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1 Summary

In many applications, an m x n matrix A is stored on disk and is too large to be read into RAM.
Our main result is a succinct easily computed approximation A’ to A which is also an m x n
matrix. To be precise, A’ has the following properties : (s below is a natural number under our
choice. It usually will be O(1).)

(i) A" = CUR, where C is an m X s matrix consisting of s (randomly picked) columns of A;
R is an s x n matrix consisting of s (randomly picked) rows of A and U is an s X s matrix
computed from C, R.

(ii) C,U, R can be constructed after making two passes through the whole matrix A from disk,

(iii) using RAM space and additional time (in addition to the two full passes) O(m + n +
the number of nonzero entries in C, R) and

(iv)
satisfies Iﬁlxl (A - ADz> < (—:Z A%j.
T |T|l= ..
0j
(v) satisfies an upper bound on ||[A — A'||r (to be described later.) This upper bound is much
smaller than ||A||p when A has a good low-rank approximation, as is the case in many

practical applications. (Note || - ||% is the sum of squares all the entries of the matrix and
is called the Frobenius norm.)

We will also give simple information theoretic arguments to show that this is in essence the best
we can do. This approximation can be used for “similarity query” problems, (which are widely
used in Information Retrieval and other areas) where after A has been preprocessed, we get
“query” vectors x and are to find the similarity of = to each row of A - where similarity of two
vectors is defined to be their dot product (or normalized dot product, which also, we can handle).

Using an alternative method (based on the ideas of Achlioptas and McSherry [1]) we also show
another approximation A” which can be computed in just one pass, but has the disadvantage
that it does not satsify (v) and indeed, always has ||A — A”||r bigger than ||A||f.

We formulate a model of computation of “out-of-core” computation, which emphasizes the number
of passes through the data from disk. This model has some similarities to the “Streaming Model”
as well as older models studied in the context of sorting.



Our algorithm uses adaptive sampling where we take a small sample of the data, but with non-
uniform probabilities which reflect the relative sizes of the entries. Uniform sampling has been
recently shown to be useful in solving approximately several problems, like the maximum cut
problem on dense graphs using only O(1) space. We show some extensions of these results to
certain non-dense graphs using adaptive sampling.

Notation A® will denote the 7 th row of matrix A (as a row vector) and Ajy will denote the
j th column (as a column vector). ||A||r,||A||2 will denote the Frobenius and 2-norm as defined
above.

2 Introduction

We consider the problem of deriving a succinct approximation A’ to an m x n matrix A stored on
disk. It is easy to see by information theory arguments that if one requires ||[A — A'||% < €[|A||%,
then we will in general need (number of non-zero entries in A) space. But in many applications,
we only need to compute Az for “query vectors” z and thus a more natural measure of the
approximation in these cases in the 2-norm (denoted ||-||2) of A—A’, namely maxg; 1 [(A—A")z]
on which we prove a bound of \/¢|| A||r as stated in the Summary. Obviously, such a bound is only
useful for matrices A for which [|A|2 >> €||A||%. This is indeed the case for matrices occurring
in many contexts (namely, matrices for which so-called Principal Component Analysis is used.)
But, we also prove a good upper bound on ||A — A’||r for the more restricted class of matrices A
for which, there exists a very good approximation of low rank.

The measure max,, ;-1 |(A — A’)z| is a worst case measure (because of the max). But this is
more useful in many contexts than an average case measure, because the relevant query z often
comes from a small dimensional subspace and is not random.

Two quick examples are in order - one is the “document-term” matrix, where we have a collection
of m documents and n terms (used in the documents) and A;; may represent the number of
occurrences of term j in document ¢ or a function of this number. A second example pertains to a
collection of images where the rows of the matrix represent images and columns represent pixels
and A;; gives the intensity of pixel j in image 7. We postpone further discussion of applications
to the full version; but in general, these techniques can be used in the broad area of Principal
Component Analysis where this may substitute for Singular Value Decomposition.

