a o' b= (a0 [32) o B, wheref; o B =b] > 1 —4e.
We first show that' is cancellative.

Lemma 38 (Cancellativity) Lete < 1/8. Ifao’b=a o' ¢, thenb=c. Ifao' ¢ = b ¢, thena = b.

23

Proof. Forg €gr G, letay,as be suchthaBoa; = bandfoay = c. ThenPrg[(acay)of=ao b=
ao ¢=(aoay)of]>1-— 8¢ byLemma 37. Now, repeatedly using the cancellativity,ofie have first
aoap = ao ayand nextu; = as, thus finallyb = c.

Let 31 €r G and fix3; such thafs; o 82 = c. Then,Prg, [(aof2)0f1 = ao'c =bo'c = (bofa) o] >
1 — 8¢, by Lemma 37. Now, by the cancellativity of we haves o 32 = b o 8 and hence, = b.

If ¢ < 1/8, the above probabilistic statements are independent bfréspective random variables and
hence always hold. m|

The following lemma proves part (4) of Theorem 35.
Lemma 39 (Closenessyb, Pryja o’ b=aob] > 1— 5e. Va,Prglac B =aof] >1— be.

Proof. Let(; €r G be such that; o 8, = b. Now, o, 5, are independent random variables. Therefore,
Prag, [@o'b = (o) o f1 = ao (B1 0 f2) = aob] > 1 — be, where the first equality follows with
probability at leasti — 4e from Lemma 37 and the second equality follows with probgb#it leastl — ¢
using Hypothesis (3).

Similarly, let 3, €g G be such thaf?; o 85 = (. Sincef €r G, we have thaps, G», 8 are pairwise
independent random variables. Therefdes 5, [a o' § = (a0 f2) o1 =ao(fiof2) = ao] > 1—5e,
where the first equality follows with probability at least- 4e from Lemma 37 and the second equality
follows with probability at least — e using Hypothesis (2). O

We show that' satisfies the AC-property. The following is a simple comgllaf Hypothesis (1).
Corollary 40 Pry, [Va, az o a; = a, whereaz = Rl(ag,a)] > 1 —e.

Proof. Fora; o ap = a, sincea; €r G, by Hypothesis (1), we have = a1 o as = ag o a7 With
probability at least — e. O

The next lemma is a useful intermediate step in proving ¢haatisfies the AC-property.
Lemma 41 Vb, ¢, Prg, 5, [(v10(12061)) 0 B2 = (co'b), wherefy = RI(B1,b) andy, = Ri(vy1,¢)] > 1-Te.

Proof. Consider the following probabilistic statemeRt:s, ., [(y10(y2081)) 0 B2 = (y10(B10o72)) 0B =
(v1092)0B1) o B2 = (cofi) 0B = co' (BaoBr) = (co'b)] > 1—Te. Sincepy, 2 €r G, the first equality
holds with probability at least — e by Hypothesis (1); sincg;,v» €r G, the second equality holds with
probability at leasi — e by Hypothesis (2); and singg, €r G, the fourth equality holds with probability
at leastl — 4¢ by Lemma 37; and sincg; €r G, the fifth equality holds with probability at least— e by
Corollary 40. |

Finally, the following theorem shows théft satisfies the AC-property.
Theorem 42 (AC-property) If e < 1/21, forall a,b,c € G, (a o' b) o' c = a o' (c'b).

Proof. LetB;,v1 €r G be such thaB; o8s = bandy; oy, = ¢. Now, consider the following probabilistic
statementPrg, ,, [(a o' b) o' ¢ = ((aefz)oB1)o'c = (((aoBz)oB1)ov2)om1 = ((a0f2)o(y2061))om =
(aof2)o(y10o(r20p1)) =ao ((y10o(r20pf1))oB) =ad (co'b) >1—2le>0.Sincep; €r G, the
first equality holds with probability at lea$t— 4¢ by Lemma 37; since; €r G, the second equality holds
with probability at leasl — 4¢ by Lemma 37; sinc@, v2 €g G, the third equality holds with probability at
leastl — ¢ by Hypothesis (2); since o (52,71 €r G, the fourth equality holds with probability at ledst ¢

by Hypothesis (3); sincg, € G, the fifth equality holds with probability at least— 4¢ by Lemma 37;
and the last equality holds with probability at ledst 7¢ by Lemma 41. Since the probabilistic statement
is independent of;, y; and holds with non-zero probability, it must hold with probiy 1. O

The following theorem shows that is also commutative.

24

Theorem 43 (Commutativity) If e < 1/13, forall a,b € G,a o' b= b0 a.

