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Abstract

We considerthe problemof computingthe weight of a Euclidean
minimumspanningtreefor asetof � pointsin �	� . Wefocusonthe
situationwhentheinputpointsetis supportedby certainbasic(and
commonlyused)geometricdatastructuresthatcanprovideefficient
accessto the input in a structuredway. We presentan algorithm
that estimateswith high probability the weight of a Euclidean
minimumspanningtreeof asetof pointsto within 
���
 usingonly������ � poly

� 
���
���� queriesfor constant� . The algorithmassumes
that the input is supportedby a minimal boundingcubeenclosing
it, by orthogonalrangequeries,andby coneapproximatenearest
neighborsqueries.

1 Intr oduction

As the power andconnectivity of computersincreases,and
the cost of memory becomescheaper, we have become
inundatedwith largeamountsof data.Althoughtraditionally
lineartime algorithmsweresoughtto solve our problems,it
is nolongerclearthata lineartimealgorithmis goodenough
in every setting.Thequestionthenis whetherwe cansolve
anythingof interestin sublineartime,whenwe arenot even
given time to readall of the input data. In recentyears,
severalsublineartimealgorithmshavebeenpresentedwhich
solve a wide rangeof property testingand approximation
problems.

In this paperwe considertheproblemof estimatingthe
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weightof a minimumspanningtree,wheretheinput is a set
of points in the Euclideanspace�#" . Sincethe locationof
a single point may dramaticallyinfluencethe value of the
weightof theEuclideanminimumspanningtree(EMST), we
cannothopeto get a reasonableapproximationin sublinear
time with only accessto the locationsof thepoints. This is
trueevenwhenwe considerprobabilisticalgorithms.How-
ever, it is oftenthecasethatmassive databases,particularly
in a geometriccontext, containsophisticateddatastructures
on topof theraw data,thatsupportvariousformsof queries.
Examplesof suchqueriesarethenearestneighborof apoint,
or the point with the highestvaluein a coordinate.Conse-
quently, in thispaper, weassumethatalgorithmshaveaccess
to certaincommonlyuseddatastructureswhichaidthealgo-
rithm in its computation.This maybeconsidereda motiva-
tion for maintainingsuchdatastructures,particularlyif they
aid in othertasksaswell.

Results. In this paper we describethree algorithms for
estimatingthe weight of a Euclideanminimum spanning
tree over $ given points in a Euclideanspace � " , where
the algorithms are given accessto basic geometricdata
structuressupportingthe input. It shouldbe notedthat our
algorithmsdo not supplya low weightspanningtree(which
takeslinearspaceto represent),but only estimateits weight.

We first considerthecasewhenthe algorithmis given,
in addition to accessto the input point set, (1) a minimal
boundingcubethat containsall points in the input setand
(2)accessto anorthogonalrangequerydatastructurewhich,
givenanaxis-parallelcube,answerswhetherthereis aninput
point within the cube. In this model,we give an %'&($*),+.-0/ -
time algorithmfor the 1 -dimensionalcasewhich outputsa
value2 suchthat )3 EMST &(4�/65879$;:=<	>?2@>BA EMST &�4�/DC79$ :=< , where AFEHGI&J$ )K+.LNMPO6Q $R/ , 7 is the side-lengthof a
minimalaxisparallelboundingcubeof thepointset,and S is
anarbitraryconstant.We alsoshow thatany algorithmthat
usesno morethan %T&J$*)K+.-U/ orthogonalrangequeriescannot
significantlyimprovethequality of approximation.

Wenext considerthecasewhenin additionto theabove
datastructures,wearealsogiven(3) accessto aconenearest
neighbordatastructure,whichgivenapoint V andaconeW ,
returnsa nearestpoint to V in the coneV'CXW . Our second
algorithm combinesthe extra power of the cone nearest



neighbordata structureswith someideasfrom the recent
sublinear-time algorithmfor estimatingthe MST in general
graphs[13]. Thealgorithmoutputsa valuewhich is within
a YZC\[ factorof the EMST andit runs in %'&]16^`_ "ba9cedgf [ih�/
time, where d is the spreadof 4 (ratio betweenmaximum
andminimumdistancebetweenpointsin 4 ); observe that d
canbearbitrarily large.

The third algorithm we presentdoesnot have any de-
pendency on d andrequiresonly coneapproximatenearest
neighborquerieswhich we definein thenext section.For a
constantj , the algorithmneeds k%l&]m $ poly &,Y f [i/K/ time and
outputsan approximationof the EMST weight to within a
multiplicative factorof YnC?[ . The algorithmcombinesthe
ideasfrom our first two algorithms. It partitionsthe input
points into componentsandestimatesthe EMST separately
by consideringpairsof pointsthatlie in thesamecomponent
andpairsof pointsthatbelongto differentcomponents.To
estimatethe EMST within components,we useanextension
of our secondalgorithm. To estimatethe weight required
to connectthe componentswe usea variantof our first al-
gorithm. Thecombinationof thesetwo algorithmsleadsto
a significant improvementin the quality of approximation
(comparedto the first algorithm) and in the running time
(comparedto thesecondalgorithm).

Relation to previous works. The Euclidean minimum
spanningtree problem is a classicalproblem in computa-
tional geometryandhasbeenextensively studiedin the lit-
eraturefor morethantwo decades.It is easyto seethat to
find the EMST of $ points, %T&(jo$p-U/ time suffices,by reduc-
ing it to the MST problemin densegraphs. In the simplest
casewhere jXEq1 (on the plane),Shamosand Hoey [29]
show that the EMST problemcan be solved in %T&J$ MrOeQ $R/
time. For j?sut , no k%T&J$R/ -time algorithmis known andit
is a majoropenquestionwhetheran %T&J$ MrOeQ $R/ -time algo-
rithm exists even for j@Evt [17]. Yao [32] was the first
who broke the %'&($p-U/ -time barrierfor jwsut anddesigned
an k%l&J$*)yx L�/ -time algorithmfor jzE{t . This boundhasbeen
laterimprovedandthefastestcurrentlyknown (randomized)
algorithmachievestherunningtimeof k%T&J$}|y+Kh0/ [2] for jIE~t
(and the running time tendsto %'&($p-U/ as j grows). Sig-
nificantly better boundscan be achieved if one allows to
approximatethe output. CallahanandKosaraju[8] give a%'&($ MrOeQ $�C�$ MrOeQ &,Y f [i/�[�: " +.-�/ -timealgorithmthatfindsan
approximateEuclideanminimum spanningtreeto within a
multiplicative factorof Y9C�[ .

Our algorithmsrely on a recentalgorithmof [13] that,
givenaconnectedgraphin adjacency list representationwith
averagedegreej , edgeweightsin therange �PYo�����K�F� , anda
parameter����[�� )- , approximates,with high probability,

theweightof aminimumspanningtreein time k%T&(j���[�:�h�/
within a factorof YnC�[ . The time bounddoesnot directly
dependon thenumberof verticesor edgesin thegraph.

