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Abstract. This paper investigates geometric problems in the context of property
testing algorithms. Property testing is an emerging area in computer science in
which one is aiming at verifying whether a given object has a predetermined
property or is “far” from any object having the property. Although there has been
some research previously done in testing geometric properties, prior works have
been mostly dealing with the study ofcombinatorialnotion of the distance defining
whether an object is “far” or it is “close”; very little research has been done for
geometricnotion of distance measures, that is, distance measures that are based
on the geometry underlying input objects.
The main objective of this work is to develop sound models to study geometric
problems in the context of property testing. Comparing to the previous work in
property testing, there are two novel aspects developed in this paper: geometric
measures of being close to an object having the predetermined property, and the
use of geometric data structures as basic primitives to design the testers.We believe
that the second aspect is of special importance in the context of property testing
and that the use of specialized data structures as basic primitives in the testers can
be applied to other important problems in this area.
We shall discuss a number of models that in our opinion fit best geometric problems
and apply them to study geometric properties for three very fundamental and
representative problems in the area: testing convex position, testing map labeling,
and testing clusterability.

1 Introduction

A classical problem in computer science is to verify if a given object possesses a certain
property. For example, we want to determine if a boolean formula is satisfiable, or if a set
of polygons in the Euclidean plane is intersection free. In its very standard formulation,
the goal is to give an exact solution to the problem, that is, to provide an algorithm
that always returns a correct answer. In many situation, however, this formulation is
too restrictive, for example, because there is no fast (or just fast enough) algorithm that
gives the exact solution. Very recently, many researchers started studying a relaxation
of the “exact decision task” and consider various forms of approximation algorithms
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for decision problems. Inproperty testing(see, e.g., [3,4,7,10,12,13,14,15,18]), one
considers the following class of problems:

Let C be a class of objects,O be an unknown object fromC, andQ be a fixed property
of objects fromC. The goal is to determine (possibly probabilistically) ifO has property
Q or if it is far from any object inC which has propertyQ, where distance between two
objects is measured with respect to some distributionD onC.

The motivation behind this notion of property testing, is that while relaxing the exact
decision task, we expect the testing algorithm to be significantly more efficient than any
exact decision algorithm, and in many cases, we achieve this goal by exploring only a
small part of the input. And so, for example, in [4] it is shown that all first order graph
properties of the type “∃∀” can be tested in time independent of the input size (see also,
[13,14,18] for some other most striking results).

In the standard context of property testing, the first general study of geometric prop-
erties appeared in [7]. In this paper the authors studied property testing for classical
geometric problems like being in convex position, for disjointness of geometric objects,
for Euclidean minimum spanning tree, etc. Roughly at the same time, in [3], property
testing for some clustering problems has been investigated. In [10], the problem of test-
ing if a given list of points inR2 represents a convex polygon is investigated. In all these
papers, the common measure of being close to having the predetermined property was
the Hamming distance. That is, for an objectO from a classC, a propertyQ, and a
realε, 0 ≤ ε ≤ 1, we sayO is ε-far from having propertyQ, if any objectO from C
that has propertyQ has the Hamming distance at leastε · |O| from O. The Hamming
distance is a standard measure to analyze combinatorial problems, but in the opinion of
the authors, other more geometric distance measures should also be considered in the
context of Computational Geometry. The reason is that this measure does not explore
geometry underlying investigated problems, but only their combinatorial structure (how
many “atom” objects must be modified to transform the object into one possessing the
requiring property). This issue has been partly explored in the context of themetrol-
ogy of geometric tolerancing[5,6,8,17,19,20]. In this area (motivated by manufacturing
processes) one considers the problems of verifying if a geometric object is within some
given tolerance from having certain propertyQ. In geometric tolerancing, the researchers
have been studying among others, the “roundness property,” the “flatness property,” etc.
[5,6,8,17]. We emphasize, however, that there is a major difference between the notion
of geometric property testing and geometric tolerancing in that in the former one allows
to reject (as well as accept) any object that does not satisfy the propertyQ, while in
geometric tolerancing one should accept such an object if it is within given tolerance.