Our approximation A’ is of the form CUR, where R is an 7 x n matrix consisting of 7 (=0(1/¢€?))
rows of A picked independently at random and C is an m X ¢ matrix consisting of ¢ (=0(1/€?))
columns of A picked independently at random. U is a ¢ X r matrix which can be computed from
C, R. Assuming € € (1), the picture looks like

Note that the length of our succinct approximation is O((m + n)/e?). In case the matrix A
is sparse, with at most m' entries in any column and at most n’ entries in any row, then we



develop an approximation of length (of representation) at most O((m' + n')/e?). [We will also
give a simple information theoretical argument giving essentially a lower bound of Q(m + n).]
The random sampling to get R, C will be according to a carefully chosen probability distribution
(not necessarily the uniform.)

We also show that the approximation only requires the input matrix to be presented in a particular
general form - which we call the unordered sparse representation, in which (only) the non-zero
entries are presented as triples (i,j, A;;) in any order. This is suited to applications, where
multiple agents may write in parts of the matrix to a central database and we cannot make
assumptions about the rules for write-conflict resolution. [One example of this may be the “load”
matrix, where each of many routers writes into a central database a log of the messages it routed
during a day in the form of triples (source, destination, number of bytes).]

Another aspect of the approximation is that it can be viewed as a way to reconstruct an approxi-
mation to the whole matrix A given a randomly chosen subset of columns and a randomly chosen
subset of rows. But we caution that as our theorem stands, it needs to know the probabilities
that each sampled row and column was picked (up to a scale factor). (But note that these prob-
abilities should be known just for the randomly picked rows and columns, not for all rows and
columns.) Our decomposition has already been used for competitive recommendation systems [6]
to reconstruct a large matrix. Also, as a by-product of the SR decomposition, we can estimate
the singular values of A.

Our approximation may be viewed as a “dimension reduction” technique. The two main known
techniques for dimension reduction which have been widely used are Random Projections [[18],[17],
[21]] and Singular Value Decomposition (SVD) [ [15],[13],[20], [7]]. These methods do not share
(i) and (ii) and are thus not suited for very large problems. Our algorithm achieves (i) and (ii)
at the cost of some accuracy, namely the €||A||% error.

Our algorithm draws a random sample of the entries of A and analyzes the sample. However, the
difference between usual sampling algorithms and ours is that we do not blindly draw a random
sample; what we do may be called adaptive sampling, where the sampling probabilities depend
on the entries. In the first pass, we pick out a sample of rows and columns; the second pass is
used to pick up the required sub matrices which form the whole sample. Then, we compute in
RAM with the sample.

We remark that recently, there have been a number of results demonstrating the power of just
blind sampling [4],[10], [11],[14],[2]; i.e., sampling where the probabilities are not based on the
data. A special case of blind sampling is uniform sampling is where we uniformly at random pick
a subset of s rows and columns of A and compute with the s X s matrix so chosen. The advantage
of blind sampling is that we may pick the sample before seeing the data, then in just one pass
through the data, we may extract the sample and analyze it. So, these are one-pass algorithms
and fit the well-studied “Streaming Data” model (which we discuss later.) For example, one
central problem the above papers show can be solved by blind sampling is the following : given
the adjacency matrix of a graph G, find the value of maximum cut in G within additive error
en?. This is useful only for dense graphs.

We will show here that in our model, with 2 passes, we can tackle some interesting class of
non-dense graphs. In a sense, the algorithm we give can be viewed as exploiting the ability to
sample a random edge in the graph, rather than a random vertex. What we show is that with 2
passes, and O(logn) extra RAM space and time, we can find in any graph G(V, E), the max-cut
to additive error €(|V| — )2, where the [ lowest vertex degrees add up to €|E|/2. [Thus, if all but



r € o(n) vertices in the graph have “low” degrees, then the error is er?, instead of en?.] We will
tackle a wider class of problems of which max-cut is an example.