Dynamic algorithms. Our model of computationis also
interestingin the context of dynamic algorithms. There
exist fully dynamicalgorithmsthatmaintainEMST subjectto
point insertionsanddeletions;[16] givesan algorithmwith
amortizedtime k%T&]m $R/ and %T&J$*)y:���/ per updateoperation
for j�>�� and j��u� respectively. A disadvantageof this
algorithm(andof all typical dynamicalgorithms)is that it
requiresasmuchas k%l&]m $R/ time per input update,making
the algorithm very costly in situationswhere the EMST

queriesarevery rare. Thedatastructureswe requirein our
settingare dynamicallymaintainedby standardgeometric
databasesanyway. Thus,if thedatabasesupportsall required
datastructuresin polylogarithmictime, the amortizedtime
requiredby our algorithm is k%T&]m $ fe� / , where � is the
typical numberof updatesper one EMST calculation. We
noteagainthatour algorithmdoesnot supplytheminimum
spanningtree,but returnsonly its approximateweight.

Organizationof the paper. Westartby presentinganalgo-
rithm thatonly needsaccessto a minimal boundingcubeof
the point set 4 andto an orthogonalrangequeryoraclein
Section3. In Section5, we presenta simplealgorithmthat
usesadditionallythe conenearestneighbororacle. Finally,
in Section6, we discussthe main contribution of this pa-
per, asublineartimealgorithmthatusesaminimalbounding
cubeoracle,theorthogonalrangequeryoracleandthecone&,Y9C��i/ -approximatenearestneighbororacle.

2 Preliminaries

For a given set 4 of points in a Euclideanspace � " , a
(Euclidean) graph on 4 can be modeledas a weighted
undirectedgraph ��E�&(4	�K��/ , where 4 is a vertex set,� is a subsetof the (unordered)pairs of points in 4 , and
the length/weightof edge �KV*�K��  is equalto the Euclidean
distancebetweenpointsV and � , denoted¡ V��¢¡ . Theweightof
thegraph is thesumof theweightsof its edges.

Throughoutthe paperwe denoteby £	¤ the complete
graph on 4 where the edge weights are the Euclidean
distancesbetweenthe endpoints. A graph � on a set
of points 4 is called a Euclideanminimumspanningtree
(EMST) of 4 if it is a minimum-weightspanningsubgraph
of £ ¤ . We denoteby EMST &(4�/ boththeEMST of 4 andthe
weightof theEMST of 4 . Similarly, for a givengraph � we
will denoteby MST &(��/ theminimumspanningtreeof � as
well astheweightof theminimumspanningtreeof � .

For a givenpoint set 4 , we denoteby d the spreadof4 , thatis, theratiobetweenthemaximumandtheminimum
distancesbetweenpoints in 4 . We let ¥9¦ be a minimal
boundingcubeof 4 (whichis madeavailablevia theminimal
boundingcubeoracle) andlet 7 denoteits sidelength.

2.1 Models of computation. In this paperwe usesome
basicgeometricdatastructuressupportingaccessto theinput



point set. Givena point set 4 in �#" , we usedatastructures
supportingthefollowing typesof queries:§ minimal bounding cube of P: returns the location

of a minimum size axis-parallel j -dimensionalcube
containing 4 , that is, returnsthe location of a cubeW{E¨� © ) �.© ) CBªn�;«�� © - �K© - C?ªZ�*«�������«�� © " �K© " CwªZ�
thatcontains4 suchthatno axis-parallelcubeof edge
lengthsmallerthan ª contains4 .§ (orthogonal) range query oracle: for a given axis-
parallelcube W , testsif W containsa point from 4 .§ cone &¬Y­CX�i/ -approximate nearest neighbor oracle:� is any non-negative real numberand it is assumed
thata setof cones¦ with apexesat the origin is given
in advance. The cone &,Y'Cu�i/ -approximatenearest
neighbororacle,for a given point V�®F4 anda given
cone W¯®°¦ , returnsa &¬YIC±�i/ -approximatenearest
neighbor1 of V in &�4{²I�.Vp 0/9³\&´V�C�W­/ . (We denote
by VµC�W the translatedcone �U©'C?V·¶	©�®·W�  .) If&(4@²��KVp D/;³w&´VlCXW­/ is empty, thena specialvalueis
returned.

In thespecialcasewhere��E~� , theoraclegivesthetrue
nearestneighbor, andis simply calledtheconenearest
neighbor oracle.

Appendix A presentsa discussionaboutthe complex-
ity of thesedatastructures,which canbe implementedeffi-
ciently by standarddatastructures.Theconenearestneigh-
bor oracle,however, is morecostly and lesscommonthan
theconeapproximatenearestneighbororacle..

3 Estimating the EMST with bounding cube and range
queries

Here we describea naturalapproachto the approximation
of EMST &(4�/ using minimum bounding cube oracle and
orthogonalrangequeries. This approach,by itself, does
not give a good enoughmultiplicative approximation,but
is usedas a building block in the sublinearalgorithm we
presentlater. For simplicity, we only describeherethe two
dimensionalcase( jHE¸1 ). The algorithm we supply is
deterministic,hasrunningtime %T&J$ )K+.- / andoutputsavalue2 suchthat )3 EMST &(4�/p5l¹�>?2@>BA EMST &�4�/�Cº¹ , whereA{E�%T&J$*)K+.L MPO6Q $R/ , and ¹»E¼7'$;:}< where 7 is the side-
lengthof a minimal boundingcubeof 4 and S is a constant.
We alsoshow thatany algorithmthatusesthesamerunning
time (in fact,thesameamountof queriesandarbitrarylarge
runningtime)cannotsignificantlyimprovethequalityof the
approximation.

1For apoint ½¿¾¿À andasetof points ÁÃÂ'�	� , a Ä(Å�ÆIÇ.È -approximate
nearestneighborof ½ in Á is any point É9¾�Á suchthatfor every Ê­¾�Á it
holdsthat Ë ½iÉ0Ë�ÌzÄ�Å=Æ�ÇbÈ�Í�Ë ½DÊ¢Ë .

The quad-treealgorithm. We apply a standardquad-tree
subdivision to the boundingcube ¥9¦ (see,e.g., [7, Chap-
ter 14]). That is, we first partition ¥`¦ into four disjoint
blocks(squares)of equalsize. We cancheckwhich blocks
containpoints from 4 via orthogonalrangequeries. We
then further subdivide thosenonemptyblocks, and iterate
this processaslong asfewer than GI&]m $R/ queriesaremade.
This inducesa treestructureon the blocks,wherea block
at level Î hasside length 7 f 1iÏ . Let Ð be the depthof this
tree.We mayassumethatall nonemptyblocksat level ÐN5�Y
weresubdivided into subblocks(of level Ð ) andeachsub-
block of level Ð wasqueried.Let Ñ bethesetof nonempty
blocksat level Ð andlet Ò�EH¡ Ñz¡ . Clearly Ò�E·%T&]m $R/ . We
now run any minimum spanningtreealgorithm(a &¬YnC~[e/ -
approximationis goodenough)on thecentersof theblocks
in Ñ . Thiswouldresultin avalue Ó . Weset � E~Ó�CzÔ m Ò�$
where ÔzEÕ7 c 1 :=Ö andoutputthe value 2HE m Ó � asan
approximationfor ×¿Ø#E EMST &�4�/ .
CLAIM 3.1. )3 ×¿Ø�5�¹Ù>Ú2¯>ÛA�×¿Ø8C±¹ , where AÙE%T&J$*)K+.L MPO6Q $R/ , ¹ºE~7'$;:}< and S is an arbitrary constant.