Our contribution.This paper is partly of a methodological character. The main objective
of this paper is to develop proper models to study geometric problems in the context of
property testing. We shall discuss a number of models that in our opinion best fit geo-
metric problems and apply them to study geometric properties for the most fundamental
problems in the area. Comparing to the previous work in property testing, in the current
paper we develop two main novel ideas:
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☞ geometric measures of being close to an object having the predetermined property,
and

☞ the use of geometric data structures to develop the testers.

We discuss these two issues in details in Sections 2 and 3 while testingconvex posi-
tion. We demonstrate the need of geometric distance measures for geometric problems
and propose three new models that in our opinion suit best to study geometric properties.
We show also that the complexity measures used in standard property testing have to be
modified in order to achieve something non-trivial using geometric distance measures.
We propose a model of computation that usesqueries for geometric primitives(in this
case range queries) as its basis and discuss its use and practical justifications. Finally,
we illustrate all these issues by designing property testing algorithms for convex posi-
tion. Unlike in the model investigated in [7], our testing algorithms run in time either
completely independent of the input size or only with a polylogarithmic dependency,
and we believe that they fit much better the geometry underlying the problem of testing
convex position.

In Section 4, we investigate themap labelingproblem. We first show that in the
classical property testing setting (that uses uniform sampling of the input points) this
problem does not have fast testing algorithms. Next, we show that by using geometric
queries as basic operations one can obtain very efficient testing algorithms. We present
an ε-tester for map labeling that requires onlypoly(1/ε) range queries of the form:
“What is the i-th point in the orthogonal range R ?”

Then, in Section 5, we considerclustering problemsin our context and provide
efficient testers for clustering problems in most reasonable geometric models. The goal
of a clustering problem is to partition a point set inR

d into k different clusters such
that the cost of each cluster is at mostb. We consider three different variants of the
clustering problem (see, e.g., [3]):radius clustering, discrete radius clustering, and
diameter clustering. We say that a set of points isε-far from clusterablewith k clusters
of sizeb, if there is no clustering intok clusters of size(1 + ε) b. We show that it is
possible to test clusterability usingO(k/εd) oracle range queries.

Comparing our results to those in [3], we use a more powerful oracle but we also
have a more restrictive distance measure. Using our distance measure and the classical
oracle from [3], it is impossible to design a sublinear property tester for this problem.

Further, we show how to use our tester to maintain (under insertion and deletion of
points) an approximatek-clustering inR

d of size at most(1 + ε) times the optimum in
time polylog(n) for any constantsk, d, andε. Here,n denotes the current number of
points.

2 Testing Convex Position

Let us first consider the classical problem of testing if a point setP in the plane is
in convex position(that is, the interior of the convex hullconv(P ) contains no point
from P , or equivalently, all points inP areextreme). Our goal is to consider a practical
situation in which we allow some relaxation of the exact decision test and we consider
the following type of testers:
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(a) (b)

Fig. 1.Which of the two point sets is “more convex?” In Figure (a) it is enough to delete only 3
points (those in the top right corner) to obtain a point set in convex position; in Figure (b) one has
to remove much more points to do so. On the other hand, the points from Figure (a) are visually
far from convex position, while points in Figure (b) look similar as they were in convex position;
it is enough to perturbate them very little to obtain a point set in convex position.

☞ If P is in convex position, then the tester must accept the input.
☞ If P is “far” from convex position, then the tester “typically” rejects the input.
☞ If P is not in convex position, but it is close to being so, then the answer may be

arbitrary.

In order to use this concept we must formalize some of the notions used above. First
of all, we assume a tester is a possibly randomized algorithm and, following standard
literature in this area, by “typically” we shall mean that the required answer is output
with probability at least23 , where the probability is over the random choices made by
the tester (and thus, this lower bound of2

3 is independent of the input).