Proof. First, leta; o ag = a, 1 o B2 = bfor ay, a9, 1,02 €r G. Consider the following probabilistic
statementPr,, 5, [a o' b = (aofz)of1 = ((ar10as)ofz)oB1 = (ar0(Baoa))of = aro(Bio(froaz)) =
(Bio(Beoaz))oay = (Bro(azofa))oar = ((Biof)oaz)oar = (boaz)oa; = bo'a] > 1—13¢ > 0.
Sincef; €r G, the first equality holds with probability at least- 4¢ by Lemma 37; sinc@s, a2 €r G,
the third equality holds with probability at leakt- € by Hypothesis (2); sincgs o as, 81 €r G, the fourth
equality holds with probability at lea$t— € by Hypothesis (2); sinca; € G, the fifth equality holds with
probability at least — e by Hypothesis (1); sinca, € G, the sixth equality holds with probability at least
1 — e by Hypothesis (1); sinces, 82 €r G, the seventh equality holds with probability at least € by
Hypothesis (2); and since; €r G, the last equality holds with probability at ledst- 4¢ by Lemma 37.
Since the probabilistic statement is independentQf3; and holds with non-zero probability, it must hold
with probability 1. O

Using Theorem 42 and Theorem 43, we get part (3) of the The8em

Corollary 44 (Associativity) If e < 1/21, forall a,b,c € G, (a o' b) o' c =a o' (bo' ¢).

4.2.2 Testing Abelian Group Operations

To check if(G, o) is ane-abelian group, we check if a cancellativés e-close to an’ such thab’ has the
following properties: (i’ is associative, (iip’ is commutative, (iii}o’ has an identity element, and (iv) each
element inG has an inverse undef.

For (i) and (ii), we appeal to Theorem 35 which shows thats#tisfies certain conditions (which can be
verified by random sampling), then issié-close to are’ that is both commutative and associative. Also, the
theorem shows that for any b € G, a o' b can be computed correctly (1) time (with high probability).

Properties (iii) and (iv) follow as in the previous sectiamtesting groups (Section 4.1.1).

Theorem 45 For ¢ < 5/21 and for a cancellative, there is ane-spot-checker that runs i@ (|G|/e) time
for spot-checking ifG, o) is an abelian group.

4.2.3 Testing Field Operations

In this section, we show how to test@®(|G|) randomized time it (resp.o) is e-close too’ (resp.¢’) such
that (G, o', ¢') constitutes a field. As before, we assume bo#indo are cancellative.

Theorem 46 For € < 5/44 and for a cancellative, o, O(|G/|/¢) time for spot-checking ifG, o,) is a
field.

Proof. We outline the steps involved below:
(i) Using Theorem 45, we can test({7, o) is a5e-abelian group.
(i) We would like to know ife satisfies distributive laws, i.e.,
ao(bo'c)=(aob)o' (aoc) and (ao'b)oc=(aoc)d (boc).
We use the following theorem which can be inferred from [BBR9

Theorem 47 (BLR93) Lete < 1/44. If o satisfies

25

(5) Propcal(ac b)o(co'd)=(aoc)o (aod)o (boc)o (bod)] >1—¢,
for an abelian group operatior’, then the operator defined by

ao' b= ma,j {(a1 0 B1) o (10 B2) o (a0 B1) o (g0)}

a1’ az=a,B10’' B2=b

is bilinear, 2¢-close toe, and satisfie¥a, b,

Pr [ao' b= (a1 0 B1) 0 (a1082) 0 (azoB1) o (agoBs), Wwhereay o ag =a,B1 0" B =b] > 1—8e.

a1,61

Using this theorem, we can perforf(1) tests to ensure thatis 2¢-close to a bilineas'.

(i) Now, we set out to establisH is also cancellative. We need an additio6||G|) tests orv that
essentially checks i distributes over’. More precisely, we prove the following lemma:

Lemma 48 Lete < 1/18. If ¢ satisfies the following additional hypotheses
(6) Prop,[Vh, aob = (o fi1) o (aoB2), wheref; o' B =b] >1—¢, and
(7) Prq, glVa, ao = (a1 0) o (az 0 B), wherea; o' ag =a] > 1 —e.

theno' is cancellative.

