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Abstract

We considerthe problemof computingthe weight of a Euclidean
minimumspanningreefor asetof n pointsin R¢. Wefocusonthe
situationwhentheinput point setis supportedy certainbasic(and
commonlyused)geometriaddatastructureghatcanprovide efficient
accesgo theinputin a structuredway. We presentan algorithm
that estimateswith high probability the weight of a Euclidean
minimumspanningreeof a setof pointsto within 1 + ¢ usingonly
O(y/npoly(1/¢)) queriesfor constantd. The algorithmassumes
thatthe inputis supportedby a minimal boundingcubeenclosing
it, by orthogonalrangequeries,and by coneapproximatenearest
neighborsyueries.

1

As the power and connectvity of computersancreasesand
the cost of memory becomescheaper we have become
inundatedvith largeamountof data.Althoughtraditionally
lineartime algorithmsweresoughtto solve our problemst
is nolongerclearthatalineartime algorithmis goodenough
in every setting. The questionthenis whetherwe cansolve
anythingof interestin sublineartime, whenwe arenot even
given time to readall of the input data. In recentyears,
severalsublineattime algorithmshave beenpresentedvhich
solve a wide rangeof propertytesting and approximation
problems.

In this paperwe considerthe problemof estimatingthe
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weightof aminimum spanningree,wheretheinputis a set
of pointsin the EuclideanspaceR?. Sincethe location of
a single point may dramaticallyinfluencethe value of the
weightof the Euclidearminimumspanningree(EmMST), we
cannothopeto geta reasonabl@pproximationin sublinear
time with only accesdo the locationsof the points. This is
true evenwhenwe considerprobabilisticalgorithms. How-
ever, it is oftenthe casethatmassie databasegarticularly
in a geometriccontext, containsophisticatediatastructures
ontop of theraw data,thatsupportvariousformsof queries.
Examplesf suchqueriesarethenearesheighborof apoint,
or the point with the highestvaluein a coordinate.Conse-
quently in this paperwe assuméhatalgorithmshave access
to certaincommonlyuseddatastructuresvhich aid thealgo-
rithm in its computation.This may be consideredh motiva-
tion for maintainingsuchdatastructuresparticularlyif they
aidin othertasksaswell.

Results. In this paper we describethree algorithms for
estimatingthe weight of a Euclideanminimum spanning
tree over n given pointsin a EuclideanspaceR?, where
the algorithms are given accessto basic geometric data
structuressupportingthe input. It shouldbe notedthat our
algorithmsdo not supplya low weightspanningree (which
takeslinearspaceo represent)but only estimateits weight.

We first considerthe casewhenthe algorithmis given,
in additionto accesgo the input point set, (1) a minimal
boundingcubethat containsall pointsin the input setand
(2) accesso anorthogonalrange querydatastructurewhich,
givenanaxis-parallecube answersvhethetthereis aninput
point within the cube. In this model, we give an O(n'/?)-
time algorithmfor the 2-dimensionalcasewhich outputsa
valuew suchthatl EmMsT(P)—£Ln=¢ < w < a EMST(P)+
Ln~¢, wherea = ©(n'/® logn), L is the side-lengthof a
minimal axisparallelboundingcubeof thepointset,andc is
an arbitraryconstant.We alsoshaw thatary algorithmthat
usesno morethan®(n'/?) orthogonarangequeriescannot
significantlyimprove the quality of approximation.

We next considetthe casewhenin additionto theabove
datastructuresyve arealsogiven(3) acces$o aconenearest
neighbordatastructurewhich givena pointp andaconeC,
returnsa nearespoint to p in the conep + C'. Our second
algorithm combinesthe extra power of the cone nearest



neighbordata structureswith someideasfrom the recent
sublineaftime algorithmfor estimatingthe MST in general
graphs[13]. Thealgorithmoutputsa valuewhich is within

al + ¢ factorof the EMST andit runsin O(2°(4) . A/e?)

time, whereA is the spreadof P (ratio betweenmaximum
andminimumdistancebetweerpointsin P); obsenethatA

canbearbitrarily large.

The third algorithm we presentdoesnot have ary de-
pendeng on A andrequiresonly coneapproximatenearest
neighborquerieswhich we definein the next section.For a
constantd, the algorithmneedsO(+/n poly(1/¢)) time and
outputsan approximationof the EMST weight to within a
multiplicative factorof 1 + €. The algorithmcombinesthe
ideasfrom our first two algorithms. It partitionsthe input

Dynamic algorithms. Our model of computationis also
interestingin the context of dynamic algorithms. There
exist fully dynamicalgorithmsthatmaintainEM ST subjectto

pointinsertionsanddeletions;[16] givesan algorithmwith

amortizedtime O(,/n) and O(n' =) per updateoperation
ford < 4 andd > 4 respectiely. A disadwantageof this
algorithm (and of all typical dynamicalgorithms)is that it

requiresasmuchas O (y/n) time perinput update,making
the algorithm very costly in situationswhere the EMST

queriesarevery rare. The datastructureswve requirein our
setting are dynamically maintainedby standardgeometric
databasearyway. Thus,if thedatabassupportsall required
datastructuresn polylogarithmictime, the amortizedtime
requiredby our algorithmis O(y/n/U), whereU is the

pointsinto componentsand estimateshe EMST separately typical numberof updatesper one EMST calculation. We

by consideringpairsof pointsthatlie in thesamecomponent
andpairsof pointsthatbelongto differentcomponents.To
estimatethe EMST within componentsye usean extension
of our secondalgorithm. To estimatethe weight required
to connectthe componentsve usea variantof our first al-
gorithm. The combinationof thesetwo algorithmsleadsto
a significantimprovementin the quality of approximation
(comparedto the first algorithm) and in the running time
(comparedo the secondalgorithm).