2.1 Distance Measures — Far or Close

A more subtle issue is what do we mean by saying thatP is “far” from convex position.
We pick a parameterε, 0 ≤ ε ≤ 1, which will measure the quality of how “close” is
P to convex position In the standard terminology used in the property testing literature
(see, e.g., [13,18]), one uses the following definition:

Definition 2.1. (Hamming distance)A point setP in the Euclidean spaceRd is ε-far
from convex position (according to the Hamming distance), if for any subsetS ⊆ P ,
|S| ≤ ε · |P |, setP \ S is not in convex position.

We found, however, that this measure often does not correspond to notions of the
distance used in geometry (see, e.g., Figure 1). It tells only about combinatorial properties
of the object at hand, but it tells very little about geometry behind the object. For example,
do we want to accept ann-point setP if it contains 1

2 ε n points that are very far away
from the remaining points that are in convex position (as, for example, in Figure 1 (a))?
Or perhaps, we consider such a setP as far from convex position? On the other hand,
if P contains anε fraction of points which makeP non-convex, but after a very small
perturbation of these points, the obtained set will be in convex position (see, e.g., Figure 1
(b)). Do we want to call such a point setε-far from convex position or not?
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It is clear that the distance notion is very application dependent, and in this paper we
investigate various distance measures which should be of practical interest, and study
basic problems from computational geometry for these distance measures.

We begin with a distance that measures how much the input points are allowed to be
moved (perturbated) in order to transform them into being in convex position.

Definition 2.2. (Perturbation measure)A point setP in thed-dimensional unit cube
is ε-far from convex position (according to the Perturbation measure), if for any pertur-
bation of points inP that moves any point by distance at mostε, the resulting point set
is not in convex position.

Because of scaling, the fact thatP is enclosed by the unit cube is assumed without
loss of generality.

We introduce also another measure that although very similar to the Perturbation
measure, will be more useful for our applications.

Definition 2.3. (Neighborhood measure)A point setP in thed-dimensional unit cube
is ε-far from convex position (according to the Neighborhood measure), if there exists
a pointp ∈ P for which thed-dimensional ball of radiusε with center atp does not
intersect the boundary ofconv(P ).

The next measure is more related to the volume discrepancy of the convex hull of the
input points. It differs significantly from the Perturbation and Neighborhood measures,
because this measure is relative to the volume ofconv(P ).

If a point setP is in convex position, then all points inP lie on the boundary of
convex hullconv(P ) and thereforeconv(P ) is also the maximal convex hull defined by
any (non-trivial) subset ofP whose interior contains no point fromP . In view of this,
we may want to considerP to be close to convex position, if a maximum (with respect
to the volume) convex hull defined by a subset ofP that contains no point fromP in its
interior1 is almost the same asconv(P ). If we use the volume measures for these two
objects, then we get the following definition:

Definition 2.4. (Volume measure)A point setP in R
d is ε-far from convex position

(according to the Volume measure), ifvol(EmpInt(P ))
vol(conv(P )) ≤ 1 − ε, wherevol(X) denotes

the volume of objectX andEmpInt(P ) is a maximum volume convex hull defined by
a subset ofP that contains no point fromP in its interior.

Now, we are ready to formally define property testing algorithms.

Definition 2.5. (ε-Testers)An algorithm is called anε-testerfor a propertyQ, if it
always accepts any input satisfying propertyQ and with probability at least23 , rejects
any input that isε-far from satisfying propertyQ.

Throughout the paper, we sayP is ε-closeto convex position if it is notε-far from
convex position.