3 The Pass Efficient Model

The only access we assume to the matrix is via a pass which is a sequential read of the entire
input (from disk). We will now introduce the informal computational model we use. In modern
computers, the amount of disk storage (sequential access memory) has increased enormously while
RAM and computing speeds have increased, but at a substantially slower pace. Thus, we have
the ability to store very large amounts of data, but not in RAM, and also we do not have the
ability to process this data with algorithms which may take low polynomial time, or even linear
time with large constants. To model this reality, we propose a model of computation in which we
allow a small number (for example 2) of passes (sequential reads) through the entire data plus
sub-linear computation time and Random Access Memory space. We will call these algorithms
PAss EFFICIENT ALGORITHMS.

This model assumes the input data can only accessed by making passes through it, where a pass
consists of one sequential read of the entire data plus additional computation time of at most ¢
units after each r bits of data are read. The number r reflects the fact that usually one reads
whole blocks of data, not just one bit. The quantity ¢ is there for the following reason - input /
output operations (from out of core) take a lot of cycles, so if ¢ is sufficiently small - compared to
the number of cycles needed to read in a block - then with a small increase to the running time,
we can process the block just read; we will not usually explicitly mention the values of ¢, r, but
the spirit is that a pass is just one read of the data with a small amount of processing. [Note that
since additional space is only sub-linear, we really have to allow some processing during a pass,
at least to figure out which parts of the input to retain in memory. Otherwise, since we cannot
by far store all the data read in a pass, the pass would just be wasted.]

The algorithm is also allowed to use some computation time and Random Access Memory space
besides the passes. These are required to be (and often will be substantially) sub-linear. We will
measure three parameters of the algorithm - the number of passes, additional time and space. A
model where the number of passes was measured as a basic parameter was first used by Munro
and Paterson ([19]) in the special case of sorting and selection algorithms; but their definition
of a pass allowed additional computation of essentially linear time (which as argued here is not
practical for our problems.)

The “Streaming Model” [[16],[5], [3],[9],[17]] on which there is substantial work allows only one
pass through the data and restricts the RAM usage to polylogarithmic amount of space. But
the model formalized in ([9]) allows polylogarithmic time for processing after reading each bit;
so a pass for them is even more generous than the model in ([19]). [We call this a “leisurely”
pass.] So, the primary concern of both these models is the additional space (RAM) usage, rather
than time. The restriction to one pass in the streaming model allows processing vast amounts of
data supplied from other sources which we do not have space to store at all, but which we can
“leisurely” look at from a read only 1-way tape taking super-linear time (O(n) times polylog) for
the pass. We will compare the models in more detail in the final paper.



3.1 Lower Bound
Lemma 1 For any m,n positive integers, and 1 > € > % + %, there is a set of Q(e™"™™)
m X n matrices, such that

o FEach matriz in the set has Frobenius norm at most 4.
e FEach entry of each matriz in the set is an integer multiple of €/64y/mn.

e For two distinct matrices A, A" in the set, we have ||A — A'||2 > €/80.

We give the idea of the simple, but technical proof in the appendix. The lemma supplies essentially
a lower bound, since any algorithm which approximates these matrices must output a different
approximation to each one, requiring it to output at least O((n + m)log(1/e€)) bits. This is only
a lower bound on the number of bits of output.

Remark Random projections will not do : by the lower bound, with o(m+n) description length,
we can only achieve an error bound of (¢||A||r). If we do a random projection of each row to an
s dimensional space, to get a matrix B and say for a particular unit length vector z, its projection
is 2/, the we only get that with high probability, |[A®Yz — B@z/| < ¢|A®)|. Squaring and adding
over all the rows, we get that

Az — Ba'| < el|Allr,

holds with high probability for each z. So, for “most” z ’s the inequality holds. But this is no
use, since, for most z ’s, we may have |Az| < €||A||r. The only z > s which matter are of small
measure.