Relation to previous works. The Euclidean minimum
spanningtree problemis a classicalproblemin computa-
tional geometryand hasbeenextensiely studiedin the lit-
eraturefor morethantwo decadeslt is easyto seethatto
find the EMST of n points,O(d n?) time suffices, by reduc-
ing it to the MST problemin densegraphs. In the simplest
casewhered = 2 (on the plane), Shamosand Hoey [29]
shawv thatthe EMST problemcan be solvedin O(n logn)
time. For d > 3, no O(n)-time algorithmis known andit
is a major openquestionwhetheran O(n logn)-time algo-
rithm exists evenfor d = 3 [17]. Yao [32] was the first
who broke the O(n?)-time barrierfor d > 3 anddesigned
anO(n'-8)-time algorithmfor d = 3. This boundhasbeen
laterimprovedandthefastesturrentlyknown (randomized)
algorithmachiesestherunningtime of O(n*/3) [2] ford = 3
(and the running time tendsto O(n?) asd grows). Sig-
nificantly better boundscan be achieved if one allows to
approximatethe output. Callahanand Kosaraju[8] give a
O(n logn + n log(1/¢) e~%/?)-time algorithmthatfindsan
approximateEuclideanminimum spanningtree to within a
multiplicative factorof 1 + «.

Our algorithmsrely on a recentalgorithmof [13] that,
givenaconnectedyraphin adjaceng list representatiowith
averagedegreed, edgeweightsin therange[l ... W], anda
parametef < € < % approximateswith high probability,
theweightof aminimumspanningreein time O(d W &~ 3)
within a factorof 1 + . Thetime bounddoesnot directly
dependbn the numberof verticesor edgesn thegraph.

noteagainthatour algorithmdoesnot supplythe minimum
spanningree,but returnsonly its approximatewveight.

Organization of the paper. We startby presentinganalgo-
rithm thatonly needsaccesgo a minimal boundingcubeof

the point set P andto an orthogonalrangequery oraclein

Section3. In Section5, we presenta simplealgorithmthat
usesadditionallythe conenearesheighbororacle. Finally,

in Section6, we discussthe main contribution of this pa-
per, asublineatime algorithmthatusesa minimal bounding
cubeoracle,the orthogonalrangequeryoracleandthe cone
(1 + d)-approximatenearesheighbororacle.

2 Preliminaries

For a given set P of pointsin a EuclideanspaceR?, a
(Euclidean) graph on P can be modeledas a weighted
undirectedgraphG = (P, E), where P is a vertex set,
E is a subsetof the (unordered)pairs of pointsin P, and
the length/weightof edge{p, ¢} is equalto the Euclidean
distancebetweerpointsp andg, denotedpg|. Theweightof
thegraphis thesumof theweightsof its edges.

Throughoutthe paperwe denoteby Kp the complete
graph on P where the edge weights are the Euclidean
distancesbetweenthe endpoints. A graph G on a set
of points P is called a Euclideanminimumspanningtree
(EmsT) of P if it is a minimum-weightspanningsubgraph
of Kp. We denoteby EMST(P) boththeemsT of P andthe
weightof the EMST of P. Similarly, for agivengraphG we
will denoteby MST(G) the minimum spanningreeof G as
well astheweightof theminimumspanningreeof G.

For a given point set P, we denoteby A the spread of
P, thatis, theratio betweerthe maximumandthe minimum
distancesbetweenpointsin P. We let BC be a minimal
boundingcubeof P (whichis madeavailableviatheminimal
boundingcubeoracle) andlet £ denoteits sidelength.

2.1 Models of computation. In this paperwe usesome
basicgeometriaddatastructuresupportingaccesso theinput



point set. Givena point set P in R?, we usedatastructures
supportingthefollowing typesof queries:

e minimal bounding cube of P: returnsthe location
of a minimum size axis-paralleld-dimensionalcube
containing P, that is, returnsthe location of a cube
C =[a1,a1 + R] X [a2,a2 + R] X ... X [ag,aq + R)
that containsP suchthat no axis-parallelcubeof edge
lengthsmallerthan R containsP.

e (orthogonal) range query oracle: for a given axis-
parallelcubeC, testsif C' containsa pointfrom P.

e cone (1 + §)-approximate nearest neighbor oracle:
0 is ary non-ngative real numberandit is assumed
thata setof conesC with apeesat the origin is given
in advance. The cone (1 + §)-approximatenearest
neighbororacle,for a given pointp € P anda given
coneC € C, returnsa (1 + §)-approximatenearest
neighbot of p in (P \ {p}) N (p + C). (We denote
by p + C thetranslatedcone{a +p : a € C}.) If
(P \ {p}) N (p + C) is empty thena specialvalueis
returned.

In thespeciakasevhered = 0, theoraclegivesthetrue
nearesheighborandis simply calledthe conenearest
neighbor oracle.

Appendix A presents discussionaboutthe comple-
ity of thesedatastructureswhich canbe implementedeffi-
ciently by standarddatastructures.The conenearesneigh-
bor oracle, however, is more costly andlesscommonthan
theconeapproximatenearesheighbororacle..

3 Estimating the EMST with bounding cube and range
queries

Here we describea naturalapproachto the approximation
of EMST(P) using minimum bounding cube oracle and
orthogonalrange queries. This approach,by itself, does
not give a good enoughmultiplicative approximation,but

is usedas a building block in the sublinearalgorithm we

presentater. For simplicity, we only describeherethe two

dimensionalcase(d = 2). The algorithm we supply is

deterministichasrunningtime O(n'/?) andoutputsavalue
w suchthat EMST(P) — 8 < w < a EMST(P) + 3, where
a = O(n'/®logn), andB = Ln~°¢ where, is the side-
lengthof a minimal boundingcubeof P andc is a constant.
We alsoshaw thatary algorithmthatusesthe samerunning
time (in fact,the sameamountof queriesandarbitrarylarge
runningtime) cannotsignificantlyimprove thequality of the
approximation.

1Forapointp € P andasetof points@ C Rd, a(1+ d)-approximate
nearesheighborof p in @ is ary pointg € Q suchthatfor everyx € Q it
holdsthat|pg| < (1 + 6) - |pz|.