1 Observe that in general that may be many such maximum convex hulls.
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Relations between different measures of closeness.How can we relate the four mea-
sures defined in Definitions 2.1–2.4?As we observed above, a point setP can be close to
convex position according to the Hamming distance, even if it is far (very far!) from con-
vex position according to the Perturbation, the Neighborhood, and theVolume measures.
Similarly, the opposite is also true:P may be very close to convex position according
to the Perturbation, the Neighborhood, and the Volume measures even it it fails for
the Hamming distance. But how about any relationship between the Perturbation, the
Neighborhood, and the Volume measures?

The first lemma shows that the first two measures are somehow equivalent for asymp-
totic complexity of the testers. It holds for any cost measure of query complexity, because
exactly the same tester is to be used.

Lemma 2.1. There is anε-tester for convex position according to the Perturbation
measure with query complexityT (n, ε) if and only if there is anΘ(ε)-tester for convex
position according to the Neighborhood measure with query complexityT (n, Θ(ε)). 2

Unfortunately, we were unable to provide a similar relationship between the Neigh-
borhood and the Volume measures. It seems to us that the latter one is more complicated.
We can only prove some partial results about similarity of these two measures, for ex-
ample:

Lemma 2.2. An εd-tester for the Volume measure is anO(ε)-tester for the Neighbor-
hood measure. ut

3 A New Model Using Geometric Queries

In the previous works on property testing, the complexity of a tester has been typically
measured as the number of input “atom objects” inspected, that is, as the number of
queriesto the input. The form of the queries allowed for the algorithm depended on the
input representation. And so, for example, if an input consists of a set ofn points (as
it is the case for testing if the points are in convex position), then it has been typically
assumed that one can use queries of the form: “what is the position of the kth point in the
input.” In the standard query complexity additional computational work is not counted
(for example, if we know positions of points inS, S ⊆ P , then the cost of computing a
convex hull ofS is not counted in the query complexity2). Our main observation is that
this notion of query complexity often does not suit well to study geometric properties,
or actually, to distance measures different than the Hamming distance. Indeed, if we
want to check if a point setP is ε-close to convex position according to the Perturbation

2 For example, in [7], it is shown that the query complexity for testing (according to Hamming
distance) if a point set inRd is in convex position isΘ(nd/ε)1/(d+1), while for d ≥ 4, the
“running time complexity” (which measures also the time required for all computations used by
the tester) isO(n polylog(1/ε)+ (n/ε)(dd/2e)/(1+dd/2e) polylog(n)), and it is quite possible
that it is optimal. Thus, in the most basic case, ford = 4 and constantε−1, the query complexity
isΘ(n3/4) while the “running time complexity” isO(n). This difference vanishes ford = 2, 3,
because in this case very efficient (almost linear-time) algorithms for testing convex position
are available.
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measure, then even a single point might be far away from the remaining points to make
this property false. Therefore, the algorithm must find this point with probability at least
2
3 , and this clearly requiresΘ(n) query complexity. Similar phenomenon holds also for
the Neighborhood measure and the Volume measure.

This observation shows that in order to model property testing for geometric proper-
ties and in order to obtain very efficient (sublinear-time) algorithms one has to reconsider
and change the notion of query complexity. Unlike in the very standard model, here we
want to allow more complex queries: those using certain geometric properties of the
input.

In most of geometric models (and in applications) even if the input is represented
by positions of the points (or other geometric objects), very often one maintains some
additional data structures for efficient and structured access to the input. One of the most
fundamental abstract data structure maintained by many algorithms working with points
are data structures for efficient answeringrange queries(cf. [1]). For the purposes of
this paper we adopt a model of computation in which the basis operation is a range query
to the input, and thequery complexityis the number of range queries to the input.

3Formally, we are given an unknown setP of n points inR
d that is defined by an

unknown functionFP : R
d × N → R

d ∪ {empty} such thatFP (R, i) returns theith
point in a query rangeR (according to some unknown fixed order) or the symbolempty,
if there are less thani points in the query rangeR.