4 The CUR decomposition

The main technical result of the paper is stated and proved in this section. For any m X n matrix
A, suppose C is a m X s matrix formed by a random subset of s columns of A, picked in s
independent identically distributed trials in each of which one of n columns of A is picked with
the probability of picking column j being g;. [The {g;}]_, are nonnegative reals adding up to
1, to be specified later; s is a positive integer. Our upper bounds on the errors will depend on
s and will decrease as s increases.] Similarly, suppose R is a s X n matrix formed by a random
subset of s rows of A, picked in s independent identical trials, in each of which one of the m rows
of A is picked with the probability of picking row i being p;. [Again, {p;}/*, are nonnegative
reals adding up to 1, to be specified later.] The main theorem will say that from C, R, we can
compute a s X s matrix U such that CUR is a good approximation to A provided the {p;} and
the {g¢;} satisfy certain conditions; intuitively, these say heavier rows and columns should have
higher probabilities of being picked. To put our theorem in context, it will be useful to contrast
it with Singular Value Decomposition (SVD). The SVD of A expresses A as (here p is the rank
of A)

p
A= Zat(A)u(t)v(t)T, where, 01(A) > 02(A) > ...0,(4) >0,
t=1

where, {u(Y} and {v®} are each an orthonormal family.



It is well-known that taking the first k£ terms of this expansion gives us the best rank k approxi-
mation to A in both the 2-norm and the Frobenius norm :

k
14 =3~ 0u(A) a0 ||y = Ming panie )i l14 = Bll2 = ox41(A)
t=1

k p
T .
14~ Z or(A)uo®" |3 = MmB:rank(B)gchA - Bl = E ar(4)*.
t=1 t=k+1

Note that we can write : >F ; oy(A)u®v®” as USV, where U is m x k, ¥ is a k x k diagonal
matrix and V is a k X n matrix. So, computing the SVD gives us good succinct approximations,
since it only takes space O(k(m + n)) to write down U, %, V. But the computational problem
of finding the SVD is difficult and cannot be carried out by any means in O(1) passes. Instead
our theorem will say that weaker bounds (which are however similar in spirit) may be achieved
by CUR (which is similar to ULV, but now U is not necessarily a diagonal matrix.) Indeed, we
will show that if the rows and columns are picked with probabilities proportional to their length
squared, then the bounds given by the following corollary on the errors hold.

Corollary 1 If we have p; = |AD?/||A||% and ¢ = A P/NAlZ for i =1,2,...m and j =
1,2,...n, then we have (E below stands for the expected value)

3
E(||A~ CURJ3) < 0 /541(4)* + ﬁllAII%
p

2
E(||A - CUR|%) < 16@”!‘1“% + Z o (A)?.
t=v/s+1

A second advantage of our method is that if A is sparse and indeed, each row and column of A
has a small number of non-zero entries, then the CU R representation also has a small number of
entries,since C, R are just small parts of A and U is only s x s. [s will in general be O(1).] This
advantage is not enjoyed by the SVD which in general can destroy sparsity.

The corollary above will follow from a more general Theorem which we presently describe. For
the Theorem, we relax the condition that the probabilities be exactly proportional to the row (or
column) length squared. Instead, we require :

pi>0 > pi=1  p;>ofADP/||Al7, (2)
%

where « is a positive constant in (0, 1]. [If it is 1, the probabilities are exactly proportional.
This greater generality will help especially in cases where the exact entries of A are difficult to
know.] Similarly, we will require (for a 8 € (0, 1])

>0 Y g=1 g >BlAy/IAl% (3)
j

Next, we also let C have ¢ columns and R have r rows, where we need not have r = ¢. Finally,
there will be another parameter k& under our control, which we will specify later. We describe the
computation of C, U, R in the following algorithm:

1. for t = 1 to c independently pick j; € {1...n} iniid. trials with Prob(j; = j) = ¢; j =
1...n. Let C be the m X ¢ matrix whose ¢ th column is A;,) fort =1,2,...c.

6



2. Let D; be the ¢ x ¢ diagonal matrix with 1/,/¢gj; in the (¢,¢) th position for t = 1,2,...c.
(Note that for this, we need to know g¢; only for the sampled columns j.)

3. Let C' = CD;. (C"is C with columns suitably scaled.) Compute C'7'C’ which is a ¢ X ¢
matrix in time O(c?>m). Find the SVD of C'7C’ (in (c3) time); suppose it is

'Tcl Z at
Choose a k such that o;(C’) > 0. We will later discuss further the choice of k.