Proof. (sketch) First note that the minimum spanningtree
of any $ points in a squarewith side-lengthÜ is %'&]ÜZm $R/
andthis boundis tight. (e.g.,whenthepointsareuniformly
spread(say, on thegrid with edgelength Ü f m $ .)

Now, weset Ó	Ø betheweightof aminimumweighttree
that touchesevery block in Ñ . It is easyto seethat Ó	ØÝ>×NØ�> � (the last inequality is by the above upperbound
andusingconvexity). Assumenow that ÒZs\m $ f &¬YU� MrOeQ $R/ ;
thenit canbeseenthat Ó upperboundsÓ�Ø andapproximates
it within an additive term of %T&�ÔÞÒ�/ , and hencewithin a
constantfactor, say � . Namely, © c Ò c ÔI>XÓ Ø >XÓF>\� c Ó Ø
for someconstants© and � .

Hence,as � is anupperboundon ×¿Ø , theapproximation

factoris A±>qßàÕEâá ßã¨EH%T&,&Uä�å æ0çãè/.),+.-0/ (wherethe last
inequalityfollows by pluggingin the expressionfor � andÓ ). Now, by theabove boundon Ó andon Ò we obtainthatA�>êé%T&J$*)K+.LU/ .

Assumenow that Òw�qm $ f &¬YU� MPO6Q $R/ , then it can be
seenthat the depthof the quad-treeis at least Y�� MrOeQ $ and
henceÔ­>?7 c $;:p)�ë . Therefore,theadditivetermis bounded
by � 5�ÓB>\%T&�Ô c m Ò�$p/oEF%T&J$;:p)�ë c 7 c $R/oEì%'&($;:�íU/ . î

A noteon therunningtime is duehere.We use %T&]m $R/
queriesin the courseof constructingthe quad-tree. Next,
we have to find theminimumspanningtree(or any &¬Y#C?�i/
approximationto it for any fixed � ). In thetwo dimensional
casethis canbe donein éï & m $R/ time ([29]), andthis term
dominatesthetotal complexity.

As it turns out, the above quality of approximationis
optimal for thegiventime boundasshown by thefollowing
claimwhoseproof is deferredto thefull versionof thepaper.



CLAIM 3.2. Any algorithm with %T&]m $p/ orthogonal range
queries has an approximation factor for EMST &(4�/ ofð &J$*)K+KLU/ .
Higher dimension. For fixed j?��1 , the quad-treecanbe
replacedby a 1 " -ary tree. A total of %T&�1 " m $R/ orthogonal
range querieswill be made in a similar way. Then 7
will be set as in the 2-dimensionalcasewhile � Eñ7XCÔ*Ò )K+ " $ _ " :p) a + " . In this casewe getanapproximationwith a
multiplicative factorof A�EÚéï &($;_ " :}) a +�_´| "ba / andanadditive
termwhich is 7 c $;:=< for arbitraryconstantS .

Finally, wenotethatourchoiceof using %'& m $R/ orthog-
onal rangequerieswasarbitrary, in the sensethat onecan
usea differentnumberof queriesandobtaina whole range
of tradeoffs betweentherunningtime andthequality of ap-
proximation.

4 Two relatedprevious results

We now describetwo previousresultsthatwe utilize in our
EMST algorithms: the conceptof Yao graphs[32] and an
algorithm for approximatingthe MST in boundeddegree
graphsdueto Chazelleet al. [13].

Yao graphs. Yao graphsare Euclideangraphsthat relate
the EMST to the conenearestneighbororaclepresentedin
Section2.1. Fix an integer jìs�1 . Let ¦ be a collection
of j -dimensionalconeswith apex at theorigin suchthat (a)
eachconehasangulardiameter2 at most ò , where ò is some
fixed angle,and(b) ó8ôoõiö�WâE÷� " . Thereis alwayssuch
a collection ¦ of %T&(j�h.+.- ciøKùPú : " &Jò f 1e/ c MPO6Q &�j ø,ùrú :p) &Jò f 1e/K/,/
cones(not necessarilydisjoint); notethat for òTE{%T&¬Y0/ this
boundis 1�^`_ "ba . Yao[32] givesonepossibleconstructionfor
suchacollection.

For a point Vû®ü� " and a cone Wý®â¦ , let Woþ beV�CìWÿEÙ�U© CBV ¶H©ì®±W�  , that is, a translationof W
sothatits apex is at V . Let

� ¤�� VR�bW�� bethenearestneighbor
of V in the set &(4»²8�KVR 0/;³�Woþ . Given a point set 4 anda
collectionof cones¦ , theYao graphof 4 (with respectto ¦ )
is theEuclideangraph � with vertex set 4 and(undirected)
edgeset �âE°��& V*�K�i/¿¡���Wâ®B¦ suchthat ��E � ¤�� VR�bW��b  .
That is, eachV~®?4 is connectedto its nearestneighborin
eachconewhich hasV at its apex. Thefollowing resultdue
to Yao[32] motivatesour useof thesegraphs.

CLAIM 4.1. [32] For any point set 4v®»� " , let � be the
undirectedYao graph for 4 with òü�	� f t . Then, the
Euclideanminimumspanningtreeof 4 is a subgraphof the
Yao graph � . î

2The angulardiameterof a cone 
 in �	� having its apex at point½�¾�� � is definedas the maximumanglebetweenany two vectors � �½DÊ
and � �½�
 , Ê���
n¾�
 .

Chazelleet al.: approximate MST in low-degreegraphs.
Ouralgorithmsmakeuseof arecentalgorithmfor estimating
the MST in graphsdue to Chazelleet al. [13]. This
algorithmassumesthat the input graph(i) is representedby
anadjacency list, (ii) hasdegreeatmost � (thefull versionof
[13] allows � to betheaveragedegree),and(iii) hasknown
minimumandmaximumedgeweights.Then,for ���w[�� )- ,thealgorithmestimatestheweightof theminimumspanning
treewith arelativeerrorof atmost [ , with probabilityat leasth| , andrunsin time %'&�� c�d�c MPO6Q &�� d	f [i/ f [ih�/ .