The model defined above uses a very powerful oracle since we are allowed to specify
an arbitrary range when we query the oracle.To make our consideration of practical value,
it seems reasonable to require that such an oracle must be efficiently implemented.
Therefore, in this model we will restrict ourselves to the case thatR is a (possibly
unbounded) simplex. Most of the results presented in this paper hold even fororthogonal
range queries. Such queries are supported by many well known data structures such as
partition trees and cutting trees, as well as practical structures based on quad-trees or
R-trees (see, e.g., [1] for a more detailed discussion). There are efficient data structures
(see, e.g., [1]) to support our queries and a single query to such a data structure is usually
performed very fast (i.e., much faster than processing the whole point set). We believe
that the use of such range queries is very natural in our context, since many applications
(such as GISs) use data structures for range queries (e.g.,R-trees) to answer other kinds
of queries anyway.

In a similar way, depending on the problem at hand, one could assume that some
other very basicgeometric queriesare available; we do not discuss this issue in more
details however.

3.1 Property Testing Algorithms for Convex Position in the New Model

In this section we present our firstε-tester for convex position. It works for the Neighbor-
hood measure, and it shows that the use of geometric queries (orthogonal range queries)
allows to beat the lower bounds discussed in Section 3 and obtain the query complexity
of polylog(1/ε).

3 We formalize our model of computation only to inputs that are in the form of point sets; for
other input types the model can be defined accordingly in a similar way.
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The input for our tester consists of a point setP in thed-dimensional unit cube and
a real numberε, 0 < ε < 1, which defines the quality of the tester.'

&

$

%

Convexity-Test I (P, ε):
S = ∅
partition the unit cube into(2

√
d/ε)d sub-cubes of side-lengthε

2
√

d
for eachsuch sub-cubec do

if c contains a point fromP then add any such a point toS
if S is in convex positionthen accept

elsereject

In algorithm Convexity-Test I (P, ε) the operation of verifying ifc contains a
point fromP as well as the operation of returning a point fromP ∩ c is performed using
orthogonal range queries.

Theorem 3.1. Let P be a point set in thed-dimensional unit cube and letε be a real
number,0 < ε < 1. AlgorithmConvexity-Test I (P, ε) is a property tester that accepts
P only if P is ε-close (according to the Neighborhood measure) to convex position. It
usesO((

√
d/ε)d) orthogonal range queries. ut

Actually, we can slightly improve the complexity ofConvexity-Test I (P, ε) and
design anε-tester that uses onlyO((

√
d/ε)d−1) orthogonal range queries.

In the previous sections we discussed testing convexity properties in geometric set-
ting. Now, we give a tester for testing convexity properties of planar point sets using a
distance measure that is related to the Hamming distance (in fact, the distance measure
below is stronger). A tester for Hamming distance is presented in [7]. The main differ-
ence in our approach here is the use of geometric queries that leads a to substantial speed
up.

Definition 3.1. A setP of n points in the plane isε-far from being in convex position, if
at leastε n points inP are not extreme. (A point is extreme if it belongs to the boundary
of the convex hull ofP .)

It immediately follows.

Lemma 3.1. A tester for the distance measure in Definition 3.1 is also a tester for the
Hamming distance. ut

We can also prove the following lemma.

Lemma 3.2. In the standard property testing model (see, e.g., [7,13,18]), there is no
testing algorithm for the distance measure from Definition 3.1 that haso(n) query
complexity. ut

We can prove that the use of appropriate data structures for the geometric queries
allows us to design a tester with logarithmic query complexity. We assume the input
point setP is in general position.

Theorem 3.2. There is a tester for convex position in the plane with query complexity
O(log n/ε) that uses only triangular range queries. ut
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4 Map Labeling

In this section we consider the following basicmap labelingproblem:
Let P be a set of n points in the plane. Decide whether it is possible to place n

axis-parallel unit squares such that

✏ all squares are pairwise disjoint (labels do not overlap),
✏ each point is a corner of exactly one square (each point is labeled), and
✏ each square has exactly one point on its corners (each point has a unique label).