4. for t = 1 to r independently pick i; € {1...m} with Prob(i; =i) =p; i =1...m. Let
R be the r x n matrix whose ¢ th row is A% for t = 1,2,...r. Let Dy be the r x r diagonal
matrix with 1/,/rp;, as the (¢,t) th entry.

5. Let W be a r x ¢ matrix whose ¢ th row is C(®) for ¢ = 1,2,...r. Then,

k
1
U=D, (Z Jt(CI)Qu(t)u(t)TWT> D%.

t=1

Theorem 1 Let p be the rank of A. Then, assuming {p;} satisfy (2) and the {q;} satisfy (3) ,
we have

) P ) 2\/— )
FE(||A—-CUR ) < E oi(A)” + A|l? F 4

) ) 2k ) 1 2k )
B (14 - CURIE) < ovn(d) + (572 + J) 415 < (57 + 7+ ) 1415

Remark
Now, Corollary (1) will follow from the Theorem by taking r = ¢ = s and k = 1/s.

If € > 0 is an error parameter, choosing k = 2/e and ¢ = 64/(5%€%) and r = 8/(ae?) makes
|A — CUR||2 < €||A||%. Thus in essence the theorem says that sampling Q(1/e?) rows and
columns is sufficient for an approximation within 2-norm error at most || A||%.

Proof: Before proving the theorem , we would like to give some intuition on why CUR is close to A
and also introduce some notation. In [7], we proved that C’ C'T ~ AAT in the sense of Frobenius
norm. Let, v®) = C'u® /o (C"). v® are the left singular vectors of C'. So the projection A of A
into the subspace spanned by the top k& of them which is

A= Zv Y A=YYTA, (where,Y:(U(l) e ___U<k)))

can be shown to “capture”

almost” as much of the Frobenius norm of A as A ’s projection into
the space spanned by its own top k singular vectors would. (using C'C'T ~ AAT). Indeed it was
shown in [7] that ||A — A||% was small in expectation. (See Lemma (2 below). Thus, A would
have been a fine approximation to A, but for the fact that it is hard to compute - multiplying

each v(®" by A requires one pass through A for a total of k& passes ! Note that we may write

k
CUR=C")

t=1

uWu®" WTDZR = Y XD2R, (6)

u@® 42 (€
0'1(0') 02(0') o O'C(C')

1
Ut(C')Q

where XT = w <

7



Now, instead of explicitly computing the product Y7 A what we will do is to approximate it by
using a technique from [8]. This technique says that if we pick a random subset of columns of
YT and the corresponding set of rows of A and multiply the resulting matrices, that gives us an
approximation to the product Y7 A, provided the probabilities used for the random choices satisfy
certain inequalities. (see Lemma (6)) Indeed, the reader may verify that X is obtained precisely
by choosing columns i1, 19, ..4, of YZ. This will lead us to the result that Y7 A ~ XD2ZR in
Frobenius norm, giving us then a bound on the Frobenius norm of A — CUR. The proof of the
2-norm bound in the Theorem requires more work(Lemma (4).

Lemma 2 ) f
. 2
E(JA-AR) < Y ou(A)’ + IA]%
t=k+1 ﬂ\[

Proof: Complete {v(1),v®) .. v*)} to an orthonormal basis VV = {v(1), v® .. »(M} of R™.
Then, we have

m
[A=YYTAR = 3 " (A-YTAE = 3 " 42
t=1 t=k+1
= ||4117 - Y " All7

YT A% = tr(YTAATY) > tr(YTC'CTY) — tr(YT (AAT — C'C'T)Y)

k
>3 " 0y(C)? — VK| AAT — CCT|,

where we get the last inequality because if AAT — C'C'T is written as in the basis VV — VV,
then tr(Y7(AAT — C'C'")Y) is the sum of the first k& diagonal entries, which is at most v/k times
the square root of the sum of squares of these entries (by Cauchy-Schawrtz) which is at most V&
times ||[AAT — C'C'"||r as claimed.