Proof. First, we show for any, if a ' b = a' ¢/ bthena = d'. Lete < 1/18. First, foray, as, 51,62 €r
such thaty; o' g = a, 310 B2 = b, we have thaPr,, g, [a o' b = (a1001)0" (@1062)0" (apofi) o (axofa)
= (ap 0b) o' (ag ¢ f1) o (a2 ¢ B2)] > 1 — 9¢, where the first equality holds with probability at least
1 — 8¢ by Theorem 47 and the second equality holds with probalatiteastl — e by Hypothesis (6).
Similarly, foref o' ag = a', B1 o' B2 = b, Pryy g, [a' o' b= (] 0b) o (a2 0 B1) o' (a2 0 B2)] > 1 —9e.
Now, sincea ¢’ b = a’ o' b, we have with probability at leagt— 18¢ > 0,

(a1 0D) o (g0 B1) o (a2 0 B2) = (] 0b) o' (az 0 1) o (0 © B2),
which by the cancellativity 0’ is equivalent to
ajob=2alob.

Sinces is also cancellative, we get; = o) from whicha = a'.
Similarly, using Hypothesis (7), we can shefis right cancellative as well. |

(iv) Finally, using Theorem 45, we test(if7, ¢’) is abe-abelian group.
Thus, we obtain thatG, o, ') is a(5e, 5¢)-field of order|G| wheres' is 2e-close too. O

4.3 Discarding the Cancellativity Assumption

In this section we give the additional tests required fotingsassociativity and associativity-commutativity
wheno is not known to be cancellative.

Theorem 49 There exists agy > 0 such that for any < ¢, and for anyG and anyo, ¢, there aree-spot-
checkers that run i) (|G|3/2) randomized time for spot-checking (iY@, o) is a group, (ii) if (G, o) is an
abelian group, and (iii) if(G, o, ©) is a field.

26

The general intuition is that even if the table folis not cancellative, we can detect the situation where
it does not contain a reasonably “even” distribution of thereents of(G. To ensure that, we require the
conditions below, for a small enough Note that since’ contributes additional error, we need to modify
the parameters used in the previous tests to allow smatier. er

We check the following conditions via random sampling:

(T4) Va,|{aob|be G} > (1 - ¢)[G].
(T5) Prg[[{acBlae G} =|G[]>1—¢.
(T6) Pro[[{acb|be G} =G| >1—¢.

Checking the first condition involves using the elementidithess algorithm of Section 2.3, which in-
creases the running time @(|G|*/2).

Using the above conditions and the tests implied by them,naodifying the proofs to accommodate
the bias in the distribution of elements due to the small @billly of non-cancellative behavior, our spot-
checker can be made to work even in the non-cancellative ¢asemain modification to the proofs involves
the quantification of the following:(i) the error when givan arbitraryb, and a uniformly distributed; ,
we cannot find g such that3; o By = b; (ii) the distributions ofg anda o 3 for fixed a and uniformly
distributedg; (iii) whatever cancellativity we can infer from the addital conditions; and (iv) the error in
probabilistic statements when the random variables ame éistributions that are close to uniform.

We use the following observation and lemma:

Observation 50 For an even€(z) and for ane-uniform distributionD, | Prye,c[E(z)] — Pry[E(z)]| < e.

Lemma 51 If o satisfies condition§T4), (T5), and(T6), then

(1a) Va, Pry, [Jag such thaiw; o as = a] > 1 — € and the distribution ofy, is 2¢'-uniform.

(1b) Va,Pr,,[Ja; such thatay o ay = a] > 1 — € and the distribution ofy; is 2¢’-uniform.
(2) For all a, if a is from a distribution that i2¢'-uniform, then the distribution af o « is 4¢’-uniform.
(3) Va,d',Prgllacf=d of) = (a=4d)]>1—¢.

Proof. For (1a), condition (T6) ensures that fior ¢’ fraction ofa; s, there existvy's such thaty;oas = a.
Since by condition (T4) the set of sueh’s is > (1 — €')|G]|, the distribution ofay is 2¢/-uniform. (1b)
follows similarly.

For (2), note that condition (T4) ensures that for ang G anda € G, the distribution ofa o « is
2¢’-uniform. If « is from a2¢’-uniform distribution, then the distribution afo « is 4¢’-uniform.

(3) is obvious from condition (T5), where for a randgiit is checked ifa o 8 | a € G} = G. O

We then define

ao' b= maj {(aoP)on}.
g such thatiy for which goy=b

for the associativity test, and we define

ao b= maj {(aoy)opB}.
8 such thaty for which goy=b

for the associativity-commutativity test.

27

The rest of the proofs of Theorems 27 and 35 can be mimicketyuSbservation 50 and Lemma
51, with some loss in efficiency that results in stricter isgaents ore. This does not affect the overall
asymptotic efficiency of the test.

For purposes of illustration, we outline the details for ricking Lemma 36.

Lemma 52 Givenb, if #2,v1 €r G and 1, y2, d are such thap; o G, = b = 71 oy, andd o o = 9, then
Pr[(y100) =] > 1—e—4€.