Let � EÙ&��`�K�8/ , be an input graphhaving $ vertices
with maximumdegree � and edgeweights in the interval�PYe� d � . For any 2ü®F� , let ��_ à a denotethe maximalsub-
graphof � containingedgesof weight at most 2 , and S à
denotethe numberof connectedcomponentsin ��_ à a . The
main ingredientof the algorithm from [13] is a procedure
approx-number-connected-components runon � _ à a for estimat-
ing S à for 2ÙEê& )- C�Î�/ c [ with ÎzEÛYe�.1¢�������y� dgf [ . For
integer weights, the weight of the MST of � is equal to$�5 d C���� :p)��� ) S � . The algorithmusesthe above estima-
tionsto produceavaluewhich,with probabilityat least h| , is
a &¬Y ��[e/ -approximationof theMST of � .

Procedureapprox-number-connected-components worksby
sampling %T&¬Y f [i-�/ verticesin � . For eachsampledver-
tex ! , a random estimator "$# is computedby travers-
ing ��_ à a from ! (for example,using breadth-firstsearch)
with a stochasticstoppingrule. " # is a randomvariable
whosedistribution is a functionof only thesizeof thecon-
nectedcomponentcontaining! (i.e., thenumberof vertices
reachedfrom ! in the traversal) in ��_ à a . The simple re-
lation betweenthesesizesand S à togetherwith the fact
that the distribution of " # is concentratedaroundthe ex-
pectedvalueyieldstheconnectionbetween" # and S à . Pro-
cedureapprox-number-connected-components runs in expected
time %'&���[�:�- MrOeQ & d	f [e/,/ . Therefore,the expectedrunning
timeof thealgorithmin [13] is %T& d ��[�:�h MPO6Q & d	f [i/K/ .
5 A simpleestimation for EMST usingYaographs

The algorithmwe presentin this sectionis conceptuallyan
importantcomponentof the sublinearalgorithmwe design
later in Section6. It combinesthe two resultsdescribed
in Section4. Our algorithmusesthe conenearestneighbor
oracleandachievesa querycomplexity of 16^`_ "bapc k%l& dgf [i-�/ .

Sinceby Claim 4.1 the undirectedYao graph � for 4
containsall edgesof the EMST of 4 , it is naturalto try to
apply the algorithmof Chazelleet al. to � to estimatethe
weight of the EMST of 4 . To do that efficiently, insteadof
generating� at thebeginningof thealgorithm,we generate
the edgesof � (using the conenearestneighborqueries)
only when the edgesareneededin the algorithm. That is,
wheneverthealgorithmneedsedgesadjacentin � to avertexV , we use the cone nearestneighborquery to obtain the
nearestneighborof V in eachconein �.V;C�W�  ô õiö . Motivated



by Claim 4.1, we set the angulardiameterof the conesto
� f � . This createspartsof an implicit directedYaograph �
on 4 with edges &´VR�.�i/ suchthat thereis a WÚ®»¦ where�NE � ¤�� VR�.W�� .

The above approachhasa numberof problems. First,
thealgorithmof Chazelleetal. requirestheinputgraphto be
undirectedandrepresentedby anadjacency list, whereasin
our model,we have fastaccessonly to the out-goingedges
at a vertex in � . Furthermore,the running time is linear
in d , which canbe arbitrarily large. The following lemma
helpsin overcomingthefirst difficulty, while thesecondone
is tackledin the mainalgorithmin Section6. The proof of
Lemma5.1,beingaspecialcaseof Claim 6.1,is omitted.

LEMMA 5.1. Let $&%# be the numberof verticesin £ ¤ that
are reachablefrom ! usingonly edgesof weightat most ' .
Let ( % # be the numberof verticesin directedYao graph �
reachablefrom ! usingonlyedgesof weightat most' . Then
( % # E\$ % # . î

Equippedwith this lemma, we can modify the algo-
rithm due to Chazelleet al. to obtain its efficient imple-
mentationin our model. The only differenceis in pro-
cedureapprox-number-connected-components. We still sample%'&,Y f [i-�/ verticesandrandomlytraverse��_ à a from thesam-
pledvertices.To implementthetraversingalgorithmwe ex-
plore thegraphin a breadth-firstsearchfashionby going to
theoutgoingneighborsof theverticesthatarecloserthanthe
currentthresholdweight 2 . Sucha procedurecanbeeasily
implementedin our modelby usingtheconenearestneigh-
bor queries;the runningtime is proportionalto the number
of the edgestraversed.To estimatethe valueof S à we use
the sameestimatorsas in [13]. Sincefor eachvertex ! in
thesample,thedistribution of " # dependsonly on ( à# , the
numberof theverticesreachablefrom ! in ��_ à a , by Lemma
5.1,we canconcludethat " # hasidenticaldistribution asin
thealgorithmof Chazelleet al. [13]. Therefore,thequality
of thisalgorithmof theestimationof EMST of 4 is thesame
asin thealgorithmof Chazelleet al. [13]. Sincethemaxi-
mumout-degreeof thedirectedYaographis 1 ^`_ "ba , themod-
ified procedureapprox-number-connected-components hasiden-
tical complexity asthatof runningtheoriginal algorithmof
Chazelleetal. in a(undirected)graphwith maximumdegree16^`_ "ba . Thus,we obtainthefollowing lemma.

LEMMA 5.2. Let 4 be a set of points in � " . Assumethe
value d of the spreadof 4 is knownand accessto a cone
nearestneighbororacle for 4 is given. Then, there is an
algorithm that outputsa value ) which, with probability
at least h| , approximatesthe valuesof EMST &(4�/ to within

a factorof Y*�º[ with querycomplexity k%,+ 16^`_ "baRc�d�f [ih.- . î
For constantj and [ , this complexity is k%T& d / , which is

sublinearfor d E0/ &J$R/ . However, for example,ontheplane,

d is known to be
ð & m $R/ . Next we discussa truly sublinear

approximationalgorithmwhosecomplexity is independent
of d .

6 Sublinear-time approximation algorithm

We show how thetwo algorithmsfrom Sections3 and4 can
complementeachother. In additionto improvingtherunning
time,our algorithmrequiresa weakercomputationalmodel,
in which theconenearestneighborqueryis replacedby the
cone &¬Y9Cw�i/ -approximatenearestneighborquery.

Overview of the algorithm. In Section6.1, we begin by
partitioninga minimal boundingcube ¥`¦ of 4 into blocks
of equalsize;wethenconsideronly blockscontainingpoints
from 4 . Next, we grouptogetherblocksthatare“close” to
eachother. We call the resultingclustersconnectedblock-
components. The algorithm then proceedsin two phases.
First,in Section6.3,weshow how to approximatetheweight
of aminimumspanningforest(MSF) of theconnectedblock-
componentsby using the ideasof Section5. We then, in
Section6.4,approximatetheoptimalway to connectdiffer-
ent connectedblock-components.We prove in Lemma6.1
that the MSF of the connectedblock-componentscombined
with theoptimalsetof edgesjoining themapproximatesthe
EMST of 4 .