The quad-treealgorithm. We apply a standardquad-tree
subdvision to the boundingcube BC (see,e.g.,[7, Chap-
ter 14]). That is, we first partition BC into four disjoint

blocks (squarespf equalsize. We cancheckwhich blocks
contain points from P via orthogonalrangequeries. We

then further subdvide thosenonemptyblocks, and iterate
this processaslong asfewer than©(,/n) queriesaremade.
This inducesa tree structureon the blocks, wherea block

at level i hassidelength £/2%. Let k be the depthof this

tree.We mayassumehatall nonemptyblocksatlevel &k — 1

were subdvided into subblocks(of level k) and eachsub-
block of level £ wasqueried.Let B bethe setof nonempty
blocksatlevel k andletb = |B|. Clearlyb = O(y/n). We

now run ary minimum spanningtree algorithm(a (1 + ¢)-

approximations goodenough)on the centersof the blocks
in B. Thiswouldresultin avalueL. WesetU = L+s+vbn

wheres = £ - 27% andoutputthe valuew = +/LU asan

approximatiorfor T* = EMST(P).

CLAM3.1. 1T7T* — 8 < w < aT* + B, whee a
O(n'/® logn), B = Ln~¢ andc is an arbitrary constant.

Proof. (sketch) First note that the minimum spanningtree
of ary n pointsin a squarewith side-lengthh is O(h v/n)
andthis boundis tight. (e.g.,whenthe pointsareuniformly
spreadsay onthegrid with edgelengthh/+/n.)

Now, we setL* betheweightof aminimumweighttree
thattouchesevery block in B. It is easyto seethat L* <
T* < U (thelastinequalityis by the above upperbound
andusingcorvexity). Assumenow thatb > /n/(10 logn);
thenit canbeseenthat L upperboundsL* andapproximates
it within an additive term of O(sb), and hencewithin a
constanfactor sayd. Namelya-b-s < L* < L <é-L*
for someconstants andd.

HenceasU is anupperboundonT™*, theapproximation
factorisa < ¥ U = o((24n)1/2) (wherethe last
inequality follows by pluggingin the expressionfor U and
L). Now, by the above boundon L andon b we obtainthat
a < O(n'/3).

Assumenow thatb < +/n/(10 logn), thenit canbe
seenthatthe depthof the quad-treds at least10 logn and
hences < £ -n~'°, Thereforethe additive termis bounded
byU —L<O(s-vbn) =0n=1°-L-n)=0®m"?). O

A noteontherunningtime is duehere.We useO(y/n)
queriesin the courseof constructingthe quad-tree. Next,
we have to find the minimum spanningree (or ary (1 + §)
approximatiorto it for ary fixedd). In thetwo dimensional
casethis canbe donein O(,/n) time ([29]), andthis term
dominateghetotal complexity.

As it turns out, the above quality of approximationis
optimalfor the giventime boundasshavn by the following
claimwhoseproofis deferredo thefull versionof thepaper



CLAIM 3.2. Any algorithm with O(y/n) orthogonal range
queries has an approximation factor for eMsST(P) of
Q(n'/?).

Higher dimension. For fixedd > 2, the quad-treecanbe
replacedby a 27-ary tree. A total of O(2¢ y/n) orthogonal
range querieswill be madein a similar way. Then £
will be setasin the 2-dimensionalcasewhile U = £ +
sb'/4pld=1/d_|n this casewe getanapproximatiorwith a
multiplicative factorof a = O(n(4=1/(44) andanadditive
termwhichis £ - n=¢ for arbitraryconstant.

Finally, we notethatour choiceof usingO(y/n) orthog-
onal rangequerieswas arbitrary in the sensethat one can
usea differentnumberof queriesandobtaina whole range
of tradeofs betweerthe runningtime andthe quality of ap-
proximation.

4 Two relatedpreviousresults

We now describetwo previous resultsthat we utilize in our
EMST algorithms: the conceptof Yao graphs[32] and an
algorithm for approximatingthe msT in boundeddegree
graphsdueto Chazelleetal. [13].

Yao graphs. Yao graphsare Euclideangraphsthat relate
the EMST to the conenearesmneighbororacle presentedn

Section2.1. Fix anintegerd > 2. Let C be a collection
of d-dimensionakoneswith apec atthe origin suchthat (a)
eachconehasangulardiametef at mosté, wheref is some
fixedangle,and(b) U C = R?. Thereis awayssuch
acollectionC of O(d?/? - sin=%(6/2) - log(d sin=*(/2)))

cones(not necessarilydisjoint); notethatfor § = O(1) this
boundis 2°(?, Yao[32] givesonepossibleconstructiorfor

suchacollection.

For a pointp € R* andaconeC € C, let C, be
p+C ={a+p a € C}, thatis, a translationof C'
sothatits apeis atp. Let Np(p, C) bethenearesheighbor
of p in theset(P \ {p}) N C,. GivenapointsetP anda
collectionof cone<C, the Yao graphof P (with respecto C)
is the EuclideangraphG with vertex set P and(undirected)
edgesetE = {(p,q) | 3C € C suchthatqg = Np{p,C)}.
Thatis, eachp € P is connectedo its nearesheighborin
eachconewhich hasp atits apex. The following resultdue
to Yao[32] motivatesour useof thesegraphs.

CLAIM 4.1. [32] For any pointsetP € R?, let G bethe
undirected Yao graph for P with 8 < 7/3. Then,the
Euclideanminimumspanningtreeof P is a subgiaph of the
Yao graphG. O

2The angulardiameterof a cone C' in R¢ having its apex at point
S R is definedas the maximumangle betweenary two vectorsp#
andpy, z,y € C.