Proof. Note that by Lemma 513; and~y; each exist with probability at least— ¢ and each arée'-
uniform. Also,d exists with probability at least — ¢’ and is2¢/-uniform. Then,8; 0 83 = b=y, 07, =

v1 0 (6 0 By) = (71 0 d) o B2, with the last step true with probability — e by (T3) in the associativity test
(sincey; andgs are independent and random). Sirfieas uniform, by Lemma 51 it can be cancelled with
probability at least — €', in which case we havg, = ; o 4. O

For the proof of Theorem 49(iii), we wish to use Lemma 48. Hesvethe cancellativity ob is used in the
last few lines of the proof. Note that, condition (T4) and dded condition (T4)’

(T4) Vb, [{aob|a€ G} > (1—¢€)|G]|.

are sufficient for proving Lemma 48 using a slightly smadlgout without assuming the cancellativity @f

4.4 Lower bounds on determining exact associativity and comutativity
4.4.1 Determing exact commutativity

By examining theO(|G|?) entries ofT,, a deterministicO(|G|?) procedure, by checking for symmetry,
can determine ib is commutative. Ifo is not required to be cancellative, the lower boundXfG|?) is
immediate because an unexamined paitb andb o a could be made non-commutative.

If ois deemed to be cancellative, the above argument fails sinsesimple-minded operation could
render the Cayley table non-cancellative. First, we argaedny deterministic algorithm requir€|G|?)
time. Suppose only(|G|?) locations in the table are looked at. Thendée a constant such thatG|, c >
3 (for sufficiently large|G|). We can viewI, as being arn(|G|/c) x (|G|/c) matrix of ¢ x ¢ “blocks”.
(These blocks can be indexéd j),1 < i,5 < (|G|/c).) Then, note that there is a blo¢k 5) in the table
that is not looked at by the algorithm (for otherwise,(|G|/c)? = Q(|G|?) entries are looked at, which
is a contradiction). The idea is to recursively construci@hx |G| latin squarel, by first constructing a
symmetric|G|/c x |G|/c latin square and then replacing each entry ex¢ep) in T, by ac x ¢ symmetric
latin square. The entrfg, 7) is replaced by an asymmetiicx ¢ latin square.

More formally, letT* be a symmetri¢|G|/c) x (|G|/c) latin square. Lekt’ = T*(i, j), i.e., letk’ be
the (3, j)-th entry of T*. Let T}, (resp.,T}) be ac x ¢ symmetric (resp., asymmetric) latin square where the
entries are translated— ¢ + ck (such latin squares exist for> 3, for instance, non-abelian groups). This
translation map is used to make the entriegjrdistinct. Construct, by first replacing théi, j)-th entry
by the blockT}, and then replacing all other entries with vakuby the blockT}. It is straightforward from
our construction to see thatis cancellative but not symmetric.

We can extend this lower bound to randomized algorithms gR&$96] using Yao’s minimax prin-
ciple [Yao77] (which is the application of von Neumann’s miax theorem to show the equivalence of
randomized and distributional complexities). Thus, tHewing theorem is immediate:

Theorem 53 The deterministic and randomized complexity of decidingtimdr o is commutative oiir is
o(IG?).

28

4.4.2 Determing exact associativity and commutativity

Suppose a deterministic algorithm performs as(y7|?) operations and determines thatis both commu-
tative and associative. We show that there 1§ a@n which it errs. Letl;, correspond th|G|, an abelian
group. We can view the eIementsZilf| (listed in the canonical binary ordering) in consecutiveckk of
two.

Consider two such blocks of elemems= {a0,al}, B = {£0,1} for o, 8 € Z‘QGH. LetAo B

denote the& x 2 block of products: o b wherea € A,b € B. From the structure cfE‘QGl, we can see that
both A o B andB o A in T, are isomorphic to a symmetricx 2 latin square. If this pair of blocks is not
looked at by an algorithm, then one can always change oneesétlatin squares to a different one (there
are two distinct latin squares of size 2), thus still presgrcancellativity and thereby get a non-abeli@n
that is unsuspectingly passed.

Since there ar§G|?/4 such disjoint2 x 2 blocks inTy, any algorithm for determing associativity and
cancellativity must look a®(|G|?/4) entries inT.,.

To argue against randomized algorithms, we use Yao’s mxpnaciple as before. In conjunction with
[RaS96], the following theorem then follows:

Theorem 54 The deterministic and randomized complexity of simultaslodeciding whethes is both
associative and commutative 6his ©(|G|?).

References

[Acz66] J. Aczel.Lectures on Functional Equations and their ApplicatioAsademic Press, 1966.