6.1 Partitioning bounding cube into active blocks, and
connectedblock-components.After translationand scal-
ing of thepointsin 4 we canassumethat ¥9¦ , thebounding
cubeof 4 , is � �¢�K$ f [0� " . In particularthesidelengthis 7@E$ f [ andwe havethetrivial lowerboundEMST &(4�/	sB$ f [ .
Partitioning the bounding cube into active blocks. We
follow theapproachfrom Section3with smallmodifications,
by extendingit to higherdimensionsandapplyingadifferent
stoppingprocedure. We first partition ¥`¦ into 1 " disjoint
blocksof equalsize,thenpartition iteratively thenonempty
onesinto 1 " disjoint subcubes,and so on. As before, Ò Ö
is the numberof blocksat level Ð that containpoints from4 (active blocks), and 1 Ö E 7 f 1eÖ is the side length
of blocks in the Ð th level of the subdivision. Let Ò�Ø±E2$354 ��[ " +.-�:�hRm $ �.1 "76 )�  . We stop our subdivision at the
first level Ð ë such that either Ò Ö78 s Ò�Ø or 1 Ö78 � 1D[ .
Let ÒwEêÒ Ö78 and 1 E91 Ö78 . Notice that Ò~>Ù1 " Ò�Ø and
1÷s~[ . By our argumentsfrom Section3, theactive blocks
at level Ð ë canbefoundby queryingtherangequeryoracle%T&�Ò}1 " MrOeQ &($ f &J[51�/K/ times.

Spannersand connectedblock-components.For any :¿sY , a : -spanner(see,e.g.,[8, 15, 21]) for a set ; of pointsin
a Euclideanspaceis any Euclideangraph � with thevertex
set ; suchthat for every pair of points <*�>=~®0; thereis a
pathin � between< and = of total lengthat most : c ¡ <?=p¡ .



Let Ñ be the set of centersof active blocks and let@BADC
be a &¬Y'C{[ f ��/ -spannerof Ñ with %T&�Ò;&(� f [e/ " :})y/

edges. Sucha spannercan be found in time %T&�Ò MrOeQ ÒNCÒ MrOeQ &¬Y f [e/�[�: " /oEük%T&�1 " m $µ[6)y: " +.-�/ [8].
Call two blocks close if the distancebetweentheir

centersin
@BADC

is at most E c 1 , whereEºE»Y�� m j f [ .
Weuseequivalenceclassesof therelationcloseto define

theconnectedblock-components. That is, two blocksarein
thesameconnectedblock-componentif thereis a sequence
of active blocks betweenthem where every consecutive
pair of blocks in the sequenceis close. We shall abuse
notation and refer also to the partition of 4 inducedby
the connectedcomponentsasconnectedblock-components.
Noticethatall connectedblock-componentscanbefoundin
time proportionalto thenumberof edgesin

@BADC
, which is%'&]Ò;&J� f [e/ " :})�/ .

6.2 The EMST of P and connectedblock-components.
We refer to the spanningforest of a graph � as a union
of spanningtreesof the connectedcomponentsof � . A
minimumspanningforest of � , denotedby MSF &(��/ , is a
spanningforestof � having theminimumweight.

Let � Ï ç be thesetof edgesof £	¤ whoseendpointslie
within thesameconnectedblock-component.Let � E±&�EgCm j�/F1 . We now relateblock-componentsto the distances
betweenpoints.

OBSERVATION 6.1. Let V and � be an arbitrary pair of
pointsin 4 .

1. If ¡ V��¢¡9>¼&�E�5B� m j�/F1 then V and � are in the same
connectedblock-component.

2. If V and � are in the sameconnectedblock-component
thenthere is a pathbetweenV and � consistingof edges
in � Ï ç thatareof lengthat most &�ETC m j�/F1{EF� .

3. If ¡ V��¢¡	��&�EÃC m j /F1ñE�� , and V and � are in the
sameconnectedblock-component,thenEMST &(4�/ does
not containtheedge V�� . î
In our algorithmwe usethefollowing graphs:§ � æ�GIH <�Ö is the graph containing all edgesin � Ï ç of
weightat most � . By Observation6.1, theconnected
componentsof MSF &�� æ�GIH <�Ö / are identical to the con-
nectedblock-componentsand the minimum spanning
forestof thesecomponentsis thesameasMSF &(� æ�GIH <�Ö / .§ ��J is the directed &¬Y¿Cì�i/ -Yao graph that is obtained
from £�¤ using the cone &,YNCF�i/ -approximatenearest
neighbororacle.Formally, we usethesamedefinitions
as in the definition of directedYao graphsanddefine� _ ) 6 J a¤ � VR�bW�� to be the point that is returnedby the
cone &¬YNCX�i/ -approximatenearestneighbororacleforV and W . If &�4X²Z�KVR 0/p³�Woþ ELK , then

� _ ) 6 J a¤ � VR�bW�� is

undefined. Then, ��J is a directedEuclideangraphon4 with theedgesetcontaininganedge & V*�K�i/ if thereisW»®l¦ suchthat �­E � _ ) 6 J a¤ � VR�.W�� .§NM is theminimumweightsubgraphof £	¤ that,when
addedto � æ�GIH <�Ö � formsa connectedgraph.§ � H #PO is thesameas £	¤ exceptthattheweightsof edges
in � Ï ç are consideredto be zero. Observe that the
weightof MST &(� H #.O / is identicalto theweightof M .

The following lemmadisplaysthe two-level natureof
thealgorithmthatwewill present.

LEMMA 6.1. Theunion of MSF &(� æ�GIH <�Ö / and M is a span-
ning tree of £ ¤ whoseweight approximatesthe weight of
EMST &(4�/ to within a factorof Y9C�[ f 1 .
Proof. Clearly, the union of MSF &�� æ�GIH <�Ö / and M forms a
spanningtreeof £	¤ . To provethesecondpartof thelemma,
let usconsideranundirectedgraph�8Ø obtainedfrom £	¤ by
decreasingto &�E�5Ý� m j�/F1 theweightof everyedgein � Ï ç
having weightlargerthan &�E�5Ã� m j�/F1 andsmallerthanor
equalto � . (Note that we changeonly the weightsof the
edgesin � æ�GIH <�Ö .) Sincethe weightof every edgedecreases

by a factorof at most Q_SR :�| å "Ka.T E _IR 6 å "baUT_SR :�| å ".aPT >{Y	Cw[ f 1 ,
wehaveMST &(�8ØU/�>ì&,YDC¿[ f 1e/ c EMST &(4�/ . Noticefurtherthat
by Observation6.1(1), eachedgein �8Ø thatis not in � æ�GVH <�Ö
hasweight larger than &�EÃ5B� m j�/F1 . Therefore,MST &(�8ØU/
canbeobtainedby first takingany minimumspanningforest
inducedby theedgesin � æ�GIH <�Ö andthentakingsomefurther
edgesin M . Hence,theweightof theunionof MSF &(� æ�GIH <�Ö /
and M is a &,Y9C�[ f 1e/ approximationto EMST &(4�/ . î

Consequently, to estimateEMST &(4�/ it suffices to esti-
matetheweightsof MSF &(� æ�GIH <�Ö / andMST &(� H #PO / .
6.3 First level - estimating the weight of MSF &(� æ�GIH <�Ö / .
In this sectionwe show how to estimatethe weight of the
MST within a singleblock component.This, combinedfor
all block components,yields an estimateon the weight of
MSF &�� æ�GIH <�Ö / . Sinceour modeldoesnot allow directaccess
to the edgesof £9¤ , we will usethe directedYao graph � J
to estimatethe weight of MSF &�� æ�GIH <�Ö / . Our analysiswill
exploretherelationshipbetween� J and � æ�GIH <�Ö .