Chazelleet al.: approximate MST in low-degreegraphs.
Ouralgorithmsmake useof arecentalgorithmfor estimating
the MsT in graphsdue to Chazelleet al. [13]. This
algorithmassumeshatthe input graph(i) is representety
anadjaceny list, (i) hasdegreeatmostv (thefull versionof
[13] allows v to bethe averagedegree),and (iii) hasknown
minimumandmaximumedgeweights.Then,for 0 < € < %
thealgorithmestimatesheweightof theminimumspanning
treewith arelative errorof atmoste, with probabilityatleast
3 andrunsin time O(v - A - log(v A/e) /e®).

Let H = (V, E), be aninput graphhaving n vertices
with maximumdegreer and edgeweightsin the interval
[1,A]. Forary w € R, let H*) denotethe maximal sub-
graphof H containingedgesof weight at mostw, andc,,
denotethe numberof connecteccomponentsn H(®). The
main ingredientof the algorithm from [13] is a procedure
approx-number-connected-components run on H(w) for estimat-
ing ¢, forw = (4 +i)-ewithi = 1,2,...,A/e. For
integer weights, the weight of the msT of H is equalto
n—A+ Z;‘Z_ll c¢;. The algorithmusesthe above estima-

tionsto produceavaluewhich, with probabilityatleast?, is
a(1 + e)-approximatiorof themst of H.

Procedureapprox-number-connected-components Works by
samplingO(1/e?) verticesin H. For eachsampledver
tex u, a random estimator X,, is computedby travers-
ing H®) from u (for example, using breadth-firstsearch)
with a stochasticstoppingrule. X, is a randomvariable
whosedistribution is a function of only the size of the con-
nectedcomponentontainingu (i.e., the numberof vertices
reachedfrom u in the traversal)in H(®). The simplere-
lation betweenthesesizesand ¢,, togetherwith the fact
that the distribution of X, is concentratecaroundthe ex-
pectedvalueyieldsthe connectiorbetweenX,, andc,,. Pro-
cedureapprox-number-connected-components runsin expected
time O(ve~2 log(A/e)). Thereforethe expectedrunning
time of thealgorithmin [13] is O(A v &3 log(A/¢)).

5 A simple estimationfor EMST using Yao graphs

The algorithmwe presentn this sectionis conceptuallyan
importantcomponenf the sublinearalgorithmwe design
later in Section6. It combinesthe two resultsdescribed
in Section4. Our algorithmusesthe conenearesheighbor
oracleandachiezesa querycomplexity of 29(%) - O(A /e2).
Sinceby Claim 4.1 the undirectedYao graphG for P
containsall edgesof the EMST of P, it is naturalto try to
apply the algorithmof Chazelleet al. to G to estimatethe
weightof the EMST of P. To do that efficiently, insteadof
generating= atthe beginningof the algorithm,we generate
the edgesof G (using the cone nearestneighborqueries)
only whenthe edgesare neededn the algorithm. Thatis,
wheneerthealgorithmneedsdgesdjacentn G to avertex
p, we use the cone nearestneighborquery to obtain the
nearesheighborof p in eachconein {p+C}cec. Motivated



by Claim 4.1, we setthe angulardiameterof the conesto
7 /4. This creategartsof animplicit directedYaographG
on P with edges(p, ¢) suchthatthereis a C € C where
g=Np (pa C)

The above approachhasa numberof problems. First,
thealgorithmof Chazellestal. requiregheinputgraphto be
undirectedandrepresentety an adjaceng list, whereasn
our model,we have fastaccesonly to the out-goingedges
atavertex in G. Furthermore the runningtime is linear
in A, which canbe arbitrarily large. The following lemma
helpsin overcomingthefirst difficulty, while theseconcbne
is tackledin the main algorithmin Section6. The proof of
Lemmab.1,beingaspecialcaseof Claim 6.1,is omitted.

LEMMA 5.1. Let nf; be the numberof verticesin Kp that
are reachablefrom« usingonly edges of weightat most/.
Let m! be the numberof verticesin directedYao graph G
readablefromw usingonly edgesof weightat most/. Then
mé =nf. d

Equippedwith this lemma, we can modify the algo-
rithm dueto Chazelleet al. to obtainits efficient imple-
mentationin our model. The only differenceis in pro-
cedureapprox-number-connected-components. We still sample
O(1/&?) verticesandrandomlytraverseH () from thesam-
pledvertices.To implementthe traversingalgorithmwe ex-
plorethe graphin a breadth-firssearchfashionby goingto
theoutgoingneighborsf theverticesthatarecloserthanthe
currentthresholdweightw. Sucha procedurecanbe easily
implementedn our modelby usingthe conenearesneigh-
bor queries;the runningtime is proportionalto the number
of the edgestraversed. To estimatethe value of ¢,, we use
the sameestimatorsasin [13]. Sincefor eachvertex u in
the sample the distribution of X,, depend®only onm¥, the
numberof theverticesreachabldérom « in H(*), by Lemma
5.1,we canconcludethat X, hasidenticaldistribution asin
thealgorithmof Chazelleetal. [13]. Thereforethe quality
of thisalgorithmof the estimationof EMST of P is thesame
asin thealgorithmof Chazelleetal. [13]. Sincethe maxi-
mumout-degreeof thedirectedYaographis 2°(9) | themod-
ified procedureapprox-number-connected-components hasiden-
tical complexity asthatof runningthe original algorithmof
Chazellestal. in a(undirectedgraphwith maximumdegree
20(d) Thus,we obtainthefollowing lemma.

LEMMA 5.2. Let P be a setof pointsin R?. Assumethe
value A of the spread of P is knownand accesdo a cone
neatestneighbororacle for P is given. Then,there is an
algorithm that outputsa value Y which, with probability
at least 3, approximatesthe valuesof EMST(P) to within

afactorof 1 + ¢ with querycomplexity O (2°(4) - A/3). O

For constan ande, this compleity is O(A), whichis
sublineafor A = o(n). However, for example,ontheplane,

A is known to be Q(y/n). Next we discussatruly sublinear
approximationalgorithmwhosecomplexity is independent
of A.