k p
So, [A-YYTAIL <> (ot(A)2 — at(C')2) + Y ou(A)? + VE|AAT - C'CT | p.

t=1 t=k+1

Now, we have

1/2
i(at(A)Q — o (C? <k <£(at(AAT) — at(C'C’T))2> < VE||AAT — C'CT||p,

the last using the Hoffman-Wielandt inequality. Finally, we bound E(||AAT — C'C'"||r). To this
end, first note that

Aol _ IIAIl%
< , thus, ||C'||% < ||A]|%/8.
G- < I2IE b, 1 < 141518
Using Lemma (6), we see that
1
E(||[AAT - C'C"[F) < —c||A||%||C'||%,
So, B(||AAT — C'C'M||F) < (B(|AAT = C'C'T||3))'/? < 7||A||F' (7)

Plugging this in, we get the lemma.



Lemma 3 ||[Y(Y”A — XD3R)||% = |[YTA — XD2R|)%.

Proof:

IY(YTA - XD2R)|% = Tr(YTA - XD2R)TYTY (YT A — XD3R))
=Tr((YTA—- XD2R)T(YTA - XD2R)) = |YTA - XD2R||%.

Lemma 2 bounds E(||A — YY? AJ|%). Combining Lemmas 3 and 5 we bound the E(||[Y (Y1 A —
XD2R)||%). Thus, using linearity of expectation, the proof of the first statement of Theorem 1
follows. To prove the second statement we need the following two lemmas:

Lemma 4 Given the notation of Theorem 1

2
E(|A-YYTA|?) <02, (A + ——||Al%.
(I 12) < 0j41(A4) ﬂﬁll %

Proof: Let Vj, = Span{v("),v® .. v(®)}. V,,_; be the orthogonal complement of V} in R™.
|A-YYTA|p= max [zT(A-YYTA).
xZ

ER™,|z|=1

x can be expressed as a; -y + ag - 2, such that y € Vi, 2 € Vu_p, a1,a2 € R and a? + a3 = 1.
Thus,

max (¢7(A-YYTA) < max (laiy'(A-YYTA) |+ max (Japz’(A-YYT4)|<

zER™,|z|=1 yEVisly|=1 2€Vm—k;lz|=1
T T T T
max (Jy" (A-YY A)|+ max ([z/(A-YY"A)|
YEVi|y|=1 2€Vm_pslz|=1

But, for any y € Vi, 9T YY7 is equal to y. Thus, |y?' (4 - YYTA)| = |yTA — yTA| = 0 for all
y. Similarly, for any z € Vj,_k, 27 YY" is equal to 0. Thus, we are only seeking a bound for
max,cy, _, |7 A|l. To that effect,

|27 A2 = 2T AAT 2 = 2T (AAT — C'C')z + 2T C'C™ 2
<[ AAT - O'CT g + 0741 (C')

Thus, E(||A-YYTA|3) < E(0341(C")?)+E(||AAT —C'C'T||r). Now, AAT, C'C'™ are symmetric
matrices and a result of perturbation theory (see e.g. [15], p. 428) states that

lok+1(AAT) — o1 (C'CT)| < [|[AAT = C'CT 2
But, E(||[AAT — C'C'"||) < E(|AAT — C'C™||F) < ﬁL\/EHAH%, from (8). Thus, |ox41(AAT) —

op1(C'CT)| = |0%,1(A) — 03,,(C") < ﬁHAH% and Lemma 4 follows.

The maximum |27 C’| over all z € V,,_ appears when z is equal to the k + 1 left singular vector
of C'.

Lemma 5 . &
E(|IYTA - XD2R||Z) < —|IYT|121|A]% = =] A|l2
(I 2 R||7) < MII 71| Al MII %

Proof: The first inequality follows from (6); we defer the details. Then, we simply observe that
the columns of Y are singular vectors (thus their length is one) and ||Y||% = k.



4.1 Sampling

We prove that with the matrix presented in sparse unordered representation , all the sampling
necessary to compute S, R can be done in two passes through the matrix. The two claims (1) are
simple technical claims, whose proof we give in the Appendix.