For a weightedgraph � denoteby ¹ c � the graph
� with edgeweights multiplied by ¹ . Recall that ��_IW a
denotesthesubgraphof � consistingof theedgesof weight
at most X , and S W is thenumberof connectedcomponentsin� _VW aæ�GIH <�Ö . Let $YW# and (ZW# bethenumberof of verticesin � _IW aæ�GVH <�Ö
and in ��J _IW a reachablefrom ! , respectively. Notice thatS W EL� # õ ¤ Y f $YW# . Analogously, define S�ØW E[� # õ ¤ Y f (ZW# .
Also, let \S W be the number of connectedcomponentsin&,Y9C��i/ c � _IW aæ�GIH <�Ö .



It followsfrom [13] (seealsoSection4) that

(6.1) MSF &(� _IW aæ�GIH <�Ö /�>?$¿5]XDS W C W�:})^ Ï � ) S Ï > MSF &(� _IW aæ�GIH <�Ö /eCT$ �
Sincewe only have accessto � J , we can only deal with
the S�ØW ’s ratherthanthe S W ’s. To boundthe error dueto this
replacement,now werelatereachabilityin � J to reachability
in � æ�GVH <�Ö .
CLAIM 6.1. Let [±> )_ and �@> ))¬ë . Then for every X ,$ W.+�_ ) 6 J a# >N(ZW# >B$YW# . In particular, S W.+�_ ) 6 J a s�S�ØW s?S W .
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Illustration to theproof of Claim 6.1. Thefigureshows the
reachabilityin ` a . Thedashedline is thepathshowing the

connectivity of b and c in ` aPdVdfe�g a>h7ijh .
Proof. The right inequalityclearly holds. To show the left
inequality, it sufficesto show that for every k , if a vertex =
is reachablein � _Il aæ�GIH <�Ö from a vertex < , then = is reachable

from < in ��J _(_ ) 6 J a l a . Assumethat = is reachablefrom
< in � _Il aæ�GVH <�Ö ; this implies that < and = are in the same
connectedblock-component.Assumefurther, without loss
of generality, that kÝ>F� (indeed,if kº�F� then � _Il aæ�GIH <�Ö E� _ Q aæ�GVH <�Ö ).Let m bethe &¬Y	Cw�i/ -approximatenearestneighborof <
(returnedby the coneapproximatenearestneighbororacle)
in the cone W n containing = . Clearly, if mFEo= , then the
lemmaholds. So let us assumethat m�pEq= . Let ©�E�¡ <rm=¡ ,Ò�EÙ¡ <r=p¡ , S�Eñ¡ =�m=¡ , and A{Ets¿&�<?=um�/ , ¹±Evs¿&w<xmy=¢/ , andz E[s¿&w=�<xm�/ . Notice thatsince = and m arecontainedin the
cone W n with theangulardiameter� f � , wehave z >{� f � .

We first show the following three inequalities: (i)©�>u&¬Y#C~�i/¢Ò , (ii) S �{Ò , and(iii) 2 ùPú �0©��KS0 z>±Ò f &,YgCB[e/ .
Inequality(i) followsdirectly from thedefinitionof thecone
approximatenearestneighbororacle. To prove inequality
(ii), let us supposethat S�sÿÒ . Then, ¹â> z , and sincez >0� f � , we obtainthat A�s0� f 1 . This in turn impliesthat©'s m Ò - C�S - s m 1oÒ , which contradictsthefirst inequality
that ©T>@&,Y�C��i/�Ò¿>ìY6�PY c Ò . For inequality(iii), we first use
thelaw of cosinesto get S�-NEF©�-�CwÒy-#5�1o©�ÒD| O ø z >~©�-9CÒy-R5 m 1;©�Ò , sincez >}� f � . To show 2 ùPú �U©��KS0 ­>~Ò f &,YRCz[e/
we assume©��{Ò f &¬Y#CB[e/ andshow Sl>{Ò f &,YgC?[i/ . Since

©w�uÒ f &,YgC~[e/Is å -- c Ò , the expression©�-#CXÒ�-Z5 m 1;©�Ò
increaseswith © . Therefore,by inequality(i) we obtain

S - > © - CBÒ - 5 m 1D© ÒZ>F&,&,Y�Cw�i/,Ò�/ - CwÒ - 5 m 1¢&,Y9C��i/KÒ -E Ò - &,&]1N5 m 16/}&¬Y9Cw�i/RCw� - /l>�&]Ò f &,YoC�[e/,/ - �
wherethelast inequalityholdsfor [8> )_ and ��> ))�ë .Now we prove the lemma using inequalities (i–iii).
Assume,without lossof generality, that ¡ <?=p¡�>~k ; otherwise
apply the following argumentsto all edgeson the path
between< and = in � _Il aæ�GVH <�Ö (all the edgeson this path are
of length at most k ). We defineinductively the sequence
<\E�< ë �>< ) ��< - �������>= suchthat for every Î , if < Ï pE�= , then
< Ï 6 ) is the &¬YpC��i/ -approximatenearestneighborof < Ï in the
coneW�nP� containing= . By inequality(ii), thesequence¡ < Ï =p¡
is strictly decreasing.This immediatelyimplies that < Ï E,=
for someÎ , andsothesequenceis finite.

Next, we show inductively that each < Ï is in the same
connectedblock-componentas = . Supposethat < Ï is in the
sameconnectedblock-componentas = . Sincethesequence¡ < Ï =p¡ is decreasingandsince ¡ <r=}¡ >}kz>�� E±&�EnC m j�/ c 1 ,
weobtain

¡ < Ï =}¡Y9C�[ > ¡ <r=}¡Y9C�[ � &�ElC m j�/ c 1Y9C�[ > &�ElC m j�/ c 1Y9C�[ �
Therefore,using inequality(iii) with <XE�< Ï and m�E

< Ï 6 ) , we obtain

2 ùrú � ¡ < Ï < Ï 6 ) ¡´�U¡ < Ï 6 ) =p¡ /b �> ¡ < Ï =p¡Y9C�[ > &�E�5 m j / c 1 �
Hence,by Observation 6.1, either < Ï and < Ï 6 ) are in

the sameconnectedblock-componentor < Ï 6 ) and = are in
the sameconnectedblock-component. In either case,the
transitivity ensuresthat < Ï 6 ) and = arein thesameconnected
block-component. We finally observe that inequality (i)
impliesthat ¡ < Ï < Ï 6 ) ¡�>�&¬Y�CT�i/p¡ < Ï =p¡ , andsince ¡ < Ï =p¡�>�¡ <r=p¡ ,
we obtain ¡ < Ï < Ï 6 ) ¡�>v&,Y8C��i/p¡ <?=p¡ . Hence,the sequence
<HE�< ë �>< ) �>< - ���������>= correspondsto a path containedin
a connectedblock-componenthaving all edgesof lengthat
most &,YZC\�i/�k . This implies that = is reachablefrom < in��J _J_ ) 6 J a l a . î

We introduce an estimator � for the value of
MSF &�� æ�GIH <�Ö / .
�qE°$'C

� Q _ ) 6 J a�� :p)^
Ï � ) S ØÏ 5����v&¬Y9Cw�i/�� c S Ø � Q _ ) 6 J a�� �

We analyzenow thequalityof this estimator.