6 Sublineartime approximation algorithm

We shav how thetwo algorithmsfrom Sections3 and4 can
complemengeachother In additionto improving therunning
time, our algorithmrequiresa weaker computationamodel,
in which the conenealestneighborqueryis replacedy the
cone(1 + ¢)-approximateneasestneighborquery.

Overview of the algorithm. In Section6.1, we begin by
partitioninga minimal boundingcube BC of P into blocks
of equalsize;we thenconsideionly blockscontainingpoints
from P. Next, we grouptogetherblocksthatare“close” to
eachother We call the resultingclustersconnectedlock-
components The algorithm then proceedsn two phases.
First,in Section6.3,we shav how to approximateheweight
of aminimumspanningorest(msF) of theconnectedblock-
componentdy using the ideasof Section5. We then, in
Section6.4, approximatehe optimal way to connectdiffer-
ent connectedlock-componentsWe prove in Lemma6.1
thatthe MsF of the connectedlock-componentsombined
with the optimal setof edgegoining themapproximateshe
EMST of P.

6.1 Partitioning bounding cubeinto active blocks, and
connectedblock-components. After translationand scal-
ing of the pointsin P we canassumehatBC, the bounding
cubeof P, is [0,n/e]¢. In particularthe sidelengthis £ =
n/e andwe havethetrivial lowerboundemsT(P) > n/e.

Partitioning the bounding cube into active blocks. We

follow theapproachrom Section3 with smallmodifications,
by extendingit to higherdimensionsandapplyingadifferent
stoppingprocedure. We first partition BC into 2¢ disjoint
blocksof equalsize,thenpartitioniteratively the nonempty
onesinto 2¢ disjoint subcubesandso on. As before, by,

is the numberof blocksat level k that containpoints from

P (active blocks), and A, = L£/2F is the side length
of blocksin the kth level of the subdvision. Let b*
max{e?/?=% \/n,2%+1}.  We stop our subdiision at the
first level kg suchthat either by, > b* or Ay, < 2e.
Letb = by, and A = Ay,. Noticethatb < 2¢b* and
A > e. By ouramgumentsrom Section3, the active blocks
atlevel ky canbefoundby queryingthe rangequeryoracle
O(b2% log(n/(eA)) times.

Spannersand connectedblock-components. For ary ¢ >
1, at-spanner(see.e.g.,[8, 15, 21]) for asetS of pointsin
a Euclideanspaceis ary EuclideangraphG with the vertex
setS suchthatfor every pair of pointsz,y € S thereis a
pathin G between: andy of totallengthat mostt - |zy|.



Let B be the set of centersof active blocks and let
SPN be a (1 + ¢/4)-spannerof B with O(b(4/e)¢"1)
edges. Sucha spannercan be found in time O(b logb +
blog(1/e)e~%) = O(2¢/n e'~%/2) [8].

Call two blocks close if the distancebetweentheir
centersn SPN isatmostT - A, wherel’ = 14+/d/e.

We useequivalenceclasse®f therelationcloseto define
the connectelodk-componentsThatis, two blocksarein

the sameconnectedlock-componenif thereis a sequence

of active blocks betweenthem where every consecutre
pair of blocks in the sequences close. We shall akuse
notation and refer also to the partition of P induced by

the connecteccomponentas connectedlock-components
Noticethatall connectedlock-componentsanbefoundin

time proportionalto the numberof edgesn SPN, whichis

O(b(4/e)?1).

6.2 The EMST of P and connectedblock-components.
We refer to the spanningforest of a graph G as a union
of spanningtreesof the connectedcomponentof G. A
minimumspanningforest of G, denotedby MSF(G), is a
spanningorestof G having the minimumweight.

Let E;, bethe setof edgesof Kp whoseendpointdie
within thesameconnectedlock-componentLetW = (I'+
vd) A. We now relateblock-componentso the distances
betweerpoints.

OBSERVATION 6.1. Let p and ¢ be an arbitrary pair of
pointsin P.

1. If |pg| < (T — 4+/d) A thenp andq are in the same
connectedlock-component.

2. If p andq are in the sameconnectedlock-component

thenthereis a pathbetweerp andq consistingof edges
in E;,, thatare of lengthat most(I" + vVd) A = W.

If |pg| > (T +Vd)A = W, andp andq are in the
sameconnectedlock-componentthenemMsT(P) does
not containthe edce pq. O

In our algorithmwe usethefollowing graphs:

e Guocr 1S the graph containing all edgesin E;, of
weightat mostWW. By Obsenation6.1, the connected
componentof MSF(Gpocr) areidentical to the con-
nectedblock-componentand the minimum spanning
forestof thesecomponentss the sameasM SF(Ghiock)-

e G is thedirected(1 + §)-Yao graphthatis obtained
from Kp usingthe cone (1 + §)-approximatenearest
neighbororacle. Formally, we usethe samedefinitions
asin the definition of directedYao graphsand define
NI(JH‘” (p, C) to be the point that is returnedby the
cone (1l + §)-approximatenearestneighbororaclefor

pandC. If (P\ {p}) N C, = 0, then N3 (p, C) is

undefined. Then,G; is a directedEuclideangraphon
P with the edgesetcontaininganedge(p, q) if thereis

C € C suchthatg = NI()H‘S) (p,C).

e M is the minimumweightsubgraplof Kp that,when
addedo Gyock, formsaconnectedyraph.

e G, isthesameasKp exceptthattheweightsof edges
in E;, are consideredto be zero. Obsenre that the
weightof MST(G ) is identicalto theweightof M.

The following lemmadisplaysthe two-level natureof
thealgorithmthatwe will present.

LEMMA 6.1. Theunionof MSF(Gyocr) and M is a span-
ning tree of Kp whoseweight approximatesthe weight of
EMST(P) to within afactorof 1 + £/2.