If a setS of n squares satisfies the conditions above, thenS is called avalid labeling
for P . The map labeling problem is known to beNP-complete and the corresponding
optimization problem is known to have no approximation algorithm with ratio better
than2, unlessP = NP [11].

In this section we develop a property tester for the map labeling problem. We use
the following Hamming distance measure:

Definition 4.1. A setP of n points in the plane isε-far from having a valid labeling, if
we have to delete at leastε n points to obtain a set of points that has a valid labeling.

When we consider the standard property testing model [13,18] that allows only to
sample random subsets ofP with a uniform distribution we can prove the following
result.

Theorem 4.1. For any constantδ, 0 < δ < 1, there is a positive constantε such that
there is noε-tester for the labeling problem witho(n1− 1

2δ+1 ) query complexity in the
standard testing model. ut

We show now that if we use the computational model that allows/supports geometric
queries we can design a tester withO(1/ε3) query complexity. It is based on the approach
developed in [9] and [16].'

&

$

%

LabelTest(P ):

choose a sample setS of sizeO(1/ε) uniformly at random fromP
for eachp ∈ S do

i = 0, T = ∅
Let S be the axis parallel square with centerp and side length16d1/εe
while i ≤ (16d1/εe + 2)2 do

Let q be thei-th point in the query rangeS
if q 6= ∅ then T = T ∪ {q}

if T does not have a valid labelingthen reject
accept

Theorem 4.2. AlgorithmLabelTest is a tester for the labeling problem that has query
complexityO(1/ε3) and running timeexp(O(1/ε2). ut
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5 Clustering Problems

In this section we design testing algorithms for three geometric clustering problems.
The goal of a clustering problem is to decide whether a set ofn pointsP in R

d can be
partitioned intok subsets (calledclusters) S1, . . . , Sk such that thecostof each cluster
is at mostb. There are several different ways to define the cost of a cluster. LetS be a
set of points inRd. We consider the following variants:

Radius Clustering: The costcostR(S) of a clusterS is twice the minimum radius of
a ball containing all points of the cluster.

Discrete Radius Clustering: The costcostDR(S) of a clusterS is the minimum radius
of a ball containing all points of the cluster and having its center among the points
from P .

Diameter Clustering: The costcostD(S) of a clusterS is the maximum distance be-
tween a pair of points of the cluster.

The goal of our property tester is to accept all instances that admit a clustering into
k subsets of costb and to reject with high probability those instances that cannot be
clustered intok subsets of cost(1 + ε) b.

Definition 5.1. A point setP is (b, k)-clusterable for a cost measurecost(), if there is
a partition ofP into setsS1, . . . Sk such thatcost(Si) ≤ b for all 1 ≤ i ≤ k. A point
setP is ε-far from being(b, k)-clusterable, if for any partition ofP into setsS1, . . . Sk

at least one setSi has cost larger than(1 + ε) b.

In the standard context of property testing, Hamming distance (that is, a point set is
ε-far from clusterable, if we have to remove at leastεn points to make it clusterable) has
been used before [3]. For the diameter clustering problem the distance measure used in [3]
has the additional relaxation that a point set isε-far from(b, k)-clusterable, if one has to
removeεn points to make the set((1+ε) b, k)-clusterable. Thus, this definition assumes
a geometric and a combinatorial relaxation of the corresponding decision problem. We
require only the geometric relaxation.

Let us assume, without loss of generality, thatb = 1 and thus we want to design
a tester for the problem whether a point setP is (1, k)-clusterable for the three cost
measures above. We partitionR

d into grid cells of side lengthε/(3
√

d). For each cell
containing an input point, we choose arbitrary input point from the cell as its represen-
tative. Then, we compute whether the set of representatives is(1, k)-clusterable. If it is
so, then we accept it, if it is not so, then we reject it. Clearly, any set of points that is
(1, k)-clusterable is accepted by the algorithm. On the other hand, any instance that is
ε-far from (1, k)-clusterable will be rejected. (This approach has been introduced in [2]
to obtain a(1 + ε)-approximation algorithm for the radius clustering problem.)