LEMMA 6.2. MSF &(� æ�GIH <�Ö /�>~�{>�&¬Y�C'�i/ MSF &(� æ�GIH <�Ö /DC�$ .

Proof. We startwith thefollowing two observations.



§ If Xzsì� then S W E»S Q . As a corollary, S Ø � Q _ ) 6 J a�� ES Q E\S � Q _ ) 6 J aw� .§ \S W E~S W.+�_ ) 6 J a .
Now, we havethefollowing sequenceof inequalities:

MSF &�� æ�GIH <�Ö /=> $ C Q :})^
Ï � ) S Ï 5���S Q

Eê$'C
� Q _ ) 6 J aw� :})^
Ï � ) S Ï 5����Ù&,Y�Cw�i/�� c S � Q _ ) 6 J a��

Eê$'C
� Q _ ) 6 J aw� :})^
Ï � ) S Ï 5����Ù&,Y�Cw�i/�� c S Ø � Q _ ) 6 J a��

>ñ$'C
� Q _ ) 6 J aw� :})^
Ï � ) S ØÏ 5����v&¬Y9Cw�i/�� c S Ø � Q _ ) 6 J a��E��

>ñ$'C
� Q _ ) 6 J aw� :})^
Ï � ) S Ï +�_ ) 6 J a 5,�(�v&¬Y9Cw�i/�� c S Q

Eê$'C
� Q _ ) 6 J aw� :})^
Ï � ) \S Ï 5����Ù&,Y�Cw�i/�� c \S � Q _ ) 6 J a��

> MSF &K&¬Y�Cw�i/ c � æ�GIH <�Ö /RC�$E &,Y9C��i/ c MSF &(� æ�GIH <�Ö /RC�$u�
The first inequality is due to inequality (6.1). The first
equalityfollows from thefirst observationabove. Next, we
useCorollary6.1 andthebothobservationsabove. Thelast
inequalityis impliedby inequality(6.1). î

We now modify the algorithm of Chazelle et al.
[13] to obtain a good approximation of � . Follow-
ing the approach from Section 5, we run procedure
approx-number-connected-components to estimatethe number
of connectedcomponentsof thegraphwith edgesof weight
at most XwEÙ& )- C\Î¬/�[ for Î'EñYe�b1 �������y� d	f [ (where d E
�(�v&¬Y9Cw�i/�� is anupperboundof theweightsin thegraph).
Thisestimationis achievedusingtheestimationof Y f $YW# . As
wasdiscussedin Section5, if thereis anefficientway to tra-
verse� J , wecanmodify thealgorithmto applythis traversal
andwe getanestimationof the S�ØW with thesameprobabilis-
tic guarantees.As was pointedin Section5, traversingin��J _IW a is easy:eachtimewewantto accessall edgesincident
to a point VB®�4 , we first asktheconeapproximatenearest
neighborqueriesto all conesW þ andthen for eachnearest
neighbor� of V in W þ , weverify if ¡ V��¢¡ >NX andif theblocks
to which V and � belongare in the sameconnectedblock-
component.Thefirst testis a simple 1�^`_ "ba time calculation,
while thesecondrequiresthecomputationof theconnected
block-components.This is donein a preprocessingstepas

describedin Section6.1. Therefore,following the analysis
from [13] (seealsoSection5) we canestimatethevalueof
� � Q _ ) 6 J a�� :})W � ) S ØW using k%T&]� c 1 ^`_ "ba [ :�h / coneapproximate
nearestneighborqueriesand k%T&�Ò c [�: "76 )�/ orthogonalrange
queries. The algorithm approximates� � Q _ ) 6 J a�� :})W � ) SUØW to
within anadditiveerrorof )í $ with probabilityat least h| (see
[13]). Next, observe that S�Ø � Q _ ) 6 J a�� is nothingbut thenum-
berof connectedblock-components,which is known to the
algorithm that computesthe connectedblock-components.
Therefore,togetherwith Lemma6.2 we get an algorithm
that approximatesMSF &�� æ�GIH <�Ö / to within an additive factor
of )¬ëí $ .

We note that by scalingdown all weightsby a factor� �uY , applyingthe algorithmabove, andthenrescalingto
theoriginalweight,wedecreasetherunningtimeby afactor
of
�
, andincreasethe additive error by the samefactor. In

thiswayweobtainanalgorithmthatperforms k%T&�� f & � [ h /,/
coneapproximatenearestneighborqueriesandachieve an
additiveerrorof )�ëí � $ .

Let us examinethe term � f � in the runningtime and
the additive error term )¬ëí � $ . Recall that there are two
possibleterminationstates:ÒZs~Ò�Ø or 1u��1D[ .

Considerfirst the case ÒwsüÒ�Ø . Since 4 has Ò active
blocksof size 1 we have thatEMST &�4�/	s )- 1z&.�(Ò f 1 " �n5?YU/3. Since Ò s·Ò Ø s{1 "76 ) we get ���,;;×8&(4�/8s )| 1 c Ò f 1 " .
Setting

� E í|.ë c T æ �-�� ç and applying the above scaling
procedure,we upperboundthemultiplicativeerrorby

Y9Cw�	C )�ëí � $)| 1 c Ò f 1 " E@Y`CB�	C�[\�
Therunningtime,usingthefactthat Ò#s~Ò�Ø¿sB[ " +K-�:�h m $ is
boundedby

� f & � [ h /ÃE k%'& m j�1 " c $ f &�Ò.[ _ /K/	>¼k%T& m $ f [ " +.- 6 - /Ý�
On the otherhand,when 1ñ�Õ10[ , we usethe trivial lower
boundEMST &(4�/Is»$ f [ , andby setting

� E�� f Y�� obtaina
multiplicative error of Y­C@��CF[ . In this casenotice that� E�1 m j=&¬Y�� f [ CÕY0/�E ï &¬Y0/ . And so we bound the
runningtimeby

� f & � [ h / E¯k%l& [ :=h /�>âk%'& m $ f [ " +K- 6 - /
for j's�1 . Thuswe havethefollowing lemma.