Proof. Clearly, the union of MSF(Gy,cr) and M forms a
spanningreeof Kp. To provethesecondoartof thelemma,
let usconsidermnundirectedyraphG* obtainedrom Kp by
decreasingo (T' — 4+/d) A theweightof every edgein E;,
having weightlargerthan (T — 4 v/d) A andsmallerthanor
equalto /. (Note thatwe changeonly the weightsof the
edgesin Gyock.) Sincethe weightof every edgedecreases

w _ (r+vVd)A
by afactorof at most T avah =~ ToivdA <1+4¢/2,

wehaveMsT(G*) < (14¢/2)-EMST(P). Noticefurtherthat
by Obsenation6.1 (1), eachedgein G* thatis notin Gyock
hasweightlargerthan (T — 4v/d) A. Therefore MsT(G*)
canbeobtainedby first takingany minimumspanningorest
inducedby theedgesn Gy, andthentakingsomefurther
edgesn M. Hence theweightof theunionof MSF(Gpiocr)
andM isa (1l + ¢/2) approximatiorto EMST(P). O

Consequentlyto estimateemMsT(P) it sufficesto esti-
matetheweightsof MSF(Gpiock) aNdMST(Gout)-

6.3 First level - estimating the weight of MSF(Giock)-
In this sectionwe shav how to estimatethe weight of the
MST within a single block component.This, combinedfor
all block componentsyields an estimateon the weight of
MSF(Gpiocr ). Sinceour modeldoesnot allow directaccess
to the edgesof Kp, we will usethe directedYao graphGs
to estimatethe weight of MSF(Gpiocr). Our analysiswill
exploretherelationshipbetweenGs andGyock .

For a weightedgraph H denoteby 8 - H the graph
H with edgeweights multiplied by 3. Recall that H(")
denoteghe subgraptof H consistingof the edgesof weight
atmostr, ande, is the numberof connectecomponentsn

G .. Letnr, andm?, bethenumberof of verticesin G\
andin G_(s(r) reachablefrom u, respectiely. Notice that
¢r = Y uep 1/n;,. Analogouslydefinecy = > —p1/mj,.
Also, let ¢, be the numberof connectedcomponentsin
(1 + 6) ’ GI();(ch



It follows from [13] (seealsoSectiord) that

r—1
(6.1) MSF(GY) ) < n—re,+ Y c; < MSF(G),) + .
i=1

Sincewe only have accessto G5, we canonly deal with

the c;’s ratherthanthe ¢,’s. To boundthe errordueto this
replacementyow we relatereachabilityin G5 to reachability
in Grock-

CLAIM6.1. Lete < % andd < L. Thenfor everyr,

nt/ 0+ < my, < nj,. In particular, ¢,/4s) > ¢ > ¢

alZ=x

X
lllustrationto the proof of Claim 6.1. The figure shavs the
reachabilityin G5. The dashedine is the pathshawving the
connectiity of z andy in G, (),

b Vs %

Proof. The right inequality clearly holds. To shaw the left
inequality it suficesto shaw thatfor every 7, if avertex y

is reachablen G,()lrgck from a vertex z, theny is reachable

from z in G_6((1+6) T). Assumethat y is reachablefrom

z in G,()lrgck; this implies that z and y are in the same
connectedlock-component.Assumefurther, without loss

of generalitythatr < W (indeed,if 7 > W thenG\;) , =

Gitoon):
Let z bethe (1 + §)-approximatenearesheighborof =

(returnedby the coneapproximatenearesneighbororacle)
in the cone C, containingy. Clearly, if z = y, thenthe
lemmaholds. Solet usassumehatz # y. Leta = |zz|,
b = |zy|, ¢ = |yz|, anda = L(zyz), B = £L(zzy), and
v = £(yzz). Noticethatsincey andz arecontainedn the
coneC, with theangulardiameterr /4, we havey < w/4.
We first shav the following three inequalities: (i)
a < (1+0)b, (i) ¢ < b, and(iii) min{a,c} < b/(1 + ¢).
Inequality(i) follows directly from thedefinitionof thecone
approximatenearestneighbororacle. To prove inequality
(i), let us supposethate > b. Then,s < «, andsince
v < w/4, we obtainthata > 7 /2. Thisin turnimpliesthat
a > Vb2 + c2 > /2 b, which contradictghefirst inequality
thata < (1 +9) b < 1.1 - b. For inequality(iii), wefirst use
thelaw of cosineso getc? = a® +b?> —2ab cosy < a? +
b2 —+/2ab, sincey < w/4. Toshov min{a,c} < b/(1 +¢)
we assumeaz > b/(1 + ¢) andshav ¢ < b/(1 + €). Since

a>b/(l+e) > 4 - b, the expressioma? + b2 — v2ab
increasesvith a. Therefore py inequality(i) we obtain

& < a® +b%—2ab < ((1+40)b)? +b% — V/2(1 + 6)b?

B ((2—-V2)(1+0)+6%) < (b/(1+¢))* ,

wherethelastinequalityholdsfor e < 1 andé < ;5.

Now we prove the lemma using inequalities (i—iii).
Assumewithoutlossof generality that|zy| < 7; otherwise
apply the following argumentsto all edgeson the path
betweenz andy in Gl();—o)ck (all the edgeson this path are
of length at most7). We defineinductively the sequence
T = xo,Z1,%x2,---y Suchthatfor every i, if z; # y, then
z;41 isthe(1 4 §)-approximatenearesheighborof z; in the
coneC,, containingy. By inequality(ii), thesequencéz;y|
is strictly decreasingThisimmediatelyimpliesthatx; = y
for somei, andsothe sequencés finite.