Claim 1 Suppose a1, as, ...ay, are n non-negative reals which are read once in this order (stream-
ing). Then with O(s) additional storage, we can pick i.i.d. samples i1,12,...15s € {1,2,...n} such

that
ai

Prob(it — 'l) — W.
j=1aj

Claim 2 In one pass, plus O(m + n) additional storage, we can pick i.i.d. samples ji,jo,. .. Js
drawn according to probabilities {q;} satisfying q; > ﬁ|A(]-)|2/||A||2F and also pick i.i.d. samples
i1,99,...15 drawn according to probabilities for the rows satisfying p; > o/ AD|?/||A||% .

In the second pass : we pick out the entries of the matrix C and R. (note that we know the
scaling factors since we know the probabilities with which we pick each row and column). Since
we have O(s(m + n)) storage, these can be explicitly computed and so also CTC.

4.2 One-pass Approximation

In one pass, we can find an approximation A” satisfying all the properties as stated in the
Summary except for the important bound on the Frobenius norm. This is done as follows (by
generalizing an idea in [1]). As we make the pass through A, we pick a subset J of A = O((m +
n) poly (1/€)) entries of A in A i.i.d. trials, in each of which an entry of A is picked with the
probability P;; of picking the (i,7) th entry being AZ2]/||A|||%7 By Claim (1) above, this can be
done in one pass. Then, we can show that if we set define an m X n matrix A” which for each
picked (i,7) has entry A;;/(AP;;) and has a zero entry for (¢,j) which are not picked, then A"
is a good approximation to A in 2-norm. The proof is a modification of the proof of [1] for the
special case of uniform sampling. But unfortunately, since AP;; is much smaller than 1, it can be
shown that the Frobenius norm of A — A” is very large (larger than ||A||r.) We will give the full
proof in the final paper.

5 Handling non-dense graphs

In this section, we sketch how in 2 passes plus O(logn) additional time and RAM space, we can
find the value of the maximum cut in a graph G(V, E) to additive error ¢(|V| — )2, where [ is
chosen so that the sum of the lowest [ degrees is €|E|/2. This algorithm will only use elementary
ideas. Essentially, we pick vertices in the first pass with probabilities proportional to the degrees
(by picking a random edge); we will then discard certain vertices of low degree and then do some
rejection sampling after which, we have a uniform random sample from the high degree vertices.
Here are a few more details.

Let G({1,2,...n},E) be a graph. Let d; be the degree of the vertex i. We assume that each
d; < €|E|/4. (This is a mild assumption that no vertex has more than an €/4 fraction of all edges
incident to it, which is obviously true if for example, we have a super-linear number of edges.)

10



For any f € (0, 1), define v(f) to be the least positive integer such that 3,4, <,(s) di > f|E| and
let V(f) ={i:di <v(f)}.

We pick i1,19,...1435 all i.i.d. samples, (where s will be Q(logn/poly(e))) with Prob(i; = i) =
d;/(2|E|) [by picking a random edge] in the first pass; we also find |E| exactly in the first pass. In
the second pass, we collect the induced graph on these 3s vertices and also compute the degree
of each of these 3s vertices in the whole graph.

Define L, M to be the minimum positive integers such that

{t:1<t<s,dj, <L} >2es |{t:1<t<s,dj, <M} > bes.

We have that the probability of a single 7; falling in V'(e) is equal to 3 ;cy () di/|E| which is
between € and (5/4)e. So using Hoeffding on Bernouli trials, we have that whp :

{i1,%2,...isy NV (e)| < ges which implies that L > v(e) (8)
[{#1,%2,...1s} NV (3€)| > 2.5es which implies that L < v(3e). (9)

Similarly we have that with high probability : v(4e) < M < v(6¢).