LEMMA 6.3. Giventhegraph � æ�GIH <�Ö , there is an algorithm
that estimateswith probability at least h| the weight of

3This bound is achieved by consideringa subdivision of the active
block to � �.� subcubesof size ���7� . Now colour thesesubdivisions
using � � colours,using the samearrangementof coloursfor eachof the
original active blocks. This inducesa partitionof theactive blocksinto � �
monochromaticsets. Therehasto be a set of � � �7� �.� points in À , from
different active blocks that are colouredthe same. Clearly, the minimal
distancebetweenthesepointsmustbeat least ���7� , andhencethebound.



MSF &(� æ�GIH <�Ö / to within a multiplicativerelativeerror of ��C�[ .
The algorithm requires k%T& m $ f [ " +.- 6 - / range queriesand
cone &¬Y C��i/ -approximatenearestneighborqueries(for �­E[ f5� ). î
6.4 Secondlevel — estimatingthe weight of MST &�� H #PO / .
Let � be the completeundirectedgraph with the vertex
set Ñ , the setof active blocks, and with the edgeweights
equalto theEuclideandistancesbetweenthecorresponding
block-centersif theblocksarein differentconnectedblock-
components,and zero otherwise. Argumentssimilar in
spirit to Observation 6.1 can be used to show that Y�5[ f 1l> MST &(� H #PO / f EMST &���/N>·Y	Cw[ f 1 . To obtaina good
estimationof theweightof MST &(� H #.O / wethereforeestimate
theweightof aminimumspanningtreeof � .

We couldfind aminimumspanningtreeof � by calling
any algorithmthatfindsa minimumspanningtreein graphs.
However, any suchalgorithmrequirestime

ð &�Ò - / , because
� contains GI&�Òy-U/ edges. To improve the running time
to k%'&]Ò�[e)y: " /�E k%'& m $ f [ " +K- 6 -U/ we use

@BADC
, which is

the &¬YNC\[ f ��/ -spannerof Ñ (having %T&�Ò;&¬Y f [e/ " :p)�/ edges)
definedin Section6.1. Let � beany spanningforestof the
subgraphof � inducedby the edgesof weight � . It is easy
to seethattheweightof any minimumspanningtreeof � is
identicalto theweightof aminimumspanningtreeof � that
usestheedgesfrom � .

We createa new graph ; � with the vertex set Ñ and
the edge set which is the union of the edgesin � and
the spanneredges.Then,apply, for example,the classical
Kruskal’s algorithmto find in time %T&�Ò�[6)y: " MrOeQ &�Ò f [ " /K/8Ek%'& m $ f [ " +.- 6 -�/ a minimumweightspanningtreeof ; � . It
is easyto seenow that the obtainedspanningtreeof Ñ is
a spanningtree of Ñ that usesedgesfrom � and whose
weight is at most )| [ timesgreaterthanthe minimum. We
summarizethe discussionin this sectionin the following
lemma.

LEMMA 6.4. There is an algorithm which, given as input
the graph � æ�GIH <�Ö , estimatesthe weight of M to within a
relativeerror of h| [ with runningtime k%l& m $ f [ " +.- 6 -�/ .

Our entireanalysiscanbe improvedin thecasejzE·1 .
In this case,onesimplify our argumentsto achieve the the
runningtimeof %T&�Ò MPO6Q Ò�/oEì%'& m $ MrOeQ &]m $ f [e/ f [e/ .
6.5 Estimating the weight of MSF &(� æ�GIH <�Ö /�� MST &�� H #PO / .
Now, we can summarizeour algorithm for estimatingthe
EMST of any setof points in �#" . Since 7 EqGI&J$ f [i/ , by
Lemmas6.1,6.3,and6.4,we obtainthefollowing theorem.
Summingup the errorsmadein our estimationwe get that
the multiplicative relative error is at most ��CÕ1 )| [ with
probability at least h| . Using [5�¿E÷[ f t as input parameter
for our algorithmwe get:

THEOREM 6.1. Let 4 be a set of $ points in �#" for a
constant j . Let [ be any real number, �@�û[@� )- , and
let ��>ü[ f � . There is an algorithm that with probability
at least h| estimatesthe weight of a Euclideanminimum
spanningtree of 4 with a relative error of at most [ . It
runs in k%l& m $ f [ " +K- 6 -�/ time and requires k%l&]m $ c [ " +.- 6 -�/
orthogonal range queries, k%T&]m $ f [ " +.- 6 -�/ cone &,Y'CÕ�i/ -
approximatenearestneighborqueries,anda singleminimal
boundingcubeof 4 . î
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Appendix
A Implementing supporting data structur es

To make our modelof computationsviable,we discusshere
how our supportingdatastructures(oracles)canbe imple-
mentedefficiently usingstandardgeometricdatastructures.

Minimal bounding cube. The query about the minimal
boundingcubeof a setof points 4â®B�#" canbe supported
by many standardgeometricdata structures. Indeed, the
only information required to find the minimal bounding
cubeis to know theminimumandmaximum j -dimensional
coordinatesof all input points. Therefore,many standard
geometricdata structurescan support this query in time%T&(j�/ .
Orthogonal range query oracle. Therearemany efficient
datastructuressupportingtheorthogonalrangequeryoracle
andactually, orthogonalrangequeriesareperhapsthemost
widely supportedgeometricqueriesfor a survey, see,e.g.,
[1, 3, 7]). One of the first datastructuresfor orthogonal
range searchingis the quadtree. Despite its bad worst-
casebehavior, thequadtreeis still usedin many applications
becauseit providesan easy-to-implementlinear-spacedata
structurethat often has a very good performance. The
best known data structurefor orthogonalrangesearching
basedon compressedrangetreesandsomeothertechniques
such as filtering search([11, 12]). The time for a query
is
ï & MrOeQ " :}) $R/ . If one usesstandardrangetreeswith the

fractionalcascadingtechniquethenthe sameboundon the
querytime canbeachieved([22, 31]).

Cone nearest neighbor oracle. In his seminalpaperon
Euclidean minimum spanningtrees, Yao [32] examined
algorithmsfor conenearestneighborin the coneswith the
angulardiameter� f � . Conenearestneighborquerieshave
beenalso studiedextensively in follow-up papersdealing
with theEMST problem(see,e.g.,[2]).

Cone approximate nearest neighbor oracle. Cone ap-
proximatenearestneighborquerieshave beenwidely inves-
tigated. They play an importantrole in the context of con-
structionof Euclideanspanners(see,e.g., [5, 6, 15, 25]).
And so, amongothers,RuppertandSeidel[25] show how
to answeraqueryin amortizedtime %T&J$ MrOeQ " :p) $R/ pereach
conein W ; asimilarconstructionis presentedin [6]. Arya et.
al. [5] presenta fully dynamicalgorithmwhich in polylog-
arithmic time supportsconeapproximatenearestneighbor
queries.Notice alsothata singleconeapproximatenearest
neighborquerycanbe answeredusinga logarithmicnum-
ber of simplex (triangular) range queries, which is another
classicalgeometricdatastructure(see,e.g.,[1, 3, 7]).