Next, we shaw inductively that eachz; is in the same
connectedlock-componentasy. Supposédhatz; is in the
sameconnectedlock-componenasy. Sincethe sequence
|z;y| is decreasingndsince|zy| < 7 < W = (T +d)- A,
we obtain

|zy|
1+¢

|$i3/|

- T ++Vd)-A -
14+e —

T ++Vd)-A
1+¢ '

1+4+¢

Therefore,usinginequality (ii) with z = z; andz =
Zi+1, We obtain

|37z'y|
1+¢

< (C=Vd)-A .

min{|z;Tit1], [Tit1y])} <

Hence,by Obsenation 6.1, either z; andz;+1 arein
the sameconnectedlock-componenbr z;,; andy arein
the sameconnectedblock-component. In either case,the
transitvity ensureshatz; ., andy arein thesameconnected
block-component. We finally obsene that inequality (i)
impliesthat|z;z;11| < (1+6) |z;y|, andsince|z;y| < |zy|,
we obtain |2;2;+1| < (1 + d) |zy|. Hence,the sequence
T = xzg,T1,ZT2,...,Yy coOrrespondgo a path containedin
a connectedlock-componenhaving all edgesof lengthat

most(1 + §) 7. Thisimpliesthaty is reachabldrom z in
G—é((1+6) ) 0

We introduce an estimator A for the value of
M SF(Gblock) .

[W(1+46)]-1

D

i=1

A:n+ C:_I-W(1+5)-|CFW(1+6)] -

We analyzenow the quality of this estimator
LEMMA 6.2. MSF(Gblock) S A S (1+6)MSF(Gblock)+n'

Proof. We startwith thefollowing two obsenations.



o If r > W thenc, = cw. As acorollary CFW(1+6)W =
Cw = C[W (1+4)]-

i = Cr/(146)-

Now, we have the following sequencef inequalities:

w-1
MSF(Gblock) < n+ Z ¢ — WCW
i=1
[W (146)]-1
=n+ Y =W+ crw o
i=1
[W (146)] -1
=n+ Y a—[WI+)] Gy are
i=1
(W (1448)1-1
<+ Y G- WA+t
i=1
= A
[W (146)]-1
< n+ cifats) — [W (1 +0)] -ew
i=1
[W(1446)]-1
=n+ D G- WA+ éwasen
i=1
< MSF((1 4 6) - Ghioer) + 1

= (1 + 5) - MSF(Gblock) +n .

The first inequality is due to inequality (6.1). The first
equalityfollows from the first obsenationabove. Next, we
useCorollary 6.1 andthe both obsenationsabove. Thelast
inequalityis implied by inequality(6.1). O

We now modify the algorithm of Chazelle et al.
[13] to obtain a good approximationof A.  Follow-
ing the approachfrom Section 5, we run procedure
approx-number-connected-components to estimatethe number
of connectedcomponent®f the graphwith edgesof weight
atmostr = (2 +i)e fori = 1,2,...,A/e (whereA =
[W (1 + 6)] is anupperboundof theweightsin thegraph).
This estimationis achievedusingtheestimatiorof 1/n?,. As
wasdiscussedh Sectionb, if thereis anefficientway to tra-
verse(s, we canmodify thealgorithmto applythistraversal
andwe getanestimationof the ¢ with the sameprobabilis-
tic guarantees.As was pointedin Section5, traversingin

G_5(T) is easy:eachtime we wantto accessll edgesncident
toapointp € P, we first askthe coneapproximatenearest
neighborqueriesto all conesC),, andthenfor eachnearest
neighborg of p in Cp,, we verify if |pg| < r andif theblocks
to which p and ¢ belongarein the sameconnectedlock-
componentThefirst testis asimple2©(® time calculation,
while the secondrequiresthe computatiornof the connected

block-componentsThis is donein a preprocessingtepas

describedn Section6.1. Therefore following the analysis
from [13] (seealsoSection5) we canestimatethe value of

W H1=1 x using O (W - 20(@e=3) coneapproximate
nearesneighborqueriesand(7)(b -g~%1) orthogonarange
queries. The algorithm approximatesy>[" (*+9171 ¢x to
within anadditive errorof § n with probabilityatleast? (see
[13]). Next, obser\ethatc’fw (14+6)] is nothingbut the num-
ber of connectedlock-componentswhich is known to the
algorithm that computesthe connectedblock-components.
Therefore,togetherwith Lemma6.2 we get an algorithm
that approximatesv SF(Geiocr) to within an additive factor
of 10p,

9We note that by scalingdown all weightsby a factor
A > 1, applyingthe algorithmabove, andthenrescalingto
theoriginal weight,we decreas¢herunningtime by afactor
of A\, andincreasethe additive error by the samefactor In
this way we obtainanalgorithmthatperformsO(W/(Ae?))
coneapproximatenearesineighborqueriesand achiesze an
additve errorof 32 An.

Let us examinethe term W/ in the runningtime and
the additive error term % An. Recallthat there are two
possibleterminationstatesd > b* or A < 2e¢.

Considerfirst the caseb > b*. Since P hasb active
blocksof size A we havethateMsT(P) > 1A([b/24] — 1)
3. Sinceb > b* > 27+ we get EM ST(P) > 1A -b/2¢.
Setting A = % . % and applying the above scaling
procedurewe upperboundthe multiplicative errorby

10

146+ 25—
TA - b/2d

=1+d0+¢.
Therunningtime, usingthefactthatb > b* > ¢%/2-3 \/n is
boundedy

W/(A\e?)

O(Vd2*-n/(be")) < O(/n[e***?) .

On the otherhand,whenA < 2¢, we usethe trivial lower
boundemsT(P) > n/e, andby settingh = 9/10 obtaina
multiplicative error of 1 + 6 4+ . In this casenotice that
W = AVd(14/e + 1) = O(1). And so we boundthe
runningtime by

W/(Ae®) = O(e®%) < O(v/n/e***?)

for d > 2. Thuswe havethefollowing lemma.

LEMMA 6.3. GiventhegraphGy;,.x, thereis an algorithm
that estimateswith probability at least % the weight of

3This bound is achiered by consideringa subdvision of the active
block to 2¢b subcubesof size A/2. Now colour these subdiisions
using 2¢ colours, using the samearrangemenof coloursfor eachof the
original active blocks. This inducesa partition of the active blocksinto 2¢
monochromaticsets. Therehasto be a setof [b/2%] pointsin P, from
different active blocksthat are colouredthe same. Clearly the minimal
distancebetweerthesepointsmustbeatleastA /2, andhencethe bound.