€’|E|
et W={i:v(e) <di <v(be) : di < 2logn|{j : d;j > di}|}

n

Y dh<EB— Y (> ) < o \E|(Z§)Se2|m/2.

iew 2logn i€V (6e)\V(e) 2logn i=1

Thus the probability that a particular i; belongs to W is at most €2/2. Now, we use the second
set of s samples. Let P = {i; : s+ 1 <t < 2s,d;, € [L , M]}. Pick uniformly at random an
element ¢ of P. By the above, whp, we have that ¢ ¢ W. Now, we use the third batch of s
samples.

For each 44,25 +1 < t < 3s, we independently do the following : if d;, < d4, then we set all
entries in row i; and column 4; of our sampled sub-matrix to be zero. Otherwise, we accept
sample i; with probability : dy/d;,. Now we have that the acceptance probability of a sample
18 3 5di>d, % > %. Thus, with s = Q(logn/poly(e)), we will have the required number of
poly(1/e) samples surviving the rejection process for us to appeal to the earlier results. Also a
simple calculation shows that these are samples drawn uniformly from vertices of degree at least

d4, so appealing to results of say [14], we get the claimed algorithm.
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6 Appendix

Following the lines of [13] and [8], we analyze the following algorithm:

Given an m x n matrix A and an n X p matrix B, we approximate their product by X - Y, where
X is an m X s matrix and Y an s X p matrix, using the following algorithm:

Suppose we have p1,pa,...pm > 0 such that Y 7" pp = 1.

e for { =1 to s independently

— Pick 4y € {1...n} at random with Prob(i; = k) =px, k=1...n
— Include A;,)//3pi, as a column of X and BU) /. /5p;, as the corresponding row of Y.

e Return X -Y as the approximation to A - B.

2
Lemma 6 If X and Y are created using the above algorithm and if either pyp > a‘H ||)2| for all

kE=1...n, or pp > a|B®?/||B||% for k =1,2,...n, then

1
E(|AB - XY %) < EIIAII%IIBII%

Proof: Fix attention on one particular i,5. For ¢ = 1...s define the random variable w; =

AG B, A B . .
=) = S Go the wy’s are independent random variables. Also, (XD2R);; =
SPiy ij SPiy

POy wt Thus, its expectation is equal to the sum of the expectations of the w;’s. But, E(w;) =
B

Sy HPkipy = L(AB)y. So, E((XY)y) = iy B(wi) = (AB)s.

Since (XY');; is the sum of s independent random variables, the variance of (XY');; is the sum of

the variances of these variables. But, usmg Var(w;) = E(w?) — E?(w;) we see that Var(w;) =

A% B, A2 B? A2, B2
Zk 17 s2p;, pk B EZ(AB)ZJ < Zk 1 _;gp—kj ThUS Var(XY)Z] < SZk 1 "<2m ;kp ki Usmg E((AB —
XY);j) =0 and the lower bound for the py,
m n m n
E(|AB-XY|%) =) .Y E((AB—-XY)}) =YY Var((XY);) Zpk O A% ZBkJ
’:112 i=1j=1 5 k=1 i

n 2 1
Z (1B®1)" = — A7 BIl%

- Z —|A 1By |? <
§ =1 Pk

Proof of Claim 1 We argue that we can pick ;. The others can be done by running s independent
copies of this process. To pick 41 : suppose we have read a1, ao,...a; so far and have a sample 7;

such that
a;

l 3
Ej:l a’j
and also we keep the running sum 23:1 a;. On reading a;11, we just replace the current i; with
[ 4+ 1 with probability

Prob(i; = i) =

aj+1

—I+1
Z+
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It is easy to see by induction that this works.

Proof of Claim (2) : To pick 41 : just pick (using the previous claim) an entry (i,j) with
probabilities proportional to their squares and just take i; = 7. The other ¢; and the j; are also
picked by running 2s independent experiments simultaneously.

Proof of Lemma (1) The idea of the proof is : - one just picks a “large” set of vectors u € R"
such that each u is of length almost exactly 1 and we have |u — u|, |u + /| > € for each pair of
distinct u,u'. Similarly one picks such a set of v € R™ satisfying similar conditions. Then we
form all rank 1 matrices of the form uv” and show that this class has the claimed properties.
The detailed proof is deferred to the final paper.
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