[AHK95] L. M. Adleman, M-D. Huang, and K. Kompella. Efficiesheckers for number-theoretic compu-
tations. Information and Computatiqri21(1):93-102, 1995

[ABCT93] S. Ar, M. Blum, B. Codenotti, and P. Gemmell. Checking rappmate computations over the
reals.Proc. 25th Symposium on Theory of Computiog 786—795, 1993.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. SzdgeProof verification and hardness of
approximation problems]. of the ACM 45(3):501-555, 1998.

[AS98] S. Arora and S. Safra. Probabilistic checkable poéfnew characterization of NB. of the ACM
45(1):70-122, 1998.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-determingséixponential time has two-prover interactive
protocols,Computational Complexityp. 3—40, 1991.

[BFLS90] L. Babai, L. Fortnow, C. Lund, and M. Szegedy. Cliagkcomputations in polylogarithmic
time. Proc. 31st Foundations of Computer Scienge. 16—25, 1990.

[BGR96] M. Bellare, J. Garay, T. Rabin. Batch verificatiorttwapplications to cryptography and check-
ing. Proc. Latin American Theoretical Informatics 98pringer LNCS 1830:267-288, 1998. By the
same authors Fast Batch Verification for modular expongoriaand digital signatures. Proceedings of
Eurocrypt 98, Springer-Verlag LNCS, Editor K. Nyberg, 1988appear.

[BK95] M. Blum and S. Kannan. Designing programs that chéeirtwork. J. of the ACM42(1):269-291,
1995.

29

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testingfcecting with applications to numerical
problems.J. of Computing and System ScieneEq3):549-595, 1993.

[BW94a] M. Blum and H. Wasserman. Program result-checkitheory of testing meets a test of theory.
Proc. 35th Foundations of Computer Scienpp. 382—392, 1994.

[BW94b] M. Blum and H. Wasserman. Reflections on the Pentiiwisidn bug. Proc. 8th Intl. Software
Quality Week1994.

[CR92] E. Castillo and M.R. Ruiz-Cobd-unctional Equations and Modeling in Science and Engimegri
Marcel Dekker Inc., 1992.

[EKR96] F. Ergun, S. Ravi Kumar, and R. Rubinfeld. Approzit® checking of polynomials and functional
equations.Proc. 37th Foundations of Computer Scienpp. 592-601, 1996.

[EKR99] F. Ergun, S. Ravi Kumar, and R. Rubinfeld. Fast agpnate PCPsProc. 31st Symposium on
Theory of Computingl999. To appear.

[EKS99] F. Ergiin, S. Ravi Kumar, and D. Sivakumar. Selfigswithout the generator bottlenec8 AM
J. on Computingto appear.

[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, andkkgedy. Interactive proofs and the hard-
ness of approximating cliques, of the ACM43(2):268-292, 1996.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Propesting and its connection to learning and
approximation.J. of the ACM 45(4):653-750, 1998.

[GR97] O. Goldreich and D. Ron. Property testing in boundegrée graphsProc. 29th Symposium on
Theory of Computingpp. 406—-415, 1997.

[KS96] S. Ravi Kumar and D. Sivakumar. Efficient self-tegtgelf-correction of linear recurrence3roc.
37th Foundations of Computer Scienpp. 602—611, 1996.

[Lip91] R. Lipton. New directions in testing?roc. DIMACS Workshop on Distr. Comp. and Cryptography
pp. 191-202, 1991.

[LZ78] R. Lipton and Y. Zalcstein. Probabilistic algoritlsnfor group-theoretic problems. Manuscript.
Abstract appeared IACM SIGSAM Bulletin12:8-9, 1978.

[MNST98] K. Mehlhorn, S. Naher, T. Schilz, S. Schirra, M. Seel, @rig. Checking geometric programs
or verification of geometric structureBroc. 12th Annual Symposium on Computational Geomppy
159-165, 1996.

[RaS96] S. Rajagopalan and L. Schulman. Verifying ideggitProc. 37th Foundations of Computer Sci-
ence pp. 612-616, 1996.

[Rub94] R. Rubinfeld. Robust functional equations with laggtions to self-testing/correctind?roc. 35th
Foundations of Computer Scienqmp. 288299, 1994.

[RS96] R. Rubinfeld and M. Sudan. Robust characterizatiminpolynomials and their applications to
program testingSIAM J. on Computing?5(2):252-271, 1996.

[Yao77] A. C. Yao. Probabilistic computations: Toward afigd measure of complexity.Proc. 18th
Foundations of Computer Scieng®p. 222-227, 1977.

30