MSF(Ghpiocr) towithina rr~1uItiplicativerelativeerror ofd+e.
The algorithm requires O(,/n/e%?*2) range queriesand
cone(1 + §)-approximatenearestneighborqueries(for § =
€/6). O

6.4 Secondevel — estimatingthe weight of MST(G,ut)-
Let @ be the completeundirectedgraph with the vertex
set B, the setof active blocks, and with the edgeweights
equalto the Euclideandistancedetweerthe corresponding
block-centersf theblocksarein differentconnectecdlock-
componentsand zero otherwise.  Argumentssimilar in
spirit to Obsenation 6.1 can be usedto shav that 1 —
€/2 < MST(Gout)/EMST(Q) < 1 + £/2. To obtaina good
estimatiorof theweightof MST(G ;) wethereforeestimate
theweightof aminimumspanningreeof Q.

We couldfind aminimumspanningreeof by calling
ary algorithmthatfindsa minimumspanningreein graphs.
However, ary suchalgorithmrequirestime Q(b?), because
@ contains®(b?) edges. To improve the running time
to O(be!=%) = O(y/n/e?/*+2) we use SPN, which is
the (1 + ¢/4)-spannenf B (having O(b(1/¢)?~!) edges)
definedin Section6.1. Let F beany spanningforestof the
subgraptof @) inducedby the edgesof weight0. It is easy
to seethatthe weightof any minimumspanningreeof Q) is
identicalto theweightof aminimumspanningreeof ) that
usesheedgedrom F.

We createa new graph SG with the vertex set B and
the edge set which is the union of the edgesin F and
the spanneredges. Then, apply, for example,the classical
Kruskal's algorithmto find in time O(be'~¢ log(b/c?)) =
O(y/n/e?>+2) a minimumweightspanningreeof SG. It
is easyto seenow that the obtainedspanningtree of B is
a spanningtree of B that usesedgesfrom F and whose
weightis at most% ¢ timesgreaterthanthe minimum. We
summarizethe discussionin this sectionin the following
lemma.

LEMMA 6.4. Thee is an algorithm which, givenas input
the graph Gyocr, €stimatesthe weight of M to within a
relativeerror of 2 ¢ with runningtime O(y/n/e%/2+2).

Our entireanalysiscanbe improvedin the cased = 2.
In this case,one simplify our agumentsto achieve the the

runningtime of O(b logb) = O(y/n log(y/n/e)/e).

6.5 Estimating the weight of MSF(Gpiock) U MST(Gout)-

Now, we can summarizeour algorithm for estimatingthe

EMST of ary setof pointsin R%. Since£ = ©(n/e), by

Lemmas6.1,6.3,and6.4, we obtainthe following theorem.
Summingup the errorsmadein our estimationwe get that

the multiplicative relative error is at most§ + 2%5 with

probability at least2. Usinge’ = ¢/3 asinput parameter
for our algorithmwe get:

THEOREM 6.1. Let P be a setof n pointsin R? for a
constantd. Lete beanyreal number0 < ¢ < % and
let § < e/4. Thee is an algorithm that with probability
at Ieast% estimatesthe weight of a Euclidean minimum
spanningtree of P with a relative error of at moste. It
runsin O(y/n/e%/?+2) time and requires O(y/n - ¢%/2+2)
orthogonal range queries, O(y/n/c%/2+2) cone (1 + 6)-
approximateneaestneighborqueries,anda singleminimal
boundingcubeof P. d
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Appendix
A Implementing supporting data structur es

To make our modelof computationwiable, we discusshere
how our supportingdatastructureg(oracles)canbe imple-
mentedefficiently usingstandardyeometricdatastructures.

Minimal bounding cube. The query about the minimal
boundingcubeof a setof points P € R? canbe supported
by mary standardgeometricdata structures. Indeed, the
only information requiredto find the minimal bounding
cubeis to know the minimum andmaximumd-dimensional
coordinatesof all input points. Therefore,mary standard
geometricdata structurescan supportthis query in time
O(d).

Orthogonal range query oracle. Therearemary efficient

datastructuresupportingheorthogonalrange queryoracle

andactually orthogonalrangequeriesare perhapghe most
widely supportedyeometricqueriesfor a surwy, see,e.g.,

[1, 3, 7]). One of the first datastructuresfor orthogonal
range searchingis the quadtee Despiteits bad worst-

casebehaior, thequadtreas still usedin mary applications
becauset providesan easy-to-implemenlinearspacedata
structurethat often has a very good performance. The

bestknown data structurefor orthogonalrange searching
basedon compressedangetreesandsomeothertechniques
suchasfiltering search([11, 12]). The time for a query

is O(log?~' n). If oneusesstandardrangetreeswith the

fractional cascadingechniquethenthe sameboundon the

querytime canbeachieved([22, 31]).

Cone nearest neighbor oracle. In his seminal paperon
Euclidean minimum spanningtrees, Yao [32] examined
algorithmsfor conenearesineighborin the coneswith the
angulardiameterr /4. Conenearesneighborquerieshave
beenalso studiedextensiely in follow-up papersdealing
with the EMST problem(seee.g.,[2]).

Cone approximate nearest neighbor oracle. Cone ap-
proximatenearesnheighborquerieshave beenwidely inves-
tigated. They play animportantrole in the context of con-
struction of Euclideanspannergsee,e.g., [5, 6, 15, 25)]).
And so, amongothers,Ruppertand Seidel[25] shav how
to answeraqueryin amortizedime O(n log?~! n) pereach
conein C; asimilar constructioris presentedh [6]. Aryaet.
al. [5] presentafully dynamicalgorithmwhichin polylog-
arithmic time supportscone approximatenearestineighbor
queries.Notice alsothat a single coneapproximatenearest
neighborquery can be answeredusing a logarithmic num-
ber of simple (triangular) range queries which is another
classicageometricdatastructure(seee.g.,[1, 3, 7]).