Our algorithms starts with an empty box with endpoints at infinity. Then we query
for a point in this box. We allocate the corresponding grid cell and partition the box into
the3d sub-boxes induced by the hyperplanes bounding the grid cell. Then we continue
with one of these sub-boxes. If we find an empty sub-box, it will be marked. If there are
only marked boxes the algorithm terminates.

So far, our partition into grid cells works fine, if there are many points in a single
cell. On the other hand, if no two points are in the same grid cell, the algorithm hasΩ(n)
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query complexity. Thus we need an upper bound on the number of grid cells, whose
representative may form a cluster.

Lemma 5.1. LetS be a set of points inRd no two points of which belonging to the same
cell of a grid of sizeε/(3

√
d) < 1. If cost(S) ≤ 1 for any of the three cost measures

described above, then|S| ≤ (6
√

d/ε)d, wherecost(·) ∈ {costR, costDR, costD}. ut
Let V = k · (6

√
d/ε)d the maximum number of cells that can contain points that

belong to one of thek clusters. We observe that we can stop our procedure if the number
of representatives isV . Thus, we can guarantee that the algorithm requires at mostV ·3d

range queries.

Theorem 5.1. There is anε-tester for the radius clustering and diameter clustering
problem that uses at mostk · (18

√
d/ε)d orthogonal range queries. There is anε-tester

for the discrete radius clustering problem that usesk · (162
√

d/ε)d orthogonal range
queries. ut

5.1 Dynamic Clustering

In this section we consider the problem of maintaining an approximate clustering of
points inR

d under the operationsinsertanddelete. Obviously, we can call the decision
procedure from the previous sectionO(log1+ε B) times to find a clustering of size at
most(1+ε)B whereB is the size of an optimal clustering andB ≥ 1. When we combine
this with a dynamic data structure that supports orthogonal range queries in timeA(n)
(to report a single point in the query range) and update timeU(n) we immediately obtain
the following result.

Corollary 5.1. We can maintain an(1 + 5ε) approximate radius/diameter clustering
of a point setP in R

d (d constant) under the operationsinsert and delete in time
O(U(n) + log1+ε B · (A(n) · k/εd + exp(O(k/εd))). If the parametersε, d, andk are
constants this isO(U(n) + A(n) + log1+ε B) time. ut

Now, we want to obtain a time bound that is independent of the size of the clustering.
We shall require an additional kind of oracle access: we allow the tester to query the oracle
for the number of points within a certain range (this procedure could be also performed in
our prior model in a logarithmic cost). We also need a procedure to compute a minimum
(axis parallel) bounding box for the points inside a given cell. This can be easily done
with O(d log n) expected oracle accesses.

To avoid a simple binary search we use this bounding box. The size of the bounding
box will always be the length of its longest side. Then we compute a clusteringC for
the current grid size (using the representatives for each cell). Ifl is the size of the largest
bounding box of all grid cells, then we know thatP can be clustered at cost at most
cost(C) + 2 · √

d · l. Note that we can stop our process ifs
cost(C) ≤ ε/(3

√
d) wheres

is the current size of the grid.
If we cannot stop we continue with a grid of sizel/2. This way the number of grid

cells with representatives is at most3d times the previous number of grid cells and there
is at least 1 more such cell. We continue this procedure until we get a lower bound on
the size of the current clustering. Then we have to do a logarithmic number of further
steps and we are done.
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Theorem 5.2. We can maintain an(1 + ε) approximate radius/diameter clustering of
a point setP in R

d (d constant) under the operationsinsertand deletein timeU(n) +
O(exp(O(V )) · (k + log(1/ε) + A(n) · V · log n · (k + log(1/ε))). If k, d, andε are
constants then this isO(U(n) + A(n) · log n). ut
